Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode
Abstract
:1. Introduction
2. Results and Discussion
2.1. NG@AA−MBAA (NG@AM) Electrodes Materials Characterization
2.2. Electrochemical Properties of NG@AM Electrodes
2.3. Kinetics Analysis
2.4. Interface Evolution Analysis of Cycled Electrodes
2.5. Full Cell Performance of NCM523//NG@AM
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Electrode Preparation and Electrochemical Testing
3.3. Physical Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Amine, K.; Kanno, R.; Tzeng, Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bull. 2014, 39, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Sun, J.; Yu, Z.; Yin, Y.; Xin, S.; Yu, S.; Guo, Y. SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li-Ion Battery Anode. Adv. Mater. 2018, 30, 1707430. [Google Scholar] [CrossRef]
- Li, P.; Kim, H.; Myung, S.-T.; Sun, Y.-K. Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 2021, 35, 550–576. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, S.; Xie, M.; Zheng, Y.; Xu, G.; Gao, S.; Li, J.; Liu, Z.; Liu, X.; Liu, J.; et al. A delicately designed functional binder enabling in situ construction of 3D cross-linking robust network for high-performance Si/graphite composite anode. J. Polym. Sci. 2021, 60, 1835–1844. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Z.; Liu, S.; Chi, Z.; Chen, X.; Zhang, Y.; Xu, J. Ultrahigh thermal and electric conductive graphite films prepared by g-C3N4 catalyzed graphitization of polyimide films. Chem. Eng. J. 2022, 430, 132530. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, Y.; Li, J.; Song, Y.; Shi, J.; Guo, Q.; Liu, L. Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 2013, 64, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Jin, Y.; Ma, J.; Liu, J.; Wang, Z.; Wang, B.; Gong, X. Lithium-ion transfer strengthened by graphite tailings and coking coal for high-rate performance anode. Chem. Eng. J. 2022, 442, 136184. [Google Scholar] [CrossRef]
- Heng, S.; Shan, X.; Wang, W.; Wang, Y.; Zhu, G.; Qu, Q.; Zheng, H. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 2020, 159, 390–400. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Z.; Liu, Y.; Xie, J. Achieving SEI preformed graphite in flow cell to mitigate initial lithium loss. Carbon 2022, 196, 589–595. [Google Scholar] [CrossRef]
- Shi, Q.; Heng, S.; Qu, Q.; Gao, T.; Liu, W.; Hang, L.; Zheng, H. Constructing an elastic solid electrolyte interphase on graphite: A novel strategy suppressing lithium inventory loss in lithium-ion batteries. J. Mater. Chem. A 2017, 5, 10885–10894. [Google Scholar] [CrossRef]
- Beheshti, S.H.; Javanbakht, M.; Omidvar, H.; Hosen, M.S.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. iScience 2022, 25, 103862. [Google Scholar] [CrossRef] [PubMed]
- Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 2002, 47, 1423–1439. [Google Scholar] [CrossRef]
- Hou, T.; Yang, G.; Rajput, N.N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K.A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019, 64, 103881. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, C.; Qiu, C.; Ma, X. Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries. J. Appl. Electrochem. 2009, 39, 2597–2603. [Google Scholar] [CrossRef]
- Bhatt, M.D.; O’Dwyer, C. Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives. Chem. Phys. Lett. 2015, 618, 208–213. [Google Scholar] [CrossRef]
- Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule 2019, 3, 2550–2564. [Google Scholar] [CrossRef]
- Lu, J.; Xu, X.; Fan, W.; Xin, Y.; Wang, W.; Fan, C.; Cheng, P.; Zhao, J.; Liu, J.; Huo, Y. Phenyl 4-Fluorobenzene Sulfonate as a Versatile Film-Forming Electrolyte Additive for Wide-Temperature-Range NCM811//Graphite Batteries. ACS Appl. Energy Mater. 2022, 5, 6324–6334. [Google Scholar] [CrossRef]
