Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Derjaguin, B.V.; Bazaron, U.B.; Zandanova, K.T.; Budaev, O.R. The complex shear modulus of polymeric and small-molecule liquids. Polymer 1989, 30, 97–103. [Google Scholar] [CrossRef]
- Noirez, L.; Mendil-Jakani, H.; Baroni, P. Identification of finite shear-elasticity in the liquid state of molecular and polymeric glass-formers. Phil. Mag. 2011, 91, 1977–1986. [Google Scholar] [CrossRef] [Green Version]
- Noirez, L.; Baroni, P. Revealing the solid-like nature of glycerol at ambient temperature. J. Mol. Struct. 2010, 972, 16–21. [Google Scholar] [CrossRef]
- Noirez, L.; Baroni, P. Identification of a low-frequency elastic behaviour in liquid water. J. Phys. Condens. Matter 2012, 24, 372101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chushkin, Y.; Caronna, C.; Madsen, A. Low-frequency elastic behavior of a supercooled liquid. EPL 2008, 83, 36001. [Google Scholar] [CrossRef]
- Li, T.-D.; Riedo, E. Nonlinear Viscoelastic Dynamics of Nanoconfined Wetting Liquids. Phys. Rev. Lett. 2008, 100, 106102. [Google Scholar] [CrossRef] [Green Version]
- Zaccone, A.; Trachenko, K. Explaining the low-frequency shear elasticity of confined liquids. Proc. Natl. Acad. Sci. USA 2020, 117, 19653–19655. [Google Scholar] [CrossRef]
- Zaccone, A.; Noirez, L. Universal G’∼ L−3 law for the low-frequency shear modulus of confined liquids. J. Chem. Phys. Lett. 2021, 12, 650–657. [Google Scholar] [CrossRef]
- Maxwell, J.C. On the Dynamical Theory of Gases. Philos. Trans. R. Soc. 1867, 157, 49–88. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids; Clarendon Press: Oxford, UK, 1946. [Google Scholar]
- Lv, P.; Yang, Z.; Hua, Z.; Li, M.; Lin, M.; Dong, Z. Viscosity of water and hydrocarbon changes with micro-crevice thickness. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 287. [Google Scholar] [CrossRef]
- Shelton, D.P. Long-range orientation correlation in dipolar liquids probed by hyper-Rayleigh scattering. J. Chem. Phys. 2015, 143, 134503. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.C.; Yethiraj, A. Understanding the Properties of Ionic Liquids: Electrostatics, Structure Factors, and Their Sum Rules. Phys. Chem. B 2019, 123, 3499–3512. [Google Scholar]
- Fuchs, E.C.; Woisetschläger, J.; Gatterer, K.; Maier, E.; Pecnik, R.; Holler, G.; Eisenkölbl, H. The floating water bridge. J. Phys. D Appl. Phys. 2007, 40, 6112. [Google Scholar] [CrossRef]
- Fuchs, E.C.; Baroni, P.; Bitschnau, B.; Noirez, L. Two-dimensional neutron scattering in a floating heavy water bridge. J. Phys. D Appl. Phys. 2010, 43, 105502. [Google Scholar] [CrossRef] [Green Version]
- Ahrenberg, M.; Beck, M.; Neise, C.; Keßler, O.; Kragl, U.; Verevkin, S.P.; Schick, C. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Phys. Chem. Chem. Phys. 2016, 18, 21381–21390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araque, J.C.; Hettige, J.J.; Margulis, C.J. Modern Room Temperature Ionic Liquids, a Simple Guide to Understanding Their Structure and How It May Relate to Dynamics. J. Phys. Chem. B 2015, 119, 12727–12740. [Google Scholar] [CrossRef]
- Holbrey, D.; Seddon, K.R. Ionic Liquids. Clean Technol. Environ. Policy 1999, 1, 223–236. [Google Scholar] [CrossRef]
- Shakeel, A.; Mahmood, H.; Farooq, U.; Ullah, Z.; Yasin, S.; Iqbal, T.; Chassagne, C.; Moniruzzaman, M. Rheology of Pure Ionic Liquids and Their Complex Fluids: A Review. ACS Sustain. Chem. Eng. 2019, 7, 13586–13626. [Google Scholar] [CrossRef] [Green Version]
- Schröer, W.; Wagner, M.; Stanga, O. Apparent mean-field criticality of liquid–liquid phase transitions in ionic solutions. J. Mol. Liq. 2006, 127, 2–9. [Google Scholar] [CrossRef]
- Fischer, E.W. Light scattering and dielectric studies on glass forming liquids. Phys. A Stat. Mech. Its Appl. 1993, 201, 183–206. [Google Scholar] [CrossRef]
- Hardacre, C.; Holbrey, J.D.; McMath, S.J.; Bowron, D.T.; Soper, A.K. Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J. Chem. Phys. 2003, 118, 273. [Google Scholar] [CrossRef]
