The Influence of NH4NO3 and NH4ClO4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Porous Structure
3.1.1. N2 Adsorption at −196 °C
3.1.2. CO2 Adsorption at 0 °C
3.2. Structural Properties
3.2.1. X-ray Diffraction Analysis
3.2.2. Raman Spectroscopy
3.3. Surface Chemical Composition
3.4. Thermal Stability
3.5. CO2 and C2H4 Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alahabadi, A.; Singh, P.; Raizada, P.; Anastopoulos, I.; Sivamani, S.; Dotto, G.L.; Landarani, M.; Ivanets, A.; Kyzas, G.Z.; Hosseini-Bandegharaei, A. Activated Carbon from Wood Wastes for the Removal of Uranium and Thorium Ions through Modification with Mineral Acid. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125516. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Asrat, Y.; Adugna, A.T.; Kamaraj, M.; Beyan, S.M. Adsorption Phenomenon of Arundinaria Alpina Stem-Based Activated Carbon for the Removal of Lead from Aqueous Solution. J. Chem. 2021, 2021, 5554353. [Google Scholar] [CrossRef]
- Ali, I.; Afshinb, S.; Poureshgh, Y.; Azari, A.; Rashtbari, Y.; Feizizadeh, A.; Hamzezadeh, A.; Fazlzadeh, M. Green Preparation of Activated Carbon from Pomegranate Peel Coated with Zero-Valent Iron Nanoparticles (NZVI) and Isotherm and Kinetic Studies of Amoxicillin Removal in Water. Environ. Sci. Pollut. Res. 2020, 27, 36732–36743. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Preparation, Characterization and Evaluation of Adsorptive Properties of Orange Peel Based Activated Carbon via Microwave Induced K2CO3 Activation. Bioresour. Technol. 2012, 104, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Y.; Wu, X.; Cai, J. Activated Carbons Prepared by the KOH Activation of a Hydrochar from Garlic Peel and Their CO2 Adsorption Performance. New Carbon Mater. 2019, 34, 247–257. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, S.; Yang, Y.; Fu, X.; Jiang, T.; Yang, J. Ammonium Nitrate-Assisted Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbons Derived from Ginkgo Leaf for Supercapacitors. ACS Omega 2019, 4, 5904–5914. [Google Scholar] [CrossRef]
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.-R.; Helariutta, Y.; He, X.-Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, F.; Amano, Y.; Machida, M. Phosphate Ion Adsorption Characteristics of PAN-Based Activated Carbon Prepared by Zinc Chloride Activation. Int. J. Environ. Sci. Technol. 2022, 19, 8159–8168. [Google Scholar] [CrossRef]
- László, K.; Szűcs, A. Surface Characterization of Polyethyleneterephthalate (PET) Based Activated Carbon and the Effect of PH on Its Adsorption Capacity from Aqueous Phenol and 2,3,4-Trichlorophenol Solutions. Carbon 2001, 39, 1945–1953. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Román-Martínez, M.d.C.; Lillo-Ródenas, M.Á. Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider? Molecules 2022, 27, 1630. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Jiang, L.; Wang, Y.; Su, S.; Sun, L.; Xu, B.; He, L.; Xiang, J. Effects of Inherent Alkali and Alkaline Earth Metallic Species on Biomass Pyrolysis at Different Temperatures. Bioresour. Technol. 2015, 192, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, G.; Reinmöller, M.; Meyer, B. Effect of Inherent Mineral Matter on the Co-Pyrolysis of Highly Reactive Brown Coal and Wheat Straw. Fuel 2019, 239, 1194–1203. [Google Scholar] [CrossRef]
