Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactivity of Goji Extracts
2.2. Microbial Quality of Goji Extracts
2.3. Optimal Extraction Conditions
3. Materials and Methods
3.1. Goji Berries
3.2. Goji Berry Extracts
3.3. Antioxidant Activity
3.4. Total Carotenoid Content
3.5. Determination of the Total Number of Microorganisms in Goji Extracts
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y.; et al. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid. Med. Cell Longev. 2019, 2019, 2437397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chao, C.T.; Wei, X. Gojiberry Breeding: Current Status and Future Prospects. In Breeding and Health Benefits of Fruit and Nut Crops; Soneji, J.R., Nageswara-Rao, M., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Maximize Market Research MMR Report: Goji Berries Market—Global Industry Analysis and Forecast (2021–2027). Available online: https://www.maximizemarketresearch.com/market-report/global-goji-berries-market/71727/#toc (accessed on 10 October 2022).
- Cui, C.; Zhao, D.; Huang, J.; Hao, J. Progress on research and development of goji berry drying: A review. Int. J. Food Prop. 2022, 25, 435–449. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Goji berry (Lycium barbarum): Composition and health effects—A review. Pol. J. Food Nutr. Sci. 2016, 66, 67–75. [Google Scholar] [CrossRef]
- Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health benefits and applications of goji berries in functional food products development: A review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef]
- Peng, Y.; Ma, C.; Li, Y.; Leung, K.S.-Y.; Jiang, Z.-H.; Zhao, Z. Quantification of zeaxan-thin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum. Nutr. 2005, 60, 161–164. [Google Scholar] [CrossRef]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Murillo, A.G.; Hu, S.; Fernandez, M.L. Zeaxanthin: Metabolism, properties, and anti-oxidant protection of eyes, heart, liver, and skin. Antioxidants 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem. 2016, 200, 230–236. [Google Scholar] [CrossRef]
- Yao, R.; Heinrich, M.; Zou, Y.; Reich, E.; Zhang, X.; Chen, Y.; Weckerle, C.S. Quality variation of goji (fruits of Lycium spp.) in China: A comparative morphological and metabolomic analysis. Front. Pharmacol. 2018, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Codex Alimentarius CAC/RCP 3-1969. Code of Hygienic Practice for Dried Fruits; FAO: Québec City, QC, Canada; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Picó, Y. Ultrasound-assisted extraction for food and environmental samples. TrAC Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm. 2016, 4, 21–31. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem. 2013, 20, 12–18. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Reglero, G.; Fornari, T. Recent advances in the processing of green tea biomolecules using ethyl lactate. A review. Trends Food Sci. Technol. 2017, 62, 1–12. [Google Scholar] [CrossRef] [Green Version]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Extraction of curcuminoids by using ethyl lactate and its optimisation by response surface methodology. J. Pharm. Biomed. Anal. 2018, 149, 89–95. [Google Scholar] [CrossRef]
- Ishida, B.K.; Chapman, M.H. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 2009, 57, 1051–1059. [Google Scholar] [CrossRef]
- Directive 2009/32/EC of the European Parliament and of the Council on the Approximation of the Laws of the Member States on Extraction Solvents Used in the Production of Foodstuffs and Food Ingredients; EU: Brussels, Belgium, 2009.
