Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry and Physicochemical Properties
2.2. In Vitro Antiplasmodial and Toxicity Evaluation
3. Materials and Methods
3.1. Chemistry
3.2. Lipophilicity Determination by RP-HPLC
3.3. In Vitro Antiplasmodial Activity
3.4. In Vitro Hemolytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet 2014, 383, 723–735. [Google Scholar] [CrossRef]
- Jampilek, J. Design of antimalarial agents based on natural products. Curr. Org. Chem. 2017, 21, 1824–1846. [Google Scholar] [CrossRef]
- Nqoro, X.; Tobeka, N.; Aderibigbe, B.A. Quinoline-based hybrid compounds with antimalarial activity. Molecules 2017, 22, 2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jampilek, J. Design and discovery of new antibacterial agents: Advances, perspectives, challenges. Curr. Med. Chem. 2018, 25, 4972–5006. [Google Scholar] [CrossRef] [PubMed]
- WHO-Malaria. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 1 October 2022).
- Sidhu, A.B.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 2002, 298, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; van der Pluijm, R.W.; Kucharski, M.; Nayak, S.; Tripathi, J.; White, N.J.; Day, N.P.J.; Faiz, A.; Pyae Phyo, A.; Amaratunga, C.; et al. Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response. Commun. Biol. 2022, 5, 274. [Google Scholar] [CrossRef]
- Placha, D.; Jampilek, J. Impact of nanoparticles on protozoa. In Nanotechnology in Medicine: Toxicity and Safety; Rai, M., Patel, M., Patel, R., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2022; pp. 67–108. [Google Scholar]
- Jampilek, J.; Kralova, K.; Fedor, P. Bioactivity of nanoformulated synthetic and natural insecticides and their impact on the environment. In Nanopesticides—From Research and Development to Mechanisms of Action and Sustainable Use in Agriculture; Fraceto, L.F., de Castro, V.L.S.S., Grillo, R., Avila, D., Oliveira, H.C., de Lima, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 165–225. [Google Scholar]
- Jampilek, J. Recent advances in design of potential quinoxaline anti-infectives. Curr. Med. Chem. 2014, 21, 4347–4373. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M. The international natural product sciences taskforce. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Gaikwad, N.; Nanduri, S.; Madhavi, Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019, 181, 111561. [Google Scholar] [CrossRef] [PubMed]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Pavic, K.; Perkovic, I.; Gilja, P.; Kozlina, F.; Ester, K.; Kralj, M.; Schols, D.; Hadjipavlou-Litina, D.; Pontiki, E.; Zorc, B. Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of the amide and acylsemicarbazide type. Molecules 2016, 21, 1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandekerckhove, S.; D’Hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 2015, 23, 5098–5119. [Google Scholar] [CrossRef]
- Wiesner, J.; Mitsch, A.; Wissner, P.; Jomaa, H.; Schlitzer, M. Structure–activity relationships of novel anti-malarial agents. Part 2: Cinnamic acid derivatives. Bioorg. Med. Chem. Lett. 2001, 11, 423–424. [Google Scholar] [CrossRef]
- Gonec, T.; Zadrazilova, I.; Nevin, E.; Kauerova, T.; Pesko, M.; Kos, J.; Oravec, M.; Kollar, P.; Coffey, A.; O’Mahony, J.; et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules 2015, 20, 9767–9787. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Nevin, E.; Soral, M.; Kushkevych, I.; Gonec, T.; Bobal, P.; Kollar, P.; Coffey, A.; O´Mahony, J.; Liptaj, T.; et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015, 23, 2035–2043. [Google Scholar] [CrossRef]