- Gęsikiewicz-Puchalska, A.; Zgrzebnicki, M.; Michalkiewicz, B.; Narkiewicz, U.; Morawski, A.W.; Wrobel, R.J. Improvement of CO2 Uptake of Activated Carbons by Treatment with Mineral Acids. Chem. Eng. J. 2017, 309, 159–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Zhang, P.; Gao, H.; Ou, C.; Kong, X. Production of Activated Carbons from Four Wastes via One-Step Activation and Their Applications in Pb2+ Adsorption: Insight of Ash Content. Chemosphere 2020, 245, 125587. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Xu, Z.-H.; Zong, M.-H.; Wang, C.-F.; Li, N. Selective Synthesis of Furfuryl Alcohol from Biomass-Derived Furfural Using Immobilized Yeast Cells. Catalysts 2019, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Cao Nhien, L.; Van Duc Long, N.; Kim, S.; Lee, M. Novel Reaction-Hybrid-Extraction-Distillation Process for Furfuryl Alcohol Production from Raw Bio-Furfural. Biochem. Eng. J. 2019, 148, 143–151. [Google Scholar] [CrossRef]
- Principe, M.; Martínez, R.; Ortiz, P.; Rieumont, J. The Polymerization of Furfuryl Alcohol with P-Toluenesulfonic Acid: Photocross-Linkeable Feature of the Polymer. Polímeros 2000, 10, 08–14. [Google Scholar] [CrossRef] [Green Version]
- Dubinsky, J.; Žagars, A.; Snidvongs, S.; Hirunlabh, J. Furfuryl Alcohol Made from Agriculture Waste Review. In Proceedings of the Fourth National and the Third International Academic Symposium Innovation and Technology for Social Development, Bangkok, Thailand, 23 July 2018. [Google Scholar]
- Arnaiz, M.; Nair, V.; Mitra, S.; Ajuria, J. Furfuryl Alcohol Derived High-End Carbons for Ultrafast Dual Carbon Lithium Ion Capacitors. Electrochim. Acta 2019, 304, 437–446. [Google Scholar] [CrossRef]
- Zgrzebnicki, M.; Nair, V.; Mitra, S.; Kałamaga, A.; Przepiórski, J.; Wrobel, R.J. N-Doped Activated Carbon Derived from Furfuryl Alcohol—Development of Porosity, Properties, and Adsorption of Carbon Dioxide and Ethene. Chem. Eng. J. 2022, 427, 131709. [Google Scholar] [CrossRef]
- Jiang, C.; Yakaboylu, G.A.; Yumak, T.; Zondlo, J.W.; Sabolsky, E.M.; Wang, J. Activated Carbons Prepared by Indirect and Direct CO2 Activation of Lignocellulosic Biomass for Supercapacitor Electrodes. Renew. Energy 2020, 155, 38–52. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhou, L.; Liu, Z.; Heng, J.Y.Y.; Chen, W. Biomass-Derived Activated Carbons for the Removal of Pharmaceutical Mircopollutants from Wastewater: A Review. Sep. Purif. Technol. 2020, 253, 117536. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Carrasco-Marın, F.; Lopez-Ramon, M.V.; Alvarez-Merino, M.A. Chemical and Physical Activation of Olive-Mill Waste Water to Produce Activated Carbons. Carbon 2001, 39, 1415–1420. [Google Scholar] [CrossRef]
- Şahin, Ö.; Saka, C. Preparation and Characterization of Activated Carbon from Acorn Shell by Physical Activation with H2O–CO2 in Two-Step Pretreatment. Bioresour. Technol. 2013, 136, 163–168. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A.; Shezad, N.; Hussain, M. Recent Trends in Activated Carbon Fibers Production from Various Precursors and Applications—A Comparative Review. J. Anal. Appl. Pyrolysis 2020, 145, 104715. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. Synthesis of Activated Carbon from Food Waste. Environ. Chem. Lett. 2019, 17, 429–438. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Yusup, S. Production of Palm Kernel Shell-Based Activated Carbon by Direct Physical Activation for Carbon Dioxide Adsorption. Environ. Sci. Pollut. Res. 2019, 26, 33732–33746. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Preparation of Activated Carbon from Cherry Stones by Physical Activation in Air. Influence of the Chemical Carbonisation with H2SO4. J. Anal. Appl. Pyrolysis 2012, 94, 131–137. [Google Scholar] [CrossRef]