- Park, J.W.; Park, D.H.; Go, S.; Nam, D.-H.; Oh, J.; Han, Y.-K.; Lee, H. Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries. Energy Storage Mater. 2022, 50, 75–85. [Google Scholar] [CrossRef]
- Mundszinger, M.; Farsi, S.; Rapp, M.; Golla-Schindler, U.; Kaiser, U.; Wachtler, M. Morphology and texture of spheroidized natural and synthetic graphites. Carbon 2017, 111, 764–773. [Google Scholar] [CrossRef]
- Han, Y.-J.; Kim, J.; Yeo, J.-S.; An, J.C.; Hong, I.-P.; Nakabayashi, K.; Miyawaki, J.; Jung, J.-D.; Yoon, S.-H. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch. Carbon 2015, 94, 432–438. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, X.; Yang, M.; Qian, J.; Cao, Y.; Yang, H.; Luo, Y.; Ai, X. Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. Adv. Funct. Mater. 2021, 31, 2101181. [Google Scholar] [CrossRef]
- Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K.-W.; Hong, J.; Lee, M. Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Angew. Chem. 2020, 132, 14581–14588. [Google Scholar] [CrossRef]
- Kim, D.S.; Chung, D.J.; Bae, J.; Jeong, G.; Kim, H. Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery. Electrochim. Acta 2017, 258, 336–342. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, Y.E.; Kim, H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J. Power Sources 2019, 422, 18–24. [Google Scholar] [CrossRef]
- Da, H.; Li, J.; Shi, J.; Zhang, H. Enhancing the depressed initial Coulombic efficiency of regenerated graphite anodes via the surface modification of a TiNb2O7 nanolayer. Carbon 2022, 193, 157–170. [Google Scholar] [CrossRef]
- Eom, J.-Y.; Cho, Y.-H.; Kim, S.-I.; Han, D.; Sohn, D. Improvements in the electrochemical performance of Li4Ti5O12-coated graphite anode materials for lithium-ion batteries by simple ball-milling. J. Alloys Compd. 2017, 723, 456–461. [Google Scholar] [CrossRef]
- Heng, S.; Shi, Q.; Wang, Y.; Qu, Q.; Zhang, J.; Zhu, G.; Zheng, H. In Situ Development of Elastic Solid Electrolyte Interphase via Nanoregulation and Self-Polymerization of Sodium Itaconate on Graphite Surface. ACS Appl. Energy Mater. 2019, 2, 1336–1347. [Google Scholar] [CrossRef]
- Cao, W.; Lu, J.; Zhou, K.; Sun, G.; Zheng, J.; Geng, Z.; Li, H. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy 2022, 95, 106983. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, J.; Huang, X.; Zhai, Z.; Tang, J.; You, J.; Shi, C.; Li, W.; Dai, P.; Zheng, W.; et al. Rigid and Flexible SEI Layer Formed Over a Cross-Linked Polymer for Enhanced Ultrathin Li Metal Anode Performance. Adv. Energy Mater. 2022, 12, 2103972. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Soleimani, M.; Vashegani Farahani, E.; Ghanbari, H.; Arkan, E.; Rezayat, S.M. Detailed mechanism of aniline nucleation into more conductive nanofibers. Synth. Met. 2015, 209, 91–98. [Google Scholar] [CrossRef]
- Xue, P.; Su, W.; Gu, Y.; Liu, H.; Wang, J. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase. J. Magn. Magn. Mater. 2015, 378, 306–312. [Google Scholar] [CrossRef]
- Cui, Y.; Tao, C.; Tian, Y.; He, Q.; Li, J. Synthesis of PNIPAM-co-MBAA Copolymer Nanotubes with Composite Control. Langmuir 2006, 22, 8205–8208. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Wang, C.Y.; Fan, L.P.; Zhou, X.Y. Electrochemical performances of natural graphite containing rhombohedral phase as negative for Li-ion batteries. Tianjin Daxue Xuebao (J. Tianjin Univ. Sci. Technol.) 2005, 38, 154–158. [Google Scholar]
- Guerin, K.; Fevrier-Bouvier, A.; Flandrois, S.; Couzi, M.; Simon, B.; Biensan, P. Effect of Graphite Crystal Structure on Lithium Electrochemical Intercalation. J. Electrochem. Soc. 1999, 146, 3660. [Google Scholar] [CrossRef]