- Triolo, A.; Russina, O.; Arrighi, V.; Juranyi, F.; Janssen, S.; Gordon, C.M. Quasielastic neutron scattering characterization of the relaxation processes in a room temperature ionic liquid. J. Chem. Phys. 2003, 119, 8549. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, M.; He, Q.; Liu, Z. Molecular Modeling of Ionic Liquids: Force-Field Validation and Thermodynamic Perspective from Large-Scale Fast-Growth Solvation Free Energy Calculations. Adv. Theory Simul. 2022, 5, 2200274. [Google Scholar] [CrossRef]
- Bedrov, D.; Borodin, O.; Li, Z.; Grant DSmith, G.D. Influence of Polarization on Structural, Thermodynamic, and Dynamic Properties of Ionic Liquids Obtained from Molecular Dynamics Simulations. J. Phys. Chem. B 2010, 114, 4984–4997. [Google Scholar] [CrossRef] [PubMed]
- Köddermann, T.; Paschek, D.; Ludwig, R. Molecular Dynamic Simulations of Ionic Liquids: A Reliable Description of Structure, Thermodynamics and Dynamics. ChemPhysChem 2007, 8, 2464–2470. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, X.; Zhao, Y.; Ren, L. From Paramagnetic to Superparamagnetic Ionic Liquid/Poly(ionic liquid): The Effect of π–π Stacking Interaction. ACS Macro Lett. 2019, 8, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Nachtrieb, N.-H. Magnetic Susceptibility of some Liquid Metals, Molten Salts, and their Solutions. J. Phys. Chem. 1962, 66, 1163–1167. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, X.; Xia, Z.; Ren, L. Self-assembly of magnetic poly(ionic liquid)s and ionic liquids in aqueous solution. Polym. Chem. 2018, 9, 5116. [Google Scholar] [CrossRef]
- Klee, A.; Prevost, S.; WSchweins, R.K.; Kiefer, K.; Gradzielski, M. Magnetic microemulsions based on magnetic ionic liquids. Phys. Chem. Chem. Phys. 2012, 14, 15355–15360. [Google Scholar] [CrossRef] [Green Version]
- Maki, S.; Ataka, M.; Tagawa, T.; Ozoe, H.; Mori, W. Natural Convection of a Paramagnetic Liquid Controlled by Magnetization Force. AIChE J. 2005, 51, 1096. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Aogaki, R.; Byrne, F.; Stamenov, P. Magneric Stabilization and vorticity in submillimeter paramagnetic liquid tubes. Proc. Natl. Acad. Sci. USA 2009, 106, 8811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, P.; Adachi, T.; Dev, A.-A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P.-H.; Coey, J.M.D.; Doudin, B.; et al. Liquid flow and control without solid walls. Nature 2020, 581, 58. [Google Scholar] [CrossRef] [PubMed]
- Logotheti, G.-E.; Ramos, J.; Economou, I.G. Molecular Modeling of Imidazolium-Based [Tf2N-] Ionic Liquids: Microscopic Structure, Thermodynamic and Dynamic Properties, and Segmental Dynamics. J. Phys. Chem. B 2009, 113, 7211–7224. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Annapureddy, H.V.R.; Murthy, N.S.; Kashyap, H.K.; Castner, E.W., Jr.; Margulis, C.J. Temperature-dependent structure of methyltributylammonium bis(trifluoromethylsulfonyl)amide: X ray scattering and simulations. J. Chem. Phys. 2011, 134, 064501. [Google Scholar] [CrossRef] [PubMed]
- Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E.E. Nanoscale Segregation in Room Temperature Ionic Liquids. J. Phys. Chem. B 2007, 111, 4641–4644. [Google Scholar] [CrossRef]
- Blake, T.D. Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered. Colloids Surf. 1990, 47, 135–145. [Google Scholar] [CrossRef]
- Baroni, P.; Noirez, L. Using Light to see Neutrons and assessing the 2D High-Resolution: Barotron: A new pulse for Neutron Scattering. Am. J. Appl. Sci. 2014, 11, 1558–1565. [Google Scholar] [CrossRef] [Green Version]
- Chaboussant, G.; Desert, S.; Lavie, P.; Brulet, A. PA20: A new SANS and GISANS project for soft matter, materials and magnetism. J. Phys. Conf. Ser. 2012, 340, 012002. [Google Scholar] [CrossRef]
- Available online: https://www.ncnr.nist.gov/resources/n-lengths/ (accessed on 5 September 2022).