- Sousa, G.; Trifunovska, M.; Antunes, M.; Miranda, I.; Moldão, M.; Alves, V.; Vidrih, R.; Lopes, P.A.; Aparicio, L.; Neves, M.; et al. Optimization of ultrasound-assisted extraction of bioactive compounds from Pelvetia canaliculata to sunflower oil. Foods 2021, 10, 1732. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- FAO/WHO. Ranking of Low Moisture Foods in Support of Microbiological Risk Management: Preliminary Report of FAO/WHO Expert Consultation on Ranking of Low Moisture Foods. Part I—Main Report; FAO/WHO: Rome, Italy; Geneva, Switzerland, 2014. [Google Scholar]
- Liu, S.; Roopesh, M.S.; Tang, J.; Wu, Q.; Qin, W. Recent development in low-moisture foods: Microbial safety and thermal process. Food Res. Int. 2022, 155, 111072. [Google Scholar] [CrossRef]
- Allen, L.V., Jr. Quality control: Water activity considerations for beyond-use dates. Int. J. Pharm. Compd. 2018, 22, 288–293. [Google Scholar]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef]
- Pitt, W.G.; Ross, S.A. Ultrasound increases the rate of bacterial cell growth. Biotechnol. Prog. 2003, 19, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, A. Bactericidal and virucidal activity of ethanol and povidone-iodine. Microbiol. Open 2020, 9, e1097. [Google Scholar] [CrossRef] [PubMed]
- Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Słota, R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.-J.; Song, X.; Tsai, H.-C.; Shen, X.; Taylor, M.; Tang, J. Desiccation and thermal resistance of Salmonella and Enterococcus faecium NRRL B-2354 in almond meal as impacted by water activity and storage temperature. Food Control 2021, 126, 108037. [Google Scholar] [CrossRef]
- Yang, R.-F.; Zhao, C.; Chen, X.; Chan, S.-W.; Wu, J.-Y. Chemical properties and bioac-tivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods 2015, 17, 903–909. [Google Scholar] [CrossRef]
- Skenderidis, P.; Petrotos, K.; Giavasis, I.; Hadjichristodoulou, C.; Tsakalof, A. Optimization of ultrasound assisted extraction of goji berry (Lycium barbarum) fruits and evaluation of extracts’ bioactivity. J. Food Process Eng. 2017, 40, e12522. [Google Scholar] [CrossRef]
- Povolo, C.; Foschini, A.; Ribaudo, G. Optimization of the extraction of bioactive molecules from Lycium barbarum fruits and evaluation of the antioxidant activity: A combined study. Nat. Prod. Res. 2019, 33, 2694–2698. [Google Scholar] [CrossRef]
- Ionica, M.E.; Nour, V.; Trandafir, I. Polyphenols content and antioxidant capacity of goji fruits (Lycium chinense) as affected by the extraction solvents. South-West. J. Hor-Tic. Biol. Environ. 2012, 3, 121–129. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Badwal, T.S.; Xu, B. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chem. Cent. J. 2017, 11, 59. [Google Scholar] [CrossRef]
Goji Berry Extracts | Antioxidant Capacities (μmol TE/mL) 1 | Total Carotenoid Content (mg/mL) | |
---|---|---|---|
G1 | W100/UAE | 4.31 ± 0.85 c,d | 1.41 ± 0.05 e |
W100/WB | 4.06 ± 0.21 c,d | 1.52 ± 0.28 e | |
Et25/UAE | 5.00 ± 0.54 d | 1.51 ± 0.13 e | |
Et50/UAE | 4.27 ± 0.62 c,d | 1.13 ± 0.17 b,c,d | |
Et75/UAE | 3.52 ± 0.15 c | 1.05 ± 0.04 b,c,d | |
Ace25/UAE | 4.78 ± 0.85 c,d | 1.25 ± 0.19 d,e | |
Ace50/UAE | 4.90 ± 0.26 d | 1.19 ± 0.06 c,d,e | |
Ace75/UAE | 2.55 ± 0.03 b | 0.92 ± 0.12 b | |
EL100/UAE | 0 a | 0.98 ± 0.03 b,c | |