- Rodriguez-Reinoso, F.; Molina-Sabio, M.; Gonzalez, M.T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 1995, 33, 15–23. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave Assisted Preparation of Activated Carbon from Biomass: A Review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Liew, R.K.; Azwar, E.; Yek, P.N.Y.; Lim, X.Y.; Cheng, C.K.; Ng, J.-H.; Jusoh, A.; Lam, W.H.; Ibrahim, M.D.; Ma, N.L.; et al. Microwave Pyrolysis with KOH/NaOH Mixture Activation: A New Approach to Produce Micro-Mesoporous Activated Carbon for Textile Dye Adsorption. Bioresour. Technol. 2018, 266, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Choi, J.H.; Shin, J.C.; Jung, M.K.; Song, S.K.; Suh, J.K.; Lee, C.Y. Plasma Functionalization of Powdery Nanomaterials Using Porous Filter Electrode and Sample Circulation. Appl. Surf. Sci. 2018, 443, 628–634. [Google Scholar] [CrossRef]
- Ortiz-Ortega, E.; Hosseini, S.; Martinez-Chapa, S.O.; Madou, M.J. Aging of Plasma-Activated Carbon Surfaces: Challenges and Opportunities. Appl. Surf. Sci. 2021, 565, 150362. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, P.; Luo, M.; Wang, X.; Zhang, T.; Chen, W.; Zhou, X. Fast Oxygen, Nitrogen Co-Functionalization on Electrospun Lignin-Based Carbon Nanofibers Membrane via Air Plasma for Energy Storage Application. Int. J. Biol. Macromol. 2020, 143, 434–442. [Google Scholar] [CrossRef]
- Chen, W.; Gong, M.; Li, K.; Xia, M.; Chen, Z.; Xiao, H.; Fang, Y.; Chen, Y.; Yang, H.; Chen, H. Insight into KOH Activation Mechanism during Biomass Pyrolysis: Chemical Reactions between O-Containing Groups and KOH. Appl. Energy 2020, 278, 115730. [Google Scholar] [CrossRef]
- Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. Preparation and Characterization of Super Activated Carbon Produced from Gulfweed by KOH Activation. Microporous Mesoporous Mater. 2017, 243, 291–300. [Google Scholar] [CrossRef]
- Sevilla, M.; Ferrero, G.A.; Fuertes, A.B. Beyond KOH Activation for the Synthesis of Superactivated Carbons from Hydrochar. Carbon 2017, 114, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P. The Synthesis and Characterization of High Purity Mixed Microporous/Mesoporous Activated Carbon from Rice Husk Using Chemical Activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Singh, J.; Bhunia, H.; Basu, S. Adsorption of CO2 on KOH Activated Carbon Adsorbents: Effect of Different Mass Ratios. J. Environ. Manag. 2019, 250, 109457. [Google Scholar] [CrossRef] [PubMed]
- Le Van, K.; Luong Thi, T.T. Activated Carbon Derived from Rice Husk by NaOH Activation and Its Application in Supercapacitor. Progress Nat. Sci. Mater. Int. 2014, 24, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chen, Y.; Wei, G.; Cao, G.; Zhang, H.; Yang, Y. Activated Carbon with High Capacitance Prepared by NaOH Activation for Supercapacitors. Mater. Chem. Phys. 2010, 124, 504–509. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Liu, H.; Cheng, W.; Bao, Y. Modification of Calcium-Rich Biochar by Loading Si/Mn Binary Oxide after NaOH Activation and Its Adsorption Mechanisms for Removal of Cu(II) from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124960. [Google Scholar] [CrossRef]