- McLay, D.B.; Johnson, H.M. Measurement of Magnetic Susceptibilities by the Quincke Method. Am. J. Phys. 1963, 31, 457. [Google Scholar] [CrossRef]
- Trachenko, K. Lagrangian formulation and symmetrical description of liquid dynamics. Phys. Rev. E 2017, 96, 062134. [Google Scholar] [CrossRef] [Green Version]
- Trachenko, K. Quantum dissipation in a scalar field theory with gapped momentum states. Sci. Rep. 2019, 9, 6766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggioli, M.; Vasin, M.; Brazhkin, V.; Trachenko, K. Gapped momentum states. Phys. Rep. 2020, 865, 1–44. [Google Scholar] [CrossRef]
- Zaccone, A.; Blundell, J.R.; Terentjev, E.M. Network disorder and non-affine deformations in marginal solids. Phys. Rev. B 2011, B 84, 174119. [Google Scholar] [CrossRef] [Green Version]
- Zaccone, A.; Scossa-Romano, E. Approximate analytical description of the nonaffine response of amorphous solids. Phys. Rev. B 2011, 83, 184205. [Google Scholar] [CrossRef] [Green Version]
- Baggioli, M.; Landry, M.; Zaccone, A. Deformations, relaxation and broken symmetries in liquids, slids and glasses: A unified topological field theory. Phys. Rev. E 2022, 105, 024602. [Google Scholar] [CrossRef] [PubMed]
- Aitken, F.; Volino, F. A novel general modeling of the viscoelastic properties of fluids: Application to mechanical relaxation and low frequency oscillation measurements of liquid water. Phys. Fluids 2022, 34, 043109. [Google Scholar] [CrossRef]
- Aitken, F.; Volino, F. A new single equation of state to describe the dynamic viscosity and self-diffusion coefficient for all fluid phases of water from 200 to 1800 K based on a new original microscopic model. Phys. Fluids 2021, 33, 117112. [Google Scholar] [CrossRef]
- Peluso, F. Mesoscopic collective dynamics in liquids and the Dual Model. J. Heat Transf. 2022, 144, 112501. [Google Scholar] [CrossRef]
- Kume, E.; Noirez, L. Identification of Thermal Response of Mesoscopic Liquids under Mechanical Excitation: From Harmonic to Nonharmonic Thermal Wave. J. Phys. Chem. B 2021, 125, 8652–8658. [Google Scholar] [CrossRef]
- Kume, E.; Baroni, P.; Noirez, L. Highlighting Thermo-Elastic Effects in Confined Fluids. Polymers 2021, 13, 2378. [Google Scholar] [CrossRef]
- Bolmatov, D. The Phonon Theory of Liquids and Biological Fluids: Developments and Applications. J. Phys. Chem. Lett. 2022, 13, 7121–7129. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Rodríguez-Tinoco, C.; Mathew, A.; Napolitano, S. Fast equilibration mechanisms in disordered materials mediated by slow liquid dynamics. Sci. Adv. 2022, 8, eabm7154. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.; Di Leonardo, R.; Dyre, J.C.; Ruocco, G. Generalized fluctuation-dissipation relation and effective temperature in off-equilibrium colloids. Phys. Rev. B 2010, 81, 104201. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A. Monte Carlo simulations of the violation of the fluctuation-dissipation theorem in domain growth processes. Phys. Rev. E 1998, 57, 3629. [Google Scholar] [CrossRef] [Green Version]
- Mendil, H.; Baroni PNoirez, L.; Chancelier, L.; Gebel, G. Highlighting a Solid-Like Behavior in RTILs: Trioctylmethylammonium Bis(trifluoromethanesulfonyl)imide TOMATFSI. J. Phys. Chem. Lett. 2013, 4, 3775–3778. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kume, E.; Martin, N.; Dunne, P.; Baroni, P.; Noirez, L. Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring. Molecules 2022, 27, 7829. https://doi.org/10.3390/molecules27227829
Kume E, Martin N, Dunne P, Baroni P, Noirez L. Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring. Molecules. 2022; 27(22):7829. https://doi.org/10.3390/molecules27227829
Chicago/Turabian StyleKume, Eni, Nicolas Martin, Peter Dunne, Patrick Baroni, and Laurence Noirez. 2022. "Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring" Molecules 27, no. 22: 7829. https://doi.org/10.3390/molecules27227829
APA StyleKume, E., Martin, N., Dunne, P., Baroni, P., & Noirez, L. (2022). Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring. Molecules, 27(22), 7829. https://doi.org/10.3390/molecules27227829