High-Pressure Supercritical CO2 Pretreatment of Apple Orchard Waste for Carbohydrates Production Using Response Surface Methodology and Method Uncertainty Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Apple Orchard Waste
2.2. High-Pressure Supercritical CO2 Extraction of AOW
2.3. Method Validation and Uncertainty Evaluation for Sugars Analysis by UHPLC-ELCD Detector
2.3.1. Chemical Composition of Liquid Samples
2.3.2. Optimum Condition of the Pretreatment Method for Extracting Sugars in Liquid Fraction Designed by RSM
2.4. Structural Characterization of the AOW before and after Pretreatment
2.4.1. SEM Analysis
2.4.2. FTIR Spectra
2.4.3. XRD Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Description
3.3. High-Pressure Supercritical CO2 Pretreatment
RSM Methodology
3.4. Analytical Characterization
3.4.1. Chemical Characterization of Raw and Pretreated Biomass
3.4.2. Chemical Analysis of Sugars Obtained in Liquid Samples
3.4.3. Strategy for Methods’ Validation
3.5. Structural Characterization
3.5.1. Scanning Electron Microscopy (SEM)
3.5.2. X-ray Diffraction (XRD)
3.5.3. FTIR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Caldeira, C.; Vlysidis, A.; Fiore, G.; Laurentiis, V.D.; Vignali, G. Sustainability of food waste biorefinery: A review on valorization pathways, techno-economic constraints. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef] [PubMed]
- Dyjakon, A. The influence of apple orchard management on energy performance and pruned biomass harvesting for energetic applications. Energies 2019, 12, 632. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.H. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef]
- Pocha, C.K.R.; Chia, S.R.; Chia, W.Y.; Koyande, A.K.; Nomanbhay, S.; Chew, K.W. Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production. Chemosphere 2022, 292, 133246. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Hernández, D.A.; García-Pérez, J.S.; López-Pacheco, I.Y.; Hafiz, M.; Iqbal, N.; Parra-Saldívar, R. Resource recovery of lignocellulosic biomass waste into lactic acid-Trends to sustain cleaner production. J. Environ. Manag. 2022, 301, 113925. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Takada, K.; Elkasaby, T.; Pangestu, R.; Totoshim, M.; Kadar, P.; Ogino, C.; Kaneko, T.; Kondo, A. Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresour. Technol. 2022, 344, 126165. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Giri, B.S.; Patel, A.K.; Sar, T.; Liu, H.; Chen, H.; Juneja, A.; Kumar, D.; Zhang, Z.; Awasthi, M.K.; et al. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresour Technol. 2021, 321, 124496. [Google Scholar] [CrossRef]
- Montroni, D.; Giosia, M.D.; Falini, G. Supramolecular binding with lectins: A new route for non-covalent functionalization of polysaccharide matrices. Molecules 2022, 27, 5633. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Sun, J.; Ding, R.; Yin, J. Pretreatment corn ingredient biomass with high pressure CO2 for conversion to fermentable sugars via enzymatic hydrolysis of cellulose. Ind. Crops Prod. 2022, 177, 114518. [Google Scholar] [CrossRef]
- Seoud, O.A.E.; Kostag, M.; Jedvert, K.; Malek, N.I. Cellulose in ionic liquids and alkaline solutions: Advances in the mechanisms of biopolymer dissolution and regeneration. Polymers 2019, 11, 1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.J.; Xu, Q.Q.; Li, G.M.; Zhang, Q.Z.; Zhou, D.; Yin, J.Z.; Zhan, H.S. Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J. Energy Chem. 2019, 31, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Ran, F.; Wang, X.; Li, H.; Zhang, H.; Pang, J.; Wang, Z.; Li, L. High yield of reducing sugar from enzymolysis of cellulose in supercritical carbon dioxide system. Ind. Crops Prod. 2022, 178, 114632. [Google Scholar] [CrossRef]
- Jogi, R.; Maki-Arvela, P.; Virtanen, P.; Kumar, N.; Hemming, J.; Russo, V.; Samikannu, A.; Lestander, T.A.; Mikkola, J. Understanding the formation of phenolic monomers during fractionation of birch wood under supercritical ethanol over iron based catalysts. J. Energy Inst. 2020, 93, 2055–2062. [Google Scholar] [CrossRef]