- Bak, A.; Kos, J.; Michnova, H.; Gonec, T.; Pospisilova, S.; Kozik, V.; Cizek, A.; Smolinski, A.; Jampilek, J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int. J. Mol. Sci. 2020, 21, 6583. [Google Scholar] [CrossRef]
- Pospisilova, S.; Kos, J.; Michnova, H.; Kapustikova, I.; Strharsky, T.; Oravec, M.; Moricz, A.M.; Bakonyi, J.; Kauerova, T.; Kollar, P.; et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018, 19, 2318. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Bak, A.; Kozik, V.; Jankech, T.; Strharsky, T.; Swietlicka, A.; Michnova, H.; Hosek, J.; Smolinski, A.; Oravec, M.; et al. Biological activities and ADMET-related properties of novel set of cinnamanilides. Molecules 2020, 25, 4121. [Google Scholar] [CrossRef]
- Strharsky, T.; Pindjakova, D.; Kos, J.; Vrablova, L.; Michnova, H.; Hosek, J.; Strakova, N.; Lelakova, V.; Leva, L.; Kavanova, L.; et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022, 23, 3159. [Google Scholar] [CrossRef] [PubMed]
- Gonec, T.; Pospisilova, S.; Kauerova, T.; Kos, J.; Dohanosova, J.; Oravec, M.; Kollar, P.; Coffey, A.; Liptaj, T.; Cizek, A.; et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 2016, 21, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonec, T.; Kralova, K.; Pesko, M.; Jampilek, J. Antimycobacterial N-alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017, 27, 1881–1885. [Google Scholar] [CrossRef] [PubMed]
- Pesko, M.; Kos, J.; Kralova, K.; Jampilek, J. Inhibition of photosynthetic electron transport by 6-Hydroxynaphthalene-2-carboxanilides. Indian J. Chem. B 2015, 54B, 1511–1517. [Google Scholar]
- McCracken, S.T.; Kaiser, M.; Boshoff, H.I.; Boyd, P.D.; Copp, B.R. Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers. Bioorg. Med. Chem. 2012, 20, 1482–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, R.R.; Khan, S.I.; Singh, S.; Khan, I.A.; Vishwakarma, R.A.; Bharate, S.B. Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur. J. Med. Chem. 2015, 98, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Pavic, K.; Perkovic, I.; Pospisilova, S.; Machado, M.; Fontinha, D.; Prudencio, M.; Jampilek, J.; Coffey, A.; Endersen, L.; Rimac, H.; et al. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur. J. Med. Chem. 2018, 143, 769–779. [Google Scholar] [CrossRef]
- Chong, S.M.S.; Manimekalai, M.S.S.; Sarathy, J.P.; Williams, Z.C.; Harold, L.K.; Cook, G.M.; Dick, T.; Pethe, K.; Bates, R.W.; Gruber, G. Antituberculosis activity of the antimalaria cytochrome bcc oxidase inhibitor SCR0911. ACS Infect. Dis. 2020, 6, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Patel, M.P.; Dholakia, A.B.; Patel, V.C.; Patel, D.S. Antitubercular, antimalarial activity and molecular docking study of new synthesized 7-chloroquinoline derivatives. Polycycl. Aromat. Compd. 2022, 42, 4717–4725. [Google Scholar] [CrossRef]
- Hosek, J.; Kos, J.; Strharsky, T.; Cerna, L.; Starha, P.; Vanco, J.; Travnicek, Z.; Devinsky, F.; Jampilek, J. Investigation of anti-inflammatory potential of N-arylcinnamamide derivatives. Molecules 2019, 24, 4531. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.P.; Hansch, C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem 2004, 5, 1188–1195. [Google Scholar] [CrossRef]
- Sugiura, M.; Naito, Y.; Yamaura, Y.; Fukaya, C.; Yokoyama, K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharm. Bull. 1989, 37, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Degotte, G.; Pirotte, B.; Francotte, P.; Frederich, M. Potential of caffeic acid derivatives as antimalarial leads. Lett. Drug Des. Discov. 2022, 19, 823–836. [Google Scholar] [CrossRef]