- Dawei, L.; Yu, W.; Jiaojiao, Z.; Jicheng, W.; Xiaoyang, L.; Yuanyu, T.; Zongbo, Z.; Yingyun, Q.; Ling, W.; Junhua, L.; et al. Drying before Microwave-Assisted H3PO4 Activation to Produce Highly Mesoporous Activated Carbons. Mater. Lett. 2018, 230, 61–63. [Google Scholar] [CrossRef]
- Yang, Z.; Gleisner, R.; Mann, D.H.; Xu, J.; Jiang, J.; Zhu, J.Y. Lignin Based Activated Carbon Using H3PO4 Activation. Polymers 2020, 12, 2829. [Google Scholar] [CrossRef]
- Jawad, A.H.; Malek, N.N.A.; Khadiran, T.; ALOthman, Z.A.; Yaseen, Z.M. Mesoporous High-Surface-Area Activated Carbon from Biomass Waste via Microwave-Assisted-H3PO4 Activation for Methylene Blue Dye Adsorption: An Optimized Process. Diam. Relat. Mater. 2022, 128, 109288. [Google Scholar] [CrossRef]
- Vunain, E.; Njewa, J.B.; Biswick, T.T.; Ipadeola, A.K. Adsorption of Chromium Ions from Tannery Effluents onto Activated Carbon Prepared from Rice Husk and Potato Peel by H3PO4 Activation. Appl. Water Sci. 2021, 11, 150. [Google Scholar] [CrossRef]
- Uçar, S.; Erdem, M.; Tay, T.; Karagöz, S. Preparation and Characterization of Activated Carbon Produced from Pomegranate Seeds by ZnCl2 Activation. Appl. Surf. Sci. 2009, 255, 8890–8896. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Modification of the Porous Structure along the Preparation of Activated Carbon Monoliths with H3PO4 and ZnCl2. Microporous Mesoporous Mater. 2007, 103, 29–34. [Google Scholar] [CrossRef]
- Wang, T.; Tan, S.; Liang, C. Preparation and Characterization of Activated Carbon from Wood via Microwave-Induced ZnCl2 Activation. Carbon 2009, 47, 1880–1883. [Google Scholar] [CrossRef]
- Sakamoto, T.; Amano, Y.; Machida, M. Phosphate Ion Adsorption Properties of PAN-Based Activated Carbon Fibers Prepared with K2CO3 Activation. SN Appl. Sci. 2020, 2, 702. [Google Scholar] [CrossRef] [Green Version]
- Sajjadi, S.-A.; Mohammadzadeh, A.; Tran, H.N.; Anastopoulos, I.; Dotto, G.L.; Lopičić, Z.R.; Sivamani, S.; Rahmani-Sani, A.; Ivanets, A.; Hosseini-Bandegharaei, A. Efficient Mercury Removal from Wastewater by Pistachio Wood Wastes-Derived Activated Carbon Prepared by Chemical Activation Using a Novel Activating Agent. J. Environ. Manag. 2018, 223, 1001–1009. [Google Scholar] [CrossRef]
- Fu, K.; Yue, Q.; Gao, B.; Wang, Y.; Li, Q. Activated Carbon from Tomato Stem by Chemical Activation with FeCl2. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 842–849. [Google Scholar] [CrossRef]
- Subramanian, N.; Viswanathan, B. Nitrogen- and Oxygen-Containing Activated Carbons from Sucrose for Electrochemical Supercapacitor Applications. RSC Adv. 2015, 5, 63000–63011. [Google Scholar] [CrossRef]
- Bayrak, Y.; Topallar, H.; Karagöz, B.; Kılıç, İ. Kinetics and Thermodynamics of Cr(VI), Cu(II), and Ni(II) Adsorption on Activated Carbon Prepared from Rice Hulls. J. Dispers. Sci. Technol. 2013, 34, 1248–1256. [Google Scholar] [CrossRef]
- Sajjadi, S.-A.; Meknati, A.; Lima, E.C.; Dotto, G.L.; Mendoza-Castillo, D.I.; Anastopoulos, I.; Alakhras, F.; Unuabonah, E.I.; Singh, P.; Hosseini-Bandegharaei, A. A Novel Route for Preparation of Chemically Activated Carbon from Pistachio Wood for Highly Efficient Pb(II) Sorption. J. Environ. Manag. 2019, 236, 34–44. [Google Scholar] [CrossRef]