- Pinto, J.A.; Prieto, M.A.; Ferreira, I.C.F.R.; Belgacem, M.N.; Rodriques, A.E.; Barreiro, M.F. Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). Ind. Crops Prod. 2020, 153, 112543. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Gu, G. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb (II) sorption. Carbohydr. Polym. 2018, 182, 21–28. [Google Scholar] [CrossRef]
- Pandey, A.K.; Negi, S. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour. Technol. 2015, 192, 115–125. [Google Scholar] [CrossRef]
- Gundapalli, M.P.; Tantayotai, P.; Panakkal, E.J.; Chuetor, S.; Kirdponpattara, S.; Thomas, A.S.S.; Sharma, B.K.; Sriariyanum, M. Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: An integrated approach. Bioresour. Technol. Rep. 2022, 17, 100957. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Tsai, C.-W.; Tipple, C.A. A validated method for the analysis of sugars and sugar alcohols related to explosive via liquid chromatography mass spectrometry (LC-MS) with post-column addition. Forensic Chem. 2022, 28, 100404. [Google Scholar] [CrossRef]
- Li, P.; Chatterjee, M.; Lämmerhofer, M. Targeted analysis of sugar phosphates from glycolysis partway by phosphate methylation with liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 2021, 1221, 340099. [Google Scholar] [CrossRef]
- Hyvärinen, S.; Mikkola, J.P.; Murzin, D.Y.; Vaher, M.; Kaljurand, M.; Koel, M. Sugars and sugar derivatives in ionic liquid media obtained from lignocellulosic biomass: Comparison of capillary electrophoresis and chromatographic analysis. Catal. Today 2014, 223, 18–24. [Google Scholar] [CrossRef]
- Muhammad, G.; Ngatcha, A.D.P.; Xiong, W.; El-Badry, Y.; Asmatulu, E.; Xu, J.; Alam, M.A. Enhanced biodiesel production from wet microalgae biomass optimized via response methodology and artificial neural network. Renew. Energy 2022, 184, 753–764. [Google Scholar] [CrossRef]
- Becze, A.; Babalau-Fuss, V.L.; Varaticeanu, C.; Roman, C. Optimization of high-pressure extraction process of antioxidant compounds from Feteasca regala leaves using Response Surface Methodology. Molecules 2020, 25, 4209. [Google Scholar] [CrossRef] [PubMed]
- EURACHEM. CITAC Guide CG4, Quantifying Uncertainty in Analytical Measurement, 3rd ed.; Ellison, S.L.R., Williams, A., Eds.; Eurachem: Teddington, UK, 2012; pp. 1–132. [Google Scholar]
- Alinia, R.; Zabihi, S.; Esmaeilzadeh, F.; Kalajahi, J.F. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosyst. Eng. 2010, 107, 61–66. [Google Scholar] [CrossRef]
- Ji, Q.; Jiang, H.; Yu, X.; Yagoub, A.E.G.; Zhou, C.; Chen, L. Efficient and environmentally-friendly dehydration of glucose and treatments of bagasse under the supercritical CO2 system. Renew. Energy 2020, 162, 1–12. [Google Scholar] [CrossRef]
- Yong, K.J.; Wu, T.Y.; Lee, C.B.T.L.; Lee, Z.J.; Liu, Q.; Jahim, J.M.; Zhou, Q.; Zhang, L. Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass Bioenerg. 2022, 161, 106458. [Google Scholar] [CrossRef]
- Binder, J.B.; Blank, J.J.; Cefali, A.V.; Raines, R.T. Synthesis of furfural from xylose and xylan. Chem.Sus.Chem. 2010, 3, 1268–1272. [Google Scholar] [CrossRef] [Green Version]
- Lü, H.; Ren, M.; Zhang, M.; Chen, Y. Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chin. J. Chem. Eng. 2013, 21, 551–557. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gahlot, P.; Moustakas, K.; Kazmi, A.A.; Ojha, C.S.P.; Tyagi, V.K. Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel 2022, 319, 123726. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef]
- Senila, L.; Tenu, I.; Carlescu, P.; Scurtu, D.A.; Kovacs, E.; Senila, M.; Cadar, O.; Roman, M.; Dumitras, D.E.; Roman, C. Characterization of biobriquettes produced from vineyard wastes as a solid biofuel resource. Agriculture 2022, 12, 341. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.; Martin, A.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray difractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Galiwango, E.; Rahman, N.S.A.; Al-Marzouqi, A.H.; Abu-Omar, M.M.; Khaleel, A.A. Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon 2019, 5, e02937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standard Test Method for Ash in Wood. ASTM D1102-84; ASTM International: West Conshohocken, PA, USA, 2021.