- Alson, S.G.; Jansen, O.; Cieckiewicz, E.; Rakotoarimanana, H.; Rafatro, H.; Degotte, G.; Francotte, P.; Frederich, M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives. J. Pharm. Pharmacol. 2018, 70, 1349–1356. [Google Scholar] [CrossRef]
- Schlitzer, M.; Sattler, I.; Dahse, H.M. Different amino acid replacements in CAAX-tetrapeptide based peptidomimetic farnesyltransferase inhibitors. Arch. Pharm. 1999, 332, 124–132. [Google Scholar] [CrossRef]
- Schlitzer, M.; Sattler, I. Non-thiol farnesyltransferase inhibitors: The concept of benzophenone-based bisubstrate analogue farnesyltransferase inhibitors. Eur. J. Med. Chem. 2000, 35, 721–726. [Google Scholar] [CrossRef]
- Wiesner, J.; Mitsch, A.; Wissner, P.; Jomaa, H.; Schlitzer, M. Structure-activity relationships of novel anti-malarial agents: 1. Arylacyl and cyclohexylacyl derivatives of 5-amino-2-tolylacetylaminobenzophenone. Pharmazie 2001, 56, 443–444. [Google Scholar]
- Wiesner, J.; Kettler, K.; Jomaa, H.; Schlitzer, M. Structure-activity relationships of novel anti-malarial agents. Part 3: N-(4-acylamino-3-benzoylphenyl)-4-propoxycinnamic acid amides. Bioorg. Med. Chem. Lett. 2002, 12, 543–545. [Google Scholar] [CrossRef]
- Wiesner, J.; Mitsch, A.; Altenkamper, M.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Structure-activity relationships of novel anti-malarial agents part 8. Effect of different central aryls in biarylacryloylaminobenzophenones on antimalarial activity. Pharmazie 2003, 58, 854–856. [Google Scholar]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef]
- Bero, J.; Herent, M.; Schmeda-Hirschmann, G.; Frederich, M.; Quetin-Leclercq, J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J. Ethnopharmacol. 2013, 149, 176–183. [Google Scholar] [CrossRef]
- Murebwayire, S.; Frederich, M.; Hannaert, V.; Jonville, M.C.; Duez, P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine 2008, 15, 728–733. [Google Scholar] [CrossRef]
- Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993, 48, 739–741. [Google Scholar] [CrossRef]
- Jansen, O.; Tits, M.; Angenot, L.; Nicolas, J.P.; De Mol, P.; Nikiema, J.B.; Frederich, M. Antiplasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar. J. 2012, 11, 289. [Google Scholar] [CrossRef] [Green Version]
- da Silva, E.R.; Brogi, S.; Grillo, A.; Campiani, G.; Gemma, S.; Vieira, P.C.; do Carmo Maquiaveli, C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem. Biol. Drug Des. 2019, 93, 139–146. [Google Scholar] [CrossRef]
- da Silva, E.R.; Come, J.A.A.d.S.S.; Brogi, S.; Calderone, V.; Chemi, G.; Campiani, G.; Oliveira, T.M.F.d.S.; Pham, T.N.; Pudlo, M.; Girard, C.; et al. Cinnamides target Leishmania amazonensis arginase selectively. Molecules 2020, 25, 5271. [Google Scholar] [CrossRef]
- Dowling, D.P.; Ilies, M.; Olszewski, K.L.; Portugal, S.; Mota, M.M.; Llinas, M.; Christianson, D.W. Crystal structure of arginase from Plasmodium falciparum and implications for l-arginine depletion in malarial infection. Biochemistry 2010, 49, 5600–5608. [Google Scholar] [CrossRef] [Green Version]
- Meireles, P.; Mendes, A.M.; Aroeira, R.I.; Mounce, B.C.; Vignuzzi, M.; Staines, H.M.; Prudencio, M. Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 2017, 7, 4072. [Google Scholar] [CrossRef]
No. | R | log k | log P 1 | Clog P 2 | σAr 1 | Pf IC50 [µM] ± SD | Mtb 3 MIC [μM] |