- Ma, X.-Q.; Zhang, B.; Xu, Z.-X.; Tan, Y.; Li, B.; Zhang, Y.-C.; Ni, G.-S.; Zhou, W.-Y.; Luque, R.; Zhang, H.-Y. N-Rich and O-Poor Doped Carbon Prepared via Facile Ammonium Nitrate Assisted Hydrothermal Carbonization for Robust Supercapacitors. J. Clean. Prod. 2022, 373, 133903. [Google Scholar] [CrossRef]
- Boldyrev, V.V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2006, 443, 1–36. [Google Scholar] [CrossRef]
- Sharma, J.K.; Srivastava, P.; Singh, G.; Akhtar, M.S.; Ameen, S. Catalytic Thermal Decomposition of Ammonium Perchlorate and Combustion of Composite Solid Propellants over Green Synthesized CuO Nanoparticles. Thermochim. Acta 2015, 614, 110–115. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Giammar, D.E. Impact of Chlorine Disinfectants on Dissolution of the Lead Corrosion Product PbO2. Environ. Sci. Technol. 2010, 44, 7082–7088. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Gholami, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant Aspects of Carbon Capture and Storage—A Review. Petroleum 2019, 5, 335–340. [Google Scholar] [CrossRef]
- Chen, Y.; Grimplet, J.; David, K.; Castellarin, S.D.; Terol, J.; Wong, D.C.J.; Luo, Z.; Schaffer, R.; Celton, J.-M.; Talon, M.; et al. Ethylene Receptors and Related Proteins in Climacteric and Non-Climacteric Fruits. Plant Sci. 2018, 276, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Puech, P.; Dabrowska, A.; Ratel-Ramond, N.; Vignoles, G.L.; Monthioux, M. New Insight on Carbonisation and Graphitisation Mechanisms as Obtained from a Bottom-up Analytical Approach of X-Ray Diffraction Patterns. Carbon 2019, 147, 602–611. [Google Scholar] [CrossRef]
- Fujimoto, H. Theoretical X-Ray Scattering Intensity of Carbons with Turbostratic Stacking and AB Stacking Structures. Carbon 2003, 41, 1585–1592. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, Y.; Ge, G. Nitrogen-Doped Nanotubes-Decorated Activated Carbon-Based Hybrid Nanoarchitecture as a Superior Catalyst for Direct Dehydrogenation. Catal. Sci. Technol. 2015, 5, 1548–1557. [Google Scholar] [CrossRef]
- Kumar, N.; Srivastava, V.C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega 2018, 3, 10233–10242. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Yang, H.; Shao, J.; Wang, X.; Chen, Y.; Zhang, S.; Chen, H. Preparation of Nitrogen-Doped Microporous Modified Biochar by High Temperature CO2–NH3 Treatment for CO2 Adsorption: Effects of Temperature. RSC Adv. 2016, 6, 98157–98166. [Google Scholar] [CrossRef]
- Xiong, Z.; Shihong, Z.; Haiping, Y.; Tao, S.; Yingquan, C.; Hanping, C. Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture. Bioenerg. Res. 2013, 6, 1147–1153. [Google Scholar] [CrossRef]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R. Metal Incorporated Biochar as a Potential Adsorbent for High Capacity CO2 Capture at Ambient Condition. J. CO2 Util. 2018, 26, 281–293. [Google Scholar] [CrossRef]
- Wang, S.-H.; Hwang, Y.-K.; Choi, S.W.; Yuan, X.; Lee, K.B.; Chang, F.-C. Developing Self-Activated Lignosulfonate-Based Porous Carbon Material for Ethylene Adsorption. J. Taiwan Inst. Chem. Eng. 2020, 115, 315–320. [Google Scholar] [CrossRef]
- Ye, P.; Fang, Z.; Su, B.; Xing, H.; Yang, Y.; Su, Y.; Ren, Q. Adsorption of Propylene and Ethylene on 15 Activated Carbons. J. Chem. Eng. Data 2010, 55, 5669–5672. [Google Scholar] [CrossRef]
