Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis of ZnBTC, FeBTC and CuBTC
2.3. Adsorption Experiments
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Islamoglu, T.; Chen, Z.; Wasson, M.C.; Buru, C.T.; Kirlikovali, K.O.; Afrin, U.; Mian, M.; Farha, O.K. Metal–organic frameworks against toxic chemicals. Chem. Rev. 2020, 120, 8130–8160. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Ouyang, Y.; Lu, K.; Jiang, W.; Xu, H.; Wei, X.; Wang, Z.; Dai, F.; Sun, D. Recent advances in metal-organic frameworks for gas adsorption/separation. Nanoscale Adv. 2022, 4, 2077–2089. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244, 444–456. [Google Scholar] [CrossRef]
- Kim, C.K. Design strategies for metal-organic frameworks selectively capturing harmful gases. J. Organomet. Chem. 2018, 854, 94–105. [Google Scholar] [CrossRef]
- Kang, D.W.; Ju, S.E.; Kim, D.W.; Kang, M.; Kim, H.; Hong, C.S. Emerging porous materials and their composites for NH3 gas removal. Adv. Sci. 2020, 7, 2002142. [Google Scholar] [CrossRef]
- Martínez-Ahumada, E.; Díaz-Ramírez, M.L.; Velásquez-Hernández, M.D.J.; Jancik, V.; Ibarra, I.A. Capture of toxic gases in MOFs: SO2, H2S, NH3 and NOx. Chem. Sci. 2021, 12, 772–6799. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Hao, X.; Niu, B.; Li, C. Metal–Organic Frameworks Materials for Capacitive Gas Sensors. Adv. Mater. Technol. 2021, 6, 2100127. [Google Scholar] [CrossRef]
- Wang, H.; Lustig, W.P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, C.; Li, M.; Zheng, Y.; Ge, C.; Gu, J.; Li, H.; Duan, M.; Wang, X.; Chen, R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Sci. Total Environ. 2021, 798, 149294. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Chen, H.; Wang, M.; Zhang, Z. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting. Bioresour. Technol. 2017, 245, 300–308. [Google Scholar] [CrossRef]
- Maitlo, H.A.; Maitlo, G.; Song, X.; Zhou, M.; Kim, K.H. A figure of merits-based performance comparison of various advanced functional nanomaterials for adsorptive removal of gaseous ammonia. Sci. Total Environ. 2022, 822, 153428. [Google Scholar] [CrossRef] [PubMed]
- Melati, A.; Padmasari, G.; Oktavian, R.; Rakhmadi, F.A. A comparative study of carbon nanofiber (CNF) and activated carbon based on coconut shell for ammonia (NH3) adsorption performance. Appl. Phys. A 2022, 128, 211. [Google Scholar] [CrossRef]
- Glover, T.G.; Peterson, G.W.; Schindler, B.J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170. [Google Scholar] [CrossRef]
- Ma, K.; Islamoglu, T.; Chen, Z.; Li, P.; Wasson, M.C.; Chen, Y.; Wang, Y.; Peterson, G.; Xin, J.; Farha, O.K. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber. J. Am. Chem. Soc. 2019, 141, 15626–15633. [Google Scholar] [CrossRef]
- Han, G.; Liu, C.; Yang, Q.; Liu, D.; Zhong, C. Construction of stable IL@ MOF composite with multiple adsorption sites for efficient ammonia capture from dry and humid conditions. Chem. Eng. J. 2020, 401, 126106. [Google Scholar] [CrossRef]
- Zhou, W.; Li, T.; Yuan, M.; Li, B.; Zhong, S.; Li, Z.; Liu, X.; Zhou, J.; Dang, Z.M. Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 2021, 42, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Du, Y.; Liu, P.; Yang, J.; Li, L.; Li, J. Removal of Ammonia Emissions via Reversible Structural Transformation in M (BDC)(M = Cu, Zn, Cd) Metal–Organic Frameworks. Environ. Sci. Technol. 2020, 54, 3636–3642. [Google Scholar] [CrossRef]
- Wilcox, O.T.; Fateeva, A.; Katsoulidis, A.P.; Smith, M.W.; Stone, C.A.; Rosseinsky, M.J. Acid loaded porphyrin-based metal–organic framework for ammonia uptake. Chem. Commun. 2015, 51, 14989–14991. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Zhang, X.G.; Xia, Q.; Wang, H.; Wang, C.; Wang, Y.; He, H.; Zhao, Y.; Wang, J. Tailoring Multiple Sites of Metal–Organic Frameworks for Highly Efficient and Reversible Ammonia Adsorption. ACS Appl. Mater. Interfaces 2021, 13, 56025–56034. [Google Scholar] [CrossRef]
- Moribe, S.; Chen, Z.; Alayoglu, S.; Syed, Z.H.; Islamoglu, T.; Farha, O.K. Ammonia capture within isoreticular metal–organic frameworks with rod secondary building units. ACS Mater. Lett. 2019, 1, 476–480. [Google Scholar] [CrossRef]
- Aulakh, D.; Nicoletta, A.P.; Varghese, J.R.; Wriedt, M. The structural diversity and properties of nine new viologen based zwitterionic metal–organic frameworks. CrystEngComm 2016, 18, 2189–2202. [Google Scholar] [CrossRef]