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 13878:1998; Soil Quality—Determination of Total Nitrogen Content after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 15178:2000; Soil Quality—Determination of Total Sulfur by Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 2000.
- Teramoto, Y.; Lee, S.; Endo, T. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulphuric acid-free ethanol cooking. Bioresour. Technol. 2008, 99, 8856–8863. [Google Scholar] [CrossRef]
- Senila, L.; Scurtu, D.A.; Kovacs, E.; Senila, M.; Tomoiag, C.H.; Roman, C. Determination of furfural from vineyard waste by ultra-high performance liquid chromatography-diode array detection (UHPLC-DAD) with method validation and uncertainty evaluation. Anal. Lett. 2022, 55, 665–674. [Google Scholar] [CrossRef]
- Senila, L.; Gog, A.; Senila, M.; Roamn, C.; Silaghi-Dumitrescu, L. Development of a GC-MS method for 5-hydroxymethylfurfural determination in wood after steam-explosion pretreatment. Rev. Chim. 2012, 63, 557–561. [Google Scholar]
AOW Component | Amount (%/w/w) | AOW Component | Amount (%/w/w) |
---|---|---|---|
Lignocellulosic components | Elemental analysis | ||
Cellulose | 32.2 ± 0.07 | N | 0.78 ± 0.01 |
Hemicelluloses | 26.5 ± 0.05 | C | 46.7 ± 1.50 |
Insoluble lignin | 24.7 ± 0.07 | H | 5.79 ± 0.2 |
Soluble lignin | 0.52 ± 0.01 | S | 0.19 ± 0.01 |
Moisture | 6.96 ± 0.03 | Ash | 2.04 ± 0.02 |
Extractables | 2.5 ± 0.03 |
Parameter | Temperature (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|
160 °C– 15 min | 180 °C– 15 min | 200 °C– 15 min | 160 °C– 30 min | 180 °C– 30 min | 200 °C– 30 min | 160 °C– 45 min | 180 °C– 45 min | 200 °C– 45 min | |
Solid yield * | 72. ± 2.1 | 63.1 ± 1.8 | 58.3 ± 2.3 | 69.2 ± 2.6 | 53.4 ± 1.5 | 51.7 ± 2.2 | 62.2 ± 2.3 | 51.2 ± 1.8 | 49.3 ± 1.6 |
Cellulose ** | 37.2 ± 1.2 | 46.3 ± 1.6 | 44.2 ± 1.5 | 35.4 ± 1.4 | 45.3 ± 1.2 | 41.7 ± 1.3 | 37.2 ± 1.5 | 47.2 ± 1.2 | 45.3 ± 1.3 |
Hemicelluloses ** | 19.6 ± 1.8 | 11.2 ± 0.09 | 9.1 ± 1.1 | 18.71 ± 1.2 | 10.1 ± 0.08 | 8.8 ± 0.07 | 5.4 ± 0.06 | 3.5 ± 0.04 | 2.2 ± 0.06 |
Lignin ** | 33.0 ± 1.2 | 40.1 ± 1.5 | 46.2 ± 1.9 | 31.48 ± 2.1 | 38.1 ± 2.0 | 44.8 ± 2.3 | 28.3 ± 2.4 | 35.6 ± 2.6 | 40.2 ± 2.7 |
Solid compositions | 89.9 ± 2.3 | 97.6 ± 2.1 | 99.5 ± 2.2 | 85.6 ± 1.8 | 93.5 ± 1.7 | 95.2 ± 1.7 | 85.6 ± 1.4 | 93.5 ± 1.7 | 95.2 ± 1.8 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 1637.60 | 327.520 | 110.02 | 0.000 |
Linear | 2 | 1488.17 | 744.085 | 249.94 | 0.000 |
Temp (°C) | 1 | 993.09 | 993.094 | 333.59 | 0.000 |
Time (min) | 1 | 495.08 | 495.076 | 166.30 | 0.000 |
Square | 2 | 148.78 | 74.389 | 24.99 | 0.000 |