- Guo, R.; Wang, Y.; Shan, X.; Han, Y.; Cao, Z.; Zheng, H. A novel itaconic acid-graphite composite anode for enhanced lithium storage in lithium ion batteries. Carbon 2019, 152, 671–679. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Freeman, B.D. Structure, water sorption, and transport properties of crosslinked N-vinyl-2-pyrrolidone/N,N′-methylenebisacrylamide films. J. Membr. Sci. 2009, 344, 182–189. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Guo, R.; Qu, Q.; Zheng, H.; Zhang, J.; Huang, Y. A high-capacity organic anode with self-assembled morphological transformation for green lithium-ion batteries. J. Mater. Chem. A 2019, 7, 22621–22630. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Lv, L.; Wang, Y.; Li, X.; Zheng, H. In Situ Construction of a Multifunctional Interface Regulator with Amino-Modified Conjugated Diene toward High-Rate and Long-Cycle Silicon Anodes. ACS Appl. Mater. Interfaces 2022, 14, 13317–13325. [Google Scholar] [CrossRef]
- Heng, S.; Lv, L.; Zhu, Y.; Shao, J.; Huang, W.; Long, F.; Qu, Q.; Zheng, H. Organic salts with unsaturated bond and diverse anions as substrates for solid electrolyte interphase on graphite anodes. Carbon 2021, 183, 108–118. [Google Scholar] [CrossRef]
- Kim, K.; Hwang, D.; Kim, S.; Park, S.O.; Cha, H.; Lee, Y.-S.; Cho, J.; Kwak, S.K.; Choi, N.-S. Cyclic Aminosilane-Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Li-Ion Batteries. Adv. Energy Mater. 2020, 10, 2000012. [Google Scholar] [CrossRef]
- Heng, S.; Shi, Q.; Zheng, X.; Wang, Y.; Qu, Q.; Liu, G.; Battaglia, V.S.; Zheng, H. An organic-skinned secondary coating for carbon-coated LiFePO4 cathode of high electrochemical performances. Electrochim. Acta 2017, 258, 1244–1253. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, B.; Shi, Z.; Chen, W.; Zhang, Z.; Zhang, L. Re-Engineering Poly(Acrylic Acid) Binder toward Optimized Electrochemical Performance for Silicon Lithium-Ion Batteries: Branching Architecture Leads to Balanced Properties of Polymeric Binders. Adv. Funct. Mater. 2020, 30, 1908558. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, X.; Huang, W.; Wang, Y.; Qu, Q.; Huang, Y.; Zheng, H. Molecular design of a multifunctional binder via grafting and crosslinking for high performance silicon anodes. J. Mater. Chem. A 2021, 9, 8416–8424. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Lv, L.; Zhu, G.; Qu, Q.; Zheng, H. A versatile LiTFSI-like anchor for constructing robust interfacial layers with tailored structures for silicon anodes. Energy Storage Mater. 2022, 52, 646–654. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Chen, S.; Han, G.; Zhu, J.; Dai, H. Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling. ACS Appl. Energy Mater. 2022, 5, 6462–6471. [Google Scholar] [CrossRef]
- Wu, D.; He, J.; Liu, J.; Wu, M.; Qi, S.; Wang, H.; Huang, J.; Li, F.; Tang, D.; Ma, J. Li2CO3/LiF-Rich Heterostructured Solid Electrolyte Interphase with Superior Lithiophilic and Li+-Transferred Characteristics via Adjusting Electrolyte Additives. Adv. Energy Mater. 2022, 12, 2200337. [Google Scholar] [CrossRef]
- Seong, W.M.; Park, K.-Y.; Lee, M.H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Weber, A.; Ivers-Tiffée, E. A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique. J. Power Sources 2015, 274, 1231–1238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, Y.; Liang, R.; Zhu, G.; Xiong, W.; Zheng, H. Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode. Molecules 2022, 27, 7827. https://doi.org/10.3390/molecules27227827
Zhao Y, Wang Y, Liang R, Zhu G, Xiong W, Zheng H. Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode. Molecules. 2022; 27(22):7827. https://doi.org/10.3390/molecules27227827
Chicago/Turabian StyleZhao, Yunhao, Yueyue Wang, Rui Liang, Guobin Zhu, Weixing Xiong, and Honghe Zheng. 2022. "Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode" Molecules 27, no. 22: 7827. https://doi.org/10.3390/molecules27227827
APA StyleZhao, Y., Wang, Y., Liang, R., Zhu, G., Xiong, W., & Zheng, H. (2022). Building Polymeric Framework Layer for Stable Solid Electrolyte Interphase on Natural Graphite Anode. Molecules, 27(22), 7827. https://doi.org/10.3390/molecules27227827