- Guo, L.; Han, X.; Ma, Y.; Li, J.; Lu, W.; Li, W.; Lee, D.; Silva, I.; Cheng, Y.; Yang, S. High capacity ammonia adsorption in a robust metal–organic framework mediated by reversible host–guest interactions. Chem. Commun. 2022, 58, 5753–5756. [Google Scholar] [CrossRef]
- Kajiwara, T.; Higuchi, M.; Watanabe, D.; Higashimura, H.; Yamada, T.; Kitagawa, H. A systematic study on the stability of porous coordination polymers against ammonia. Chem. A Eur. J. 2014, 20, 15611–15617. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, C.; Wang, X.; Yang, J.; Li, J. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chem. Eng. J. 2017, 313, 179–186. [Google Scholar] [CrossRef]
- Yoskamtorn, T.; Zhao, P.; Wu, X.P.; Purchase, K.; Orlandi, F.; Manuel, P.; Taylor, J.; Li, Y.; Day, S.; Tsang, S.E. Responses of Defect-Rich Zr-Based Metal–Organic Frameworks toward NH3 Adsorption. J. Am. Chem. Soc. 2021, 143, 3205–3218. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, F.; Wang, Y.; Yang, C.; Yang, J.; Li, J. Recyclable ammonia uptake of a MIL series of metal-organic frameworks with high structural stability. Microporous Mesoporous Mater. 2018, 258, 170–177. [Google Scholar] [CrossRef]
- Swaroopa Datta Devulapalli, V.; McDonnell, R.P.; Ruffley, J.P.; Shukla, P.B.; Luo, T.Y.; De Souza, M.L.; Das, P.; Rosi, N.; Johnson, J.; Borguet, E. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem 2022, 15, e202102217. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, L.; Yang, J.; Wang, S.; Li, J. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation. J. Solid State Chem. 2015, 226, 114–119. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Lin, Z.; Ren, X.; Song, Y.; Xu, Z.; Dong, X.; Li, X.; Hu, C.; Wang, B. Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chem. Commun. 2014, 50, 2624–2627. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J. Competitive coadsorption of ammonia with water and sulfur dioxide on metal-organic frameworks at low pressure. Build. Environ. 2022, 207, 108421. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09 (Revision D.01); Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G. MA A1-Laham, WA Shirlen, J. Mantzaris. J. Chem. Phys. 1988, 89, 2193. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, J.; Wu, Y.; Xian, S.; Miao, G.; Wang, H.; Li, Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels. Langmuir Acs J. Surf. Colloids 2014, 30, 1080. [Google Scholar] [CrossRef] [PubMed]
- Ying, F.; Li, G.; Liao, F.; Ming, X.; Lin, J. Two novel transition metal–organic frameworks based on 1,3,5-benzenetricarboxylate ligand: Syntheses, structures and thermal properties. J. Mol. Struct. 2011, 1004, 252–256. [Google Scholar]
- Ene, C.D.; Tuna, F.; Fabelo, O.; Ruiz-Perez, C.; Madalan, A.M.; Roesky, H.W.; Andruh, M. One-dimensional and two-dimensional coordination polymers constructed from copper (II) nodes and polycarboxylato spacers: Synthesis, crystal structures and magnetic properties. Polyhedron 2008, 27, 574–582. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Wu, Y.; Li, Y.; Zhao, J.; Na, P. Synthesis of magnetic orderly mesoporous α-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III, V) removal. J. Hazard. Mater. 2018, 343, 304–314. [Google Scholar] [CrossRef]
MOFs | Adsorbate | EMOF(NH3) (kcal/mol) | EMOF (kcal/mol) | ENH3 (kcal/mol) | ΔE (kcal/mol) |
---|---|---|---|---|---|
CuBTC | NH3 | −1,384,454.491 | −1,348,955.985 | −35,483.834 | −14.7 |
FeBTC | NH3 | −1,960,018.095 | −1,924,515.523 | −35,483.834 | −18.7 |
ZnBTC | NH3 | −2,158,051.865 | −2,122,535.112 | −35,483.834 | −32.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Shen, Y.; Ding, J.; Zhou, H.; Zhang, Y.; Feng, Q.; Zhang, X.; Chen, K.; Wang, J.; Chen, Q.; et al. Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites. Molecules 2022, 27, 7847. https://doi.org/10.3390/molecules27227847
Zhang D, Shen Y, Ding J, Zhou H, Zhang Y, Feng Q, Zhang X, Chen K, Wang J, Chen Q, et al. Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites. Molecules. 2022; 27(22):7847. https://doi.org/10.3390/molecules27227847
Chicago/Turabian StyleZhang, Dongli, Yujun Shen, Jingtao Ding, Haibin Zhou, Yuehong Zhang, Qikun Feng, Xi Zhang, Kun Chen, Jian Wang, Qiongyi Chen, and et al. 2022. "Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites" Molecules 27, no. 22: 7847. https://doi.org/10.3390/molecules27227847
APA StyleZhang, D., Shen, Y., Ding, J., Zhou, H., Zhang, Y., Feng, Q., Zhang, X., Chen, K., Wang, J., Chen, Q., Zhang, Y., & Li, C. (2022). Tunable Ammonia Adsorption within Metal–Organic Frameworks with Different Unsaturated Metal Sites. Molecules, 27(22), 7847. https://doi.org/10.3390/molecules27227847