Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis
Abstract
:1. Introduction
2. Results
2.1. The Target Activity Profiling of Polar Fraction in C. kwangsiensis
2.2. Construction of 2D-LC System for the Polar Fraction
2.3. Offline 2D RPLC × HILIC System for Separating of Polar Fraction
2.4. Analysis of Polar Compounds by Offline 2D RPLC × HILIC-Q-TOF-MS System
2.5. Characterization of Polar Compounds in C. kwangsiensis
2.6. Virtual Screening of Identified Compounds to Four Targets
2.7. Molecular Docking and Dynamics Simulation
3. Discussion
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Cell Culture
4.3. Sample Preparation
4.4. Chromatographic Conditions
4.5. Mass Spectrometry Analysis
4.6. Dynamic Mass Redistribution Assay
4.7. Virtual Screening and Molecular Docking
4.8. Molecular Dynamics Simulation
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhou, W.; Guo, Z.; Yu, L.; Zhou, H.; Shen, A.; Jin, Y.; Jin, G.; Yan, J.; Yang, F.; Liu, Y.; et al. On-line comprehensive two-dimensional liquid chromatography tandem mass spectrometry for the analysis of Curcuma kwangsiensis. Talanta 2018, 186, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xie, M.; Song, Y.; Wang, W.; Zhao, H.; Tian, Y.; Wang, Y.; Bai, S.; Zhao, Y.; Chen, X.; et al. Two traditional Chinese medicines Curcumae Radix and Curcumae Rhizoma: An ethnopharmacology, phytochemistry, and pharmacology review. Evid. Based Complement. Altern. Med. 2016, 2016, 4973128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhao, F.; Li, M.Z.; Chen, L.X.; Qiu, F. Diarylheptanoids from the rhizomes of Curcuma kwangsiensis. J. Nat. Prod. 2010, 73, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liang, T.; Zhang, X.; Du, Y.; Guo, Z.; Liang, X. Carbohydrate separation by hydrophilic interaction liquid chromatography on a ‘click’ maltose column. Carbohydr. Res. 2010, 345, 2690–2697. [Google Scholar] [CrossRef]
- Chen, S.; Gao, J.; Liu, J.; Liu, B.; Zhao, R.; Lu, C. Five new diarylheptanoids from the rhizomes of Curcuma kwangsiensis and their antiproliferative activity. Fitoterapia 2015, 102, 67–73. [Google Scholar] [CrossRef]
- Schramm, A.; Ebrahimi, S.N.; Raith, M.; Zaugg, J.; Rueda, D.C.; Hering, S.; Hamburger, M. Phytochemical profiling of Curcurna kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABA(A) receptor modulators. Phytochemistry 2013, 96, 318–329. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Zhao, Y.; Yu, L.; Fang, Y.; Jin, H.; Zhou, H.; Zhang, P.; Liu, Y.; Zhang, X.; et al. Discovery of beta(2)-adrenoceptor agonists in Curcuma zedoaria Rosc using label-free cell phenotypic assay combined with two-dimensional liquid chromatography. J. Chromatogr. A 2018, 1577, 59–65. [Google Scholar] [CrossRef]
- Chai, L.; Liu, B.; Lin, X.; Li, Q.; Lai, M. Analysis of compositions of the essential oil from Curcuma aromatica by gas chromatography-mass spectrometry. Zhong Yao Cai 2012, 35, 1102–1104. [Google Scholar]
- Li, J.; Liao, C.; Wei, J.; Chen, L.; Zhao, F.; Qiu, F. Diarylheptanoids from Curcuma kwangsiensis and their inhibitory activity on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg. Med. Chem. Lett. 2011, 21, 5363–5369. [Google Scholar] [CrossRef]
- Tong, H.; Yu, M.; Fei, C.; Ji, D.; Dong, J.; Su, L.; Gu, W.; Mao, C.; Li, L.; Bian, Z.; et al. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine 2021, 86, 153558. [Google Scholar] [CrossRef]
