Unravelling the 2e− ORR Activity Induced by Distance Effect on Main-Group Metal InN4 Surface Based on First Principles
Abstract
:1. Introduction
2. Results
2.1. Calculation Process
2.2. ORR Catalytic Activity
2.3. Theoretical Descriptor
3. Discussion and Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Qin, D.-D.; Tang, Y.; Ma, G.; Qin, L.; Tao, C.-L.; Zhang, X.; Tang, Z. Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and challenges. Int. J. Hydrog. Energy 2021, 46, 25771–25781. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lu, Z.; Yang, Z.; Wu, R. Design of Highly Stable and Efficient Bifunctional MXene-Based Electrocatalysts for Oxygen Reduction and Evolution Reactions. Phys. Rev. Appl. 2021, 15, 044053. [Google Scholar] [CrossRef]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; He, Y.; Spendelow, J.S.; Wu, G. Atomically Dispersed Metal Catalysts for Oxygen Reduction. ACS Energy Lett. 2019, 4, 1619–1633. [Google Scholar] [CrossRef]
- He, Y.; Hwang, S.; Cullen, D.A.; Uddin, M.A.; Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A.J.; Wegener, E.C.; Sokolowski, J.; et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250–260. [Google Scholar] [CrossRef]
- Liu, K.; Kattel, S.; Mao, V.; Wang, G. Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. J. Phys. Chem. C 2016, 120, 1586–1596. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Wang, C.; Tao, W.; Huang, M.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L.; Chen, S.; et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wang, Q.; Wang, Y.; Da, Y.; Zhou, W.; Shao, Y.; Li, D.; Zhan, S.; Yuan, J.; Wang, H. Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angew. Chem. Int. Ed. 2019, 58, 13466–13471. [Google Scholar] [CrossRef]
- Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384. [Google Scholar] [CrossRef]
- Gu, Y.; Xi, B.J.; Zhang, H.; Ma, Y.C.; Xiong, S.L. Activation of Main-Group Antimony Atomic Sites for Oxygen Reduction Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202202200. [Google Scholar] [CrossRef]
- Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; et al. Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew. Chem. Int. Ed. 2022, 61, e202117347. [Google Scholar]
- Xue, Z.; Zhang, X.; Qin, J.; Liu, R. TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J. Energy Chem. 2021, 55, 437–443. [Google Scholar] [CrossRef]
- Cheng, W.; Yuan, P.; Lv, Z.; Guo, Y.; Qiao, Y.; Xue, X.; Liu, X.; Bai, W.; Wang, K.; Xu, Q.; et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B Environ. 2020, 260, 118198. [Google Scholar] [CrossRef]
- Wen, X.; Qi, H.; Cheng, Y.; Zhang, Q.; Hou, C.; Guan, J. Cu Nanoparticles Embedded in N-Doped Carbon Materials for Oxygen Reduction Reaction. Chin. J. Chem. 2020, 38, 941–946. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, W.; Gu, Y.; Liao, T.; Sun, Z. Metal-Nitrogen-Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Wu, G.; Shi, J.; Dong, H.; Nie, Y.; Wang, Y.; Chen, Y.; Li, D.; Linghu, Y.; He, Z.; Wang, C.; et al. Bimetallic Fe and Co supported on the N-doped mesoporous carbon frameworks with enhanced oxygen reduction reaction performance via high-gravity technology. J. Chin. Chem. Soc. 2021, 68, 1047–1054. [Google Scholar] [CrossRef]
- Wang, D.; Xu, H.; Yang, P.; Lu, X.; Ma, J.; Li, R.; Xiao, L.; Zhang, J.; An, M. Fe–N4 and Co–N4 dual sites for boosting oxygen electroreduction in Zn–air batteries. J. Mater. Chem. A 2021, 9, 13678–13687. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, L.; Wei, T.; Wang, Y.; Liu, X. Ni/NiM2O4 (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catal. Sci. Technol. 2019, 9, 1595–1601. [Google Scholar] [CrossRef]