EL100/WB | 0 a | 1.10 ± 0.01 b,c,d | |
SO100/UAE | 0 a | 0.33 ± 0.05 a | |
SO100/WB | 0 a | 0.36 ± 0.03 a | |
G2 | W100/UAE | 2.54 ± 0.17 c | 4.56 ± 0.11 f |
W100/WB | 3.74 ± 0.18 e,f | 0.78 ± 0.04 a | |
Et25/UAE | 4.09 ± 0.70 f | 0.63 ± 0.04 a | |
Et50/UAE | 3.62 ± 0.28 d,e,f | 0.67 ± 0.05 a | |
Et75/UAE | 2.78 ± 0.31 c,d | 1.30 ± 0.30 b | |
Ace25/UAE | 3.69 ± 0.47 e,f | 0.59 ± 0.07 a | |
Ace50/UAE | 3.09 ± 0.17 c,d,e | 0.51 ± 0.10 a | |
Ace75/UAE | 1.18 ± 0.13 b | 1.30 ± 0.15 b | |
EL100/UAE | 0 a | 3.79 ± 0.11 d | |
EL100/WB | 0 a | 4.44 ± 0.12 e,f | |
SO100/UAE | 0 a | 3.17 ± 0.27 c | |
SO100/WB | 0 a | 4.05 ± 0.31 d,e | |
G3 | W100/UAE | 2.99 ± 0.37 b,c,d | 2.12 ± 0.07 d |
W100/WB | 2.75 ± 0.35 b,c | 1.86 ± 0.13 c | |
Et25/UAE | 3.78 ± 0.51 c,d | 1.92 ± 0.09 c,d | |
Et50/UAE | 3.72 ± 0.41 c,d | 2.01 ± 0.06 c,d | |
Et75/UAE | 3.17 ± 0.14 c,d | 1.89 ± 0.10 c | |
Ace25/UAE | 3.73 ± 0.86 c,d | 1.93 ± 0.14 c,d | |
Ace50/UAE | 3.98 ± 0.49 d | 1.87 ± 0.15 c | |
Ace75/UAE | 1.90 ± 0.09 b | 1.14 ± 0.12 b | |
EL100/UAE | 0 a | 1.97 ± 0.07 c,d | |
EL100/WB | 0 a | 1.96 ± 0.06 c,d | |
SO100/UAE | 0 a | 0.75 ± 0.11 a | |
SO100/WB | 0 a | 0.72 ± 0.09 a | |
G4 | W100/UAE | 2.31 ± 0.87 b,c | 0.74 ± 0.06 c |
W100/WB | 3.32 ± 0.12 c,d,e | 0.67 ± 0.07 b,c | |
Et25/UAE | 4.09 ± 0.23 d,e | 0.66 ± 0.04 b,c | |
Et50/UAE | 4.12 ± 0.85 e | 0.65 ± 0.04 b,c | |
Et75/UAE | 2.84 ± 0.12 b,c,d | 0.62 ± 0.03 b,c | |
Ace25/UAE | 2.52 ± 0.82 b,c | 0.55 ± 0.09 a,b | |
Ace50/UAE | 4.03 ± 0.17 d,e | 0.60 ± 0.08 b,c | |
Ace75/UAE | 1.83 ± 0.23 b | 0.41 ± 0.02 a | |
EL100/UAE | 0 a | 1.53 ± 0.03 e | |
EL100/WB | 0 a | 1.58 ± 0.04 e | |
SO100/UAE | 0 a | 0.96 ± 0.19 d | |
SO100/WB | 0 a | 0.97 ± 0.09 d |
Designation | Solvent (Concentration) | Extraction Method | Conditions |
---|---|---|---|
W100/UAE | water (100%) | ultrasound assisted extraction | 40 °C, 30 min, 35 kHz |
W100/WB | water (100%) | heating in water bath | 100 °C, 30 min |
Et25/UAE | ethanol (25%) | ultrasound assisted extraction | 40 °C, 30 min, 35 kHz |
Et50/UAE | ethanol (50%) | ||
Et75/UAE | ethanol (75%) | ||
Ace25/UAE | acetone (25%) | ||
Ace50/UAE | acetone (50%) | ||
Ace75/UAE | acetone (75%) | ||
EL100/UAE | ethyl lactate (100%) | ||
EL100/WB | ethyl lactate (100%) | heating in water bath | 45 °C, 60 min |
SO100/UAE | sunflower oil (100%) | ultrasound assisted extraction | 40 °C, 30 min, 35 kHz |
SO100/WB | sunflower oil (100%) | heating in water bath | 45 °C, 60 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkowska, K.; Simińska, D.; Kunicka-Styczyńska, A. Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods. Molecules 2022, 27, 7856. https://doi.org/10.3390/molecules27227856
Rajkowska K, Simińska D, Kunicka-Styczyńska A. Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods. Molecules. 2022; 27(22):7856. https://doi.org/10.3390/molecules27227856
Chicago/Turabian StyleRajkowska, Katarzyna, Dorota Simińska, and Alina Kunicka-Styczyńska. 2022. "Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods" Molecules 27, no. 22: 7856. https://doi.org/10.3390/molecules27227856
APA StyleRajkowska, K., Simińska, D., & Kunicka-Styczyńska, A. (2022). Bioactivities and Microbial Quality of Lycium Fruits (Goji) Extracts Derived by Various Solvents and Green Extraction Methods. Molecules, 27(22), 7856. https://doi.org/10.3390/molecules27227856