- McCalley, D.V. The challenges of the analysis of basic compounds by high performance liquid chromatography: Some possible approaches for improved separations. J. Chromatogr. A 2010, 1217, 858–880. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Z.; Liu, D.; Xue, Y.; Shi, Z. A simple method for the synthesis of a polar-embedded and polar-endcapped reversed-phase chromatographic packing with low activity of residue silanols. J. Chromatogr. A 2016, 1443, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Tang, X.; Jia, Y.; Li, G.; Sun, X.; Wen, A. Synthesis and characterization of novel polar-embedded silica stationary phases for use in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2013, 1271, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Liu, Y.; Guo, Z.; Yang, F.; Wang, J.; Li, X.; Peng, X.; Lang, X. High-performance liquid chromatography separation of cis-trans anthocyanin isomers from wild Lycium ruthenicum murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase. J. Agric. Food Chem. 2015, 63, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Jin, H.; Wang, J.; Zhou, H.; Liu, Y.; Feng, J.; Liang, X. Offline preparative 2-D polar-copolymerized reversed-phase chromatography × zwitterionic hydrophilic interaction chromatography for effective purification of polar compounds from Caulis Polygoni Multiflori. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1118–1119, 70–77. [Google Scholar] [CrossRef]
- Léa, M.; Karine, F. Preparative two dimensional separations involving liquid–liquid chromatography. J. Chromatogr. A 2017, 1494, 1–17. [Google Scholar]
- Song, Q.; Zhou, Z.; Li, J.; Cao, Y.; Zhao, Y.; Deng, S.; Qi, H.; Jiang, Y.; Song, Y.; Tu, P. Serial hyphenation of dried spot, reversed phase liquid chromatography, hydrophilic interaction liquid chromatography, and tandem mass spectrometry towards direct chemical profiling of herbal medicine-derived liquid matrices, an application in Cistanche sinensis. J. Pharm. Biomed. Anal. 2019, 174, 34–42. [Google Scholar]
- Lu, J.; Wang, C.; Chen, D.; Wang, J.; Che, K.; Zhong, M.; Zhang, W.; Jiang, Z. Ultra-high-performance liquid chromatograph with triple-quadrupole mass spectrometer quantitation of twelve phenolic components in different parts of sarcandra glabra. World J. Tradit. Chin. Med. 2021, 7, 86–96. [Google Scholar]
- Zeng, X.; Lian, M.; Mao, B. The research progress in chemical components, pharmacological activity and main pathogenic diseases in Curcuma wenyujin. Pharm. Biotechnol. 2017, 24, 554–560. [Google Scholar]
- Yin, G.; Zhang, Q.; An, Y.; Zhu, J.; Wang, Z. Advance in chemical constituents and pharmacological activity of Curcuma wenyujin. Zhongguo Zhong Yao Za Zhi 2012, 37, 3354–3360. [Google Scholar]
- An, Y.; Hu, G.; Yin, G.; Zhu, J.; Zhang, Q.; Wang, Z.; Peng, J.; Fan, B. Quantitative analysis and discrimination of steamed and non-steamed rhizomes of Curcuma wenyujin by GC–MS and HPLC. J. Chromatogr. Sci. 2014, 52, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothawade, P.B.; Thomas, A.B.; Chitlange, S.S. Novel niacin receptor agonists: A promising strategy for the treatment of dyslipidemia. Mini Rev. Med. Chem. 2021, 21, 2481–2496. [Google Scholar] [CrossRef]
- Lin, J.; Wang, S.; Zhou, F.; Shan, Q.; Hou, W.; Yuan, J. Isolation and identification of the chemical constituents from the rhizomes of Curcuma aromatica Salisb. J. Shenyang Pharm. Univ. 2016, 33, 850–853, 888. [Google Scholar]
- Xu, Y.; Qian, H.; Wang, X. Study on chemical constitutions of PE extract from wenyujin decoction by GC-MS. Chin. J. Exp. Tradit. Med. Formulae 2012, 18, 139–141. [Google Scholar]
- Yi, X.; Ma, J. Study on Chemical Components of volatile oil in the root of Curcuma wenyuj in in Xinjiang. Chin. J. Spectrosc. Lab. 2010, 27, 1757–1759. [Google Scholar]
- Masureel, M.; Zou, Y.; Picard, L.; van der Westhuizen, E.; Mahoney, J.P.; Rodrigues, J.P.G.L.M.; Mildorf, T.J.; Dror, R.O.; Shaw, D.E.; Bouvier, M.; et al. Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat. Chem. Biol. 2018, 14, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012, 482, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Pei, J.; Lai, L. Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr. Pharm. Des. 2013, 19, 2326–2333. [Google Scholar] [CrossRef]