Temp (°C) × Temp (°C) | 1 | 144.39 | 144.387 | 48.50 | 0.000 |
Time (min) × Time (min) | 1 | 4.39 | 4.392 | 1.48 | 0.238 |
Two-Way Interaction | 1 | 0.65 | 0.653 | 0.22 | 0.644 |
Temp (°C) × Time (min) | 1 | 0.65 | 0.653 | 0.22 | 0.644 |
Error | 21 | 62.52 | 2.977 | ||
Lack of Fit | 3 | 36.06 | 12.019 | 8.18 | 0.001 |
Pure Error | 18 | 26.46 | 1.470 | ||
Total | 26 | 1700.12 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 457.582 | 91.516 | 76.21 | 0.000 |
Linear | 2 | 212.770 | 106.385 | 88.59 | 0.000 |
Temp (°C) | 1 | 210.125 | 210.125 | 174.98 | 0.000 |
Time (min) | 1 | 2.645 | 2.645 | 2.20 | 0.153 |
Square | 2 | 241.071 | 120.536 | 100.37 | 0.000 |
Temp (°C) × Temp (°C) | 1 | 216.400 | 216.400 | 180.20 | 0.000 |
Time (min) × Time (min) | 1 | 24.671 | 24.671 | 20.54 | 0.000 |
Two-Way Interaction | 1 | 3.741 | 3.741 | 3.12 | 0.092 |
Temp (°C) × Time (min) | 1 | 3.741 | 3.741 | 3.12 | 0.092 |
Error | 21 | 25.218 | 1.201 | ||
Lack of Fit | 3 | 6.092 | 2.031 | 1.91 | 0.164 |
Pure Error | 18 | 19.127 | 1.063 | ||
Total | 26 | 482.801 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 857.407 | 171.481 | 122.90 | 0.000 |
Linear | 2 | 663.231 | 331.615 | 237.67 | 0.000 |
Temp (°C) | 1 | 282.903 | 282.903 | 202.76 | 0.000 |
Time (min) | 1 | 380.328 | 380.328 | 272.59 | 0.000 |
Square | 2 | 146.336 | 73.168 | 52.44 | 0.000 |
Temp (°C) × Temp (°C) | 1 | 43.884 | 43.884 | 31.45 | 0.000 |
Time (min) × Time (min) | 1 | 102.452 | 102.452 | 73.43 | 0.000 |
Two-Way Interaction | 1 | 47.840 | 47.840 | 34.29 | 0.000 |
Temp (°C) × Time (min) | 1 | 47.840 | 47.840 | 34.29 | 0.000 |
Error | 21 | 29.300 | 1.395 | ||
Lack of Fit | 3 | 22.943 | 7.648 | 21.65 | 0.000 |
Pure Error | 18 | 6.358 | 0.353 | ||
Total | 26 | 886.707 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 749.645 | 149.929 | 100.62 | 0.000 |
Linear | 2 | 725.549 | 362.774 | 243.46 | 0.000 |
Temp (°C) | 1 | 621.869 | 621.869 | 417.34 | 0.000 |
Time (min) | 1 | 103.680 | 103.680 | 69.58 | 0.000 |
Square | 2 | 15.595 | 7.797 | 5.23 | 0.014 |
Temp (°C) × Temp (°C) | 1 | 7.114 | 7.114 | 4.77 | 0.040 |
Time (min) × Time (min) | 1 | 8.481 | 8.481 | 5.69 | 0.027 |
Two-Way Interaction | 1 | 8.501 | 8.501 | 5.70 | 0.026 |
Temp (°C) × Time (min) | 1 | 8.501 | 8.501 | 5.70 | 0.026 |
Error | 21 | 31.292 | 1.490 | ||
Lack of Fit | 3 | 14.725 | 4.908 | 5.33 | 0.008 |
Pure Error | 18 | 16.567 | 0.920 | ||
Total | 26 | 780.936 |
s | R2 | R2 (Adjusted) | R2 (Predicted) | |
---|---|---|---|---|
Solid yield | 1.72 | 96.32% | 95.45% | 94.10% |
Cellulose | 1.09 | 94.78% | 93.55% | 91.29% |
Hemicellulose | 1.18 | 96.70% | 95.91% | 94.64% |
Lignin | 1.22 | 95.99% | 95.04% | 93.46% |