Sample | Preparation Parameters | Specific Surface Area [m2/g] | Ref. |
---|---|---|---|
CNA900 | Sucrose/NH4NO3 mass ratio 3:1 (CNA900) and 2:1 (CNB900). Carbonization under N2 atmosphere for 6 h at 900 °C. | 489 | [56] |
CNB900 | 518 | ||
AC_NH4NO3 | Rice husk/NH4NO3 mass ratio: 1:4 Carbonization under N2 atmosphere for 0.5h at 600 °C. | 457 | [57] |
AN/GL700 | Ginkgo leaves/NH4NO3 mass ratio: 1:2. Carbonization under N2 atmosphere for 1 h at 700 °C. | 672 | [7] |
PWAC | Pistachio wood wastes/NH4NO3 impregnation ratio: 5% wt. Pyrolysis under N2 atmosphere at 800 °C for 2 h. | 1448 | [58] |
N-carbon700 | Cellulose/NH4NO3/distilled water mass ratio 1:1:10. Hydrothermal carbonization at 240 °C for 5 h. Activation with KOH at 700 °C and 800 °C for 1 h. | 1184 | [59] |
N-carbon800 | 1976 |
Sample | SSA 1 [m2/g] | Vtotal [cm3/g] | Vmicro 2 [cm3/g] | Vmeso 3 [cm3/g] |
---|---|---|---|---|
AC | 28 | 0.03 | 0.00 | 0.03 |
AC_1h | 535 | 0.22 | 0.19 | 0.01 |
AC_2h | 843 | 0.36 | 0.30 | 0.03 |
AC_3h | 1174 | 0.55 | 0.36 | 0.15 |
AC_NH4NO3 | 57 | 0.04 | 0.02 | 0.02 |
AC_NH4NO3_1h | 999 | 0.43 | 0.34 | 0.04 |
AC_NH4NO3_2h | 1523 | 0.75 | 0.41 | 0.28 |
AC_NH4NO3_3h | 1292 | 0.71 | 0.26 | 0.39 |
AC_NH4ClO4 | 6 | 0.01 | 0.00 | 0.00 |
AC_NH4ClO4_1h | 696 | 0.28 | 0.24 | 0.02 |
AC_NH4ClO4_2h | 933 | 0.40 | 0.27 | 0.09 |
AC_NH4ClO4_3h | 1342 | 0.62 | 0.29 | 0.26 |
Sample | CO2 Micropore Specific Surface Area 1 [m2/g] | Vtotal [cm3/g] | V0.7 nm 2 [cm3/g] | V0.8 nm 3 [cm3/g] | V1.0 nm 4 [cm3/g] |
---|---|---|---|---|---|
AC | 454 | 0.15 | 0.10 | 0.10 | 0.12 |
AC_1h | 706 | 0.27 | 0.15 | 0.16 | 0.21 |
AC_2h | 686 | 0.27 | 0.14 | 0.16 | 0.21 |
AC_3h | 589 | 0.25 | 0.12 | 0.14 | 0.19 |
AC_NH4NO3 | 496 | 0.16 | 0.11 | 0.11 | 0.13 |
AC_NH4NO3_1h | 724 | 0.29 | 0.15 | 0.17 | 0.22 |
AC_NH4NO3_2h | 640 | 0.27 | 0.13 | 0.15 | 0.21 |
AC_NH4NO3_3h | 435 | 0.19 | 0.09 | 0.10 | 0.14 |
AC_NH4ClO4 | 471 | 0.15 | 0.10 | 0.10 | 0.13 |
AC_NH4ClO4_1h | 651 | 0.25 | 0.14 | 0.15 | 0.19 |
AC_NH4ClO4_2h | 600 | 0.25 | 0.13 | 0.14 | 0.19 |
AC_NH4ClO4_3h | 587 | 0.27 | 0.11 | 0.13 | 0.20 |
Sample | Lc [nm] | La [nm] | d002 [nm] |
---|---|---|---|
AC | 1.0 | 1.9 | 0.381 |
AC_1h | 0.9 | 3.1 | 0.392 |
AC_2h | 1.1 | 3.2 | 0.387 |
AC_3h | 0.9 | 3.2 | 0.388 |
AC_NH4NO3 | 0.9 | 1.9 | 0.394 |
AC_NH4NO3_1h | 1.1 | 3.1 | 0.381 |
AC_ NH4NO3_2h | 1.2 | 3.3 | 0.373 |
AC_ NH4NO3_3h | 1.2 | 3.5 | 0.371 |
AC_NH4ClO4 | 0.7 | 1.9 | 0.417 |
AC_ NH4ClO4_1h | 1.0 | 3.1 | 0.388 |
AC_ NH4ClO4_2h | 1.0 | 3.3 | 0.387 |
AC_ NH4ClO4_3h | 1.1 | 3.3 | 0.384 |
Sample | ID/IG Ratio | D-Band Width [cm−1] | G-Band Width [cm−1] | La [nm] |
---|---|---|---|---|
AC | 0.60 | 272.81 | 77.48 | 5.9 |
AC_NH4NO3 | 0.71 | 283.99 | 85.86 | 4.9 |
AC_NH4ClO4 | 0.68 | 256.92 | 96.28 | 5.1 |
AC_1h | 1.09 | 194.63 | 93.65 | 3.2 |
AC_NH4NO3_1h | 0.93 | 220.33 | 94.07 | 3.8 |
AC_NH4ClO4_1h | 0.97 | 212.37 | 94.17 | 3.6 |
AC_2h | 1.03 | 169.21 | 81.10 | 3.4 |
AC_NH4NO3_2h | 1.01 | 202.89 | 91.47 | 3.5 |
AC_NH4ClO4_2h | 0.95 | 201.71 | 90.14 | 3.7 |
AC_3h | 1.09 | 179.18 | 83.17 | 3.2 |
AC_NH4NO3_3h | 1.09 | 191.59 | 87.11 | 3.2 |
AC_NH4ClO4_3h | 1.09 | 193.59 | 89.99 | 3.2 |
Sample | Concentration [at. %] | ||
---|---|---|---|
C | O | N | |
AC | 87 | 13 | 0 |
AC_1h | 97 | 3 | 0 |
AC_2h | 97 | 3 | 0 |
AC_3h | 96 | 4