---|---|---|---|---|---|---|---|
1 | H | 0.1146 | 3.18 | 3.664 | 0.60 | 13.1 ± 5.9 | 286 |
2 | 3-CH3 | 0.2729 | 3.40 | 4.163 | 0.48 | 21.9 ± 6.3 | 67.4 |
3 | 4-CH3 | 0.2640 | 3.40 | 4.163 | 0.46 | >35 | 134 |
4 | 2-F | 0.1330 | 3.17 | 3.465 | 1.02 | >35 | 265 |
5 | 3-F | 0.2327 | 3.32 | 4.065 | 0.82 | 30.8 ± 2.4 | 66.3 |
6 | 3-CF3 | 0.4859 | 4.26 | 4.998 | 0.89 | >35 | 27.5 |
7 | 2,5-CH3 | 0.2691 | 3.57 | 4.012 | 0.59 | >35 | 254 |
8 | 2,4-Cl | 0.5278 | 4.6 | 5.141 | 1.12 | >35 | >440 |
9 | 2,5-Cl | 0.5799 | 4.65 | 4.588 | 1.22 | >35 | 876 |
10 | 2,6-Cl | 0.0632 | 4.56 | 3.738 | 1.33 | >35 | 876 |
11 | 3,4-Cl | 0.6821 | 4.70 | 5.318 | 1.19 | >35 | 27.4 |
12 | 3,5-Cl | 0.8155 | 4.79 | 5.438 | 1.11 | >35 | 27.4 |
13 | 2,4-Br | 0.6152 | 4.80 | 5.441 | 1.11 | >35 | >339 |
14 | 2,6-Br | 0.0992 | 4.80 | 3.978 | 1.33 | >35 | 167 |
15 | 3,5-CF3 | 0.9814 | 5.68 | 6.039 | 1.05 | 6.5 ± 3.6 | 22.3 |
16 | 2-OCH3-5-NO2 | 0.1581 | 3.55 | 3.433 | 1.32 | >35 | >859 |
17 | 2-CF3-4-NO2 | 0.3794 | 4.16 | 4.341 | 1.45 | >35 | >381 |
18 | 3-CF3-4-NO2 | 0.5004 | 4.27 | 4.341 | 1.36 | 2.2 ± 1.9 | >381 |
19 | 2-F-5-Cl | 0.3692 | 4.04 | 4.571 | 1.27 | 16.0 ± 4.2 | >465 |
20 | 2-F-5-Br | 0.4875 | 4.07 | 4.418 | 1.28 | >35 | 199 |
21 | 3-F-4-Br | 0.5025 | 4.14 | 4.721 | 1.16 | 10.3 ± 4.6 | >414 |
22 | 3-F-4-CF3 | 0.5789 | 4.23 | 4.741 | 1.11 | 9.3 ± 5.3 | >414 |
23 | 2-Br-5-F | 0.4588 | 4.12 | 4.138 | 1.19 | 3.8 ± 0.61 | 199 |
24 | 2-Cl-4-Br | 0.6710 | 4.75 | 4.738 | 1.11 | 0.58 ± 0.002 | >766 |
25 | 3-Cl-4-Br | 0.6611 | 4.88 | 5.151 | 1.19 | 8.2 ± 4.7 | >383 |
26 | 2-Br-4-Cl | 0.5476 | 4.75 | 5.291 | 1.12 | >35 | >383 |
27 | 2-Cl-5-CF3 | 0.6178 | 4.88 | 4.951 | 1.19 | >35 | 785 |
28 | 2-Br-5-CF3 | 0.5561 | 4.90 | 5.461 | 1.19 | >35 | >348 |
29 | 2-CF3-4-F | 0.1607 | 3.80 | 4.741 | 0.93 | >35 | >414 |
30 | 2-CF3-4-Cl | 0.4113 | 4.84 | 5.311 | 1.06 | >35 | >394 |
31 | 2-CF3-4-Br | 0.4683 | 4.86 | 5.461 | 1.05 | >35 | >348 |
32 | 2,4,6-F | −0.0831 | 3.44 | 4.144 | 1.46 | >35 | >462 |
33 | 3,4,5-F | 0.4893 | 3.45 | 4.004 | 1.52 | 4.3 ± 2.4 | >462 |
34 | 2,4,5-Cl | 0.8373 | 5.5 | 5.734 | 1.56 | >35 | >395 |
35 | 3,4,5-Cl | 0.9671 | 5.51 | 5.614 | 1.46 | 13.0 ± 3.8 | >395 |
36 | 2,6-Br-4-CF3 | 0.4321 | 5.32 | 6.324 | 1.69 | 2.0 ± 1.9 | >287 |
37 | 2,6-Br-3-Cl-4-F | 0.3139 | 5.67 | 6.157 | 1.98 | >35 | >298 |
CQ | - | - | - | - | - | 0.5 ± 0.2 | - |
INH | - | - | - | - | - | - | 36.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, J.; Degotte, G.; Pindjakova, D.; Strharsky, T.; Jankech, T.; Gonec, T.; Francotte, P.; Frederich, M.; Jampilek, J. Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides. Molecules 2022, 27, 7799. https://doi.org/10.3390/molecules27227799
Kos J, Degotte G, Pindjakova D, Strharsky T, Jankech T, Gonec T, Francotte P, Frederich M, Jampilek J. Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides. Molecules. 2022; 27(22):7799. https://doi.org/10.3390/molecules27227799
Chicago/Turabian StyleKos, Jiri, Gilles Degotte, Dominika Pindjakova, Tomas Strharsky, Timotej Jankech, Tomas Gonec, Pierre Francotte, Michel Frederich, and Josef Jampilek. 2022. "Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides" Molecules 27, no. 22: 7799. https://doi.org/10.3390/molecules27227799
APA StyleKos, J., Degotte, G., Pindjakova, D., Strharsky, T., Jankech, T., Gonec, T., Francotte, P., Frederich, M., & Jampilek, J. (2022). Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides. Molecules, 27(22), 7799. https://doi.org/10.3390/molecules27227799