- Jin, Z.; Li, P.; Meng, Y.; Fang, Z.; Xiao, D.; Yu, G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622. [Google Scholar] [CrossRef]
- Li, Q.K.; Li, X.F.; Zhang, G.; Jiang, J. Cooperative Spin Transition of Monodispersed FeN3 Sites within Graphene Induced by CO Adsorption. J. Am. Chem. Soc. 2018, 140, 15149–15152. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.F.; Hu, W. Tunable Electronic and Magnetic Properties of Graphene-Embedded Transition Metal-N4 Complexes: Insight From First-Principles Calculations. Chem. Asian J. 2018, 13, 3239–3245. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Cao, X.; Hu, W.; Ji, Y.; Zhu, Z.-Z.; Li, X.-F. Improving the Oxygen Reduction Reaction Activity of FeN4–Graphene via Tuning Electronic Characteristics. ACS Appl. Energy Mater. 2019, 2, 6634–6641. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc. 2017, 139, 12480–12487. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, G.A.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Lu, F.; Xie, W.; Yi, D.; Wang, Y.; Zhang, F.; Xu, Y.; Zhou, B.; Liu, S.; Wang, X.; Yao, J. Revealing the Role of d Orbitals of Transition-Metal-Doped Titanium Oxide on High-Efficient Oxygen Reduction. CCS Chem. 2021, 3, 180–188. [Google Scholar] [CrossRef]
- Han, J.; An, P.; Liu, S.; Zhang, X.; Wang, D.; Yuan, Y.; Guo, J.; Qiu, X.; Hou, K.; Shi, L.; et al. Reordering d Orbital Energies of Single-Site Catalysts for CO2 Electroreduction. Angew. Chem. Int. Ed. 2019, 58, 12711–12716. [Google Scholar] [CrossRef]
- Steinberg, S.; Dronskowski, R. The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals 2018, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Zhao, S.; Xiao, J.; Zhong, X.; Sheng, J.; Lv, W.; Zhang, Q.; Zhou, G.; Cheng, H.-M. Engineering d-p Orbital Hybridization in Single-Atom Metal-Embedded Three-Dimensional Electrodes for Li–S Batteries. Adv. Mater. 2021, 33, 2105947. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Fattebert, J.-L.; Gygi, F. First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem. 2003, 93, 139–147. [Google Scholar] [CrossRef]
- Petrosyan, S.A.; Rigos, A.A.; Arias, T.A. Joint Density-Functional Theory: Ab Initio Study of Cr2O3 Surface Chemistry in Solution. J. Phys. Chem. B 2005, 109, 15436–15444. [Google Scholar] [CrossRef] [PubMed]
- Andreussi, O.; Dabo, I.; Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 2012, 136, 064102. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Nelson, R.; Ertural, C.; George, J.; Deringer, V.L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Xu, J.; Su, Y. Unravelling the 2e− ORR Activity Induced by Distance Effect on Main-Group Metal InN4 Surface Based on First Principles. Molecules 2022, 27, 7720. https://doi.org/10.3390/molecules27227720
Li P, Xu J, Su Y. Unravelling the 2e− ORR Activity Induced by Distance Effect on Main-Group Metal InN4 Surface Based on First Principles. Molecules. 2022; 27(22):7720. https://doi.org/10.3390/molecules27227720
Chicago/Turabian StyleLi, Peng, Jiawen Xu, and Yaqiong Su. 2022. "Unravelling the 2e− ORR Activity Induced by Distance Effect on Main-Group Metal InN4 Surface Based on First Principles" Molecules 27, no. 22: 7720. https://doi.org/10.3390/molecules27227720
APA StyleLi, P., Xu, J., & Su, Y. (2022). Unravelling the 2e− ORR Activity Induced by Distance Effect on Main-Group Metal InN4 Surface Based on First Principles. Molecules, 27(22), 7720. https://doi.org/10.3390/molecules27227720