Optimal Solutions | Predicted Value (%) | Experimental Value (%) | % of Variation Explained by the Model | p | |
---|---|---|---|---|---|
Solid yield | 160 °C–15 min | 66.42 | 65.52 ± 1.2 | 59.75 | 0.015 |
Cellulose | 185.85 °C–45 min | 47.81 | 48.23 ± 0.8 | 97.37 | 0.002 |
Hemicellulose | 160 °C–22.57 min | 18.01 | 16.25 ± 0.3 | 88.81 | 0.008 |
Lignin | 200 °C–21.06 min | 45.81 | 43.25 ± 1.1 | 97.91 | <0.001 |
Solid composition | 200 °C–45 min | 97.64 | 96.35 ± 2.6 | 72.04 | 0.004 |
Compounds | Retention Time (min) | Reproducibility (n = 10) %CV | Regression Equation (y = ax + b) | R2 | LOD µg mL−1 | LOQ µg mL−1 |
---|---|---|---|---|---|---|
Xylose | 5.678 | 0.4 | y = 18.819x − 31.9288 | 0.993 | 15.0 | 25.0 |
Arabinose | 6.133 | 0.3 | y = 18.8039x − 20.9886 | 0.992 | 15.0 | 25.0 |
Mannose | 7.036 | 0.3 | y = 16.9589x − 61.1288 | 0.998 | 15.0 | 25.0 |
Glucose | 7.294 | 0.4 | y = 39.9770x − 192.0075 | 0.997 | 15.0 | 25.0 |
Galactose | 7.676 | 0.3 | y = 17.7075x − 65.3281 | 0.998 | 15.0 | 25.0 |
Compounds | Sy | Sx0 | Recovery (%) | VXO | PG |
---|---|---|---|---|---|
Xylose | 172.23 | 9.15 | 99.5 ± 4.2 | 7.09 | 2.5 |
Arabinose | 113.80 | 6.05 | 107.2 ± 5.6 | 4.69 | 3.1 |
Mannose | 81.188 | 4.79 | 98.2 ± 4.8 | 3.71 | 4.6 |
Glucose | 214.53 | 5.37 | 100.1 ± 6.2 | 4.15 | 5.5 |
Galactose | 78.770 | 4.45 | 104.2 ± 5.5 | 3.44 | 5.8 |
Purity (%) | Uc rel (mg L−1) | Uc (mg L−1) | UE (mg L−1) | Urel (%) | |
---|---|---|---|---|---|
Xylose | 99.0 | 0.104 | 11.5 | 22.9 | 20.9 |
Arabinose | 98.0 | 0.090 | 9.9 | 19.8 | 18.0 |
Mannose | 99.0 | 0.085 | 9.3 | 18.6 | 16.9 |
Glucose | 99.5 | 0.087 | 9.5 | 19.1 | 17.3 |
Galactose | 99.0 | 0.088 | 9.7 | 19.5 | 17.7 |
Parameter | Temperature (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|
160 °C– 15 min | 180 °C– 15 min | 200 °C– 15 min | 160 °C– 30 min | 180 °C– 30 min | 200 °C– 30 min | 160 °C– 45 min | 180 °C– 45 min | 200 °C– 45 min | |
Xylose | 581 ± 121 | 601 ± 125 | 587 ± 123 | 784 ± 164 | 889 ± 185.5 | 770 ± 161 | 685 ± 143 | 708 ± 148 | 681 ± 142 |
Arabinose | 789 ± 142 | 815 ± 147 | 797 ± 144 | 1064 ± 192 | 1207 ± 217.5 | 1045 ± 188 | 930 ± 168 | 961 ± 173 | 925 ± 167 |
Mannose | 238 ± 40.3 | 246 ± 41.7 | 241 ± 40.7 | 320 ± 54.2 | 363 ± 61.5 | 314 ± 53.2 | 281 ± 47.5 | 290 ± 49.1 | 279 ± 47.2 |
Glucose | 66.1 ± 11.4 | 68.4 ± 11.8 | 66.8 ± 11.6 | 88.7 ± 15.3 | 101 ± 17.4 | 87.1 ± 15.1 | 77.6 ± 13.4 | 80.2 ± 13.9 | 77.2 ± 13.3 |
Galactose | 156 ± 27.6 | 161 ± 28.5 | 158 ± 27.9 | 210 ± 37.1 | 239 ± 42.2 | 207 ± 36.6 | 184 ± 32.5 | 190 ± 33.6 | 183 ± 32.3 |
HMF | 22.1 ± 0.07 | 29.3 ± 0.06 | 25.3 ± 0.04 | 25.6 ± 0.05 | 30.2 ± 0.08 | 39.5 ± 0.05 | 32.0 ± 0.7 | 43.0 ± 0.6 | 50.0 ± 0.8 |