- Yuan, Y.; Pei, J.; Lai, L. LigBuilder 2: A practical de novo drug design approach. J. Chem. Inf. Model. 2011, 51, 1083–1091. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018, 46, 374–379. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop predictio. Proteins 2004, 55, 351–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilar, M.; Olivova, P.; Daly, A.E.; Gebler, J.C. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 2005, 77, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
No. | 1D Fraction | 2DtR/min | Formula | m/z | Measured Ions | Mass Error/ppm | Fragments | Tentative Identification | Reference or Database |
---|---|---|---|---|---|---|---|---|---|
1 | F1 | 25.331 | C15H22O3 | 251.1616 | [C15H23O3]+ | 10.28 | 235.1309, 189.0848, 175.1196,159.0911,145.1122 | aerugidiol | [19] |
2 | F2 | 32.759 | C15H18O3 | 269.1167 | [C15H18O3Na]+ | −7.66 | 205.0979, 137.0462, 61.0285 | zedoarol | [20] |
3 | F3 | 2.83 | C11H19NO6 | 262.1296 | [C11H20NO6]+ | −4.01 | 216.1239, 161.0686, 118.0867, 72.0812 | heterodendrin | [21] |
4 | F3 | 9.872 | C8H11NO | 138.0912 | [C8H12NO]+ | 0.75 | 122.0594, 108.0806, 91.0536 | tyramine | [20] |
5 | F3 | 30.911 | C6H5NO2 | 124.0383 | [C6H6NO2]+ | 8.17 | 80.0488, 106.0276 | niacin | [22] |
6 | F4 | 21.339 | C15H26O2 | 261.1837 | [C15H26O2Na]+ | −5.03 | 199.0450, 149.0239, 90.9767 | polydactin B | [23] |
7 | F5 | 17.259 | C19H30O | 313.2102 | [C19H30ONa]+ | 12.41 | 247.0530, 129.0516, 113.0594 | curcuminol E | [21] |
8 | F6 | 16.918 | C15H18O | 215.1399 | [C15H19O]+ | 14.67 | 136.0620, 99.0554, 70.0655 | 8-hydroxycadalene | [24] |
9 | F7 | 1.012 | C21H22O6 | 371.1455 | [C21H23O6]+ | 9.23 | 327.1731, 311.1783, 149.0247 | dihydrocurcumin | [19] |
10 | F7 | 2.701 | C15H24O3 | 275.1627 | [C15H24O3Na]+ | −3.7 | 201.0449, 129.0516 | zedoarondiol | [20] |
11 | F7 | 2.701 | C15H22O2 | 235.1698 | [C15H23O2]+ | −2.22 | 118.0863 | curcumenone | [21] |
12 | F7 | 21.414 | C15H20O4 | 287.1254 | [C15H20O4Na]+ | 6.74 | 191.0802, 163.0858, 61.0282 | curcumenolactone C | [21] |
13 | F7 | 21.494 | C15H20O4 | 287.1340 | [C15H20O4Na]+ | 5.23 | 165.0676, 137.0701 | curcolonol | [21] |
14 | F7 | 25.652 | C15H22O5 | 305.1367 | [C15H22O5Na]+ | −2.68 | 227.1027, 191.0817, 149.0712 | zedoarolide B | [20] |
15 | F8 | 20.693 | C19H20O | 265.1588 | [C19H21O]+ | −0.41 | 195.1135, 136.0618, 70.0654 | trans-1, 7-diphenyl-1, 3-heptadien-5-ol | [21] |
16 | F15 | 5.743 | C10H12O | 171.0762 | [C10H12ONa]+ | 12.4 | 120.0465, 86.0595 | cuminaldehyde | [9] |
17 | F16 | 19.487 | C15H16O2 | 251.1017 | [C15H16O2Na]+ | 11.18 | 95.0610 | gweicurculactone | [20] |
18 | F18 | 18.378 | C15H20O3 | 271.1301 | [C15H20O3Na]+ | 1.47 | 173.0825, 101.0247, 730.659 | curdionolide B | [20] |
19 | F18 | 21.977 | C19H20O2 | 281.1515 | [C19H21O2]+ | 7.52 | 265.1285 | (E)-1,7-diphenyl-3-hydroxy-1-hepten-5-one | [20] |
20 | F20 | 10.539 | C15H20O5 | 281.1384 | [C15H21O5]+ | −0.18 | 165.0557, 123.0801, 89.0610 | zedoalactone B | [20] |
21 | F20 | 16.537 | C15H18O2 | 231.135 | [C15H19O2]+ | 12.85 | 175.1236, 137.0591 | epicurzerenone | [25] |
22 | F22 | 15.6 | C5H7NO3 | 130.0511 | [C5H8NO3]+ | −9.49 | 56.0502, 84.0453, 119.0362 | pyroglutamic acid | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, K.; Zhou, W.; Hou, T.; Yu, L.; Zhou, H.; Zhou, L.; Liu, Y.; Wang, J.; Guo, Z.; Liang, X. Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis. Molecules 2022, 27, 7715. https://doi.org/10.3390/molecules27227715
Xiang K, Zhou W, Hou T, Yu L, Zhou H, Zhou L, Liu Y, Wang J, Guo Z, Liang X. Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis. Molecules. 2022; 27(22):7715. https://doi.org/10.3390/molecules27227715
Chicago/Turabian StyleXiang, Kaijing, Weijia Zhou, Tao Hou, Long Yu, Han Zhou, Liangliang Zhou, Yanfang Liu, Jixia Wang, Zhimou Guo, and Xinmiao Liang. 2022. "Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis" Molecules 27, no. 22: 7715. https://doi.org/10.3390/molecules27227715
APA StyleXiang, K., Zhou, W., Hou, T., Yu, L., Zhou, H., Zhou, L., Liu, Y., Wang, J., Guo, Z., & Liang, X. (2022). Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis. Molecules, 27(22), 7715. https://doi.org/10.3390/molecules27227715