Furfural | 199 ± 1.5 | 224 ± 0.8 | 261 ± 0.9 | 225 ± 0.21 | 249 ± 0.34 | 229 ± 1.1 | 305 ± 1.3 | 250 ± 1.8 | 220 ± 1.2 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 242,794 | 48,559 | 99.20 | 0.000 |
Linear | 2 | 38,885 | 19,442 | 39.72 | 0.000 |
Temp | 1 | 150 | 150 | 0.31 | 0.585 |
Time | 1 | 38,735 | 38,735 | 79.13 | 0.000 |
Square | 2 | 203,375 | 101,688 | 207.74 | 0.000 |
Temp × Temp | 1 | 9815 | 9815 | 20.05 | 0.000 |
Time × Time | 1 | 193,561 | 193,561 | 395.44 | 0.000 |
Two-Way Interaction | 1 | 533 | 533 | 1.09 | 0.308 |
Temp × Time | 1 | 533 | 533 | 1.09 | 0.308 |
Error | 21 | 10,279 | 489 | ||
Lack of Fit | 3 | 5481 | 1827 | 6.85 | 0.003 |
Pure Error | 18 | 4799 | 267 | ||
Total | 26 | 253,073 |
R2 | R2 (Adjusted) | R2 (Predicted) | |
---|---|---|---|
Xylose | 95.94% | 94.97% | 93.58% |
Arabinose | 88.89% | 86.22% | 82.34% |
Mannose | 87.54% | 84.57% | 79.29% |
Glucose | 72.55% | 66.02% | 57.19% |
Galactose | 89.13% | 86.54% | 82.41% |
Variables | Symbols | Coded Levels | ||
---|---|---|---|---|
Low Factorial (−1) | Center Point (0) | High Factorial (+1) | ||
Temperature (°C) | X1 | 160 | 180 | 200 |
Time (min) | X2 | 15 | 30 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senila, L.; Scurtu, D.A.; Kovacs, E.; Levei, E.A.; Cadar, O.; Becze, A.; Varaticeanu, C. High-Pressure Supercritical CO2 Pretreatment of Apple Orchard Waste for Carbohydrates Production Using Response Surface Methodology and Method Uncertainty Evaluation. Molecules 2022, 27, 7783. https://doi.org/10.3390/molecules27227783
Senila L, Scurtu DA, Kovacs E, Levei EA, Cadar O, Becze A, Varaticeanu C. High-Pressure Supercritical CO2 Pretreatment of Apple Orchard Waste for Carbohydrates Production Using Response Surface Methodology and Method Uncertainty Evaluation. Molecules. 2022; 27(22):7783. https://doi.org/10.3390/molecules27227783
Chicago/Turabian StyleSenila, Lacrimioara, Daniela Alexandra Scurtu, Eniko Kovacs, Erika Andrea Levei, Oana Cadar, Anca Becze, and Cerasel Varaticeanu. 2022. "High-Pressure Supercritical CO2 Pretreatment of Apple Orchard Waste for Carbohydrates Production Using Response Surface Methodology and Method Uncertainty Evaluation" Molecules 27, no. 22: 7783. https://doi.org/10.3390/molecules27227783
APA StyleSenila, L., Scurtu, D. A., Kovacs, E., Levei, E. A., Cadar, O., Becze, A., & Varaticeanu, C. (2022). High-Pressure Supercritical CO2 Pretreatment of Apple Orchard Waste for Carbohydrates Production Using Response Surface Methodology and Method Uncertainty Evaluation. Molecules, 27(22), 7783. https://doi.org/10.3390/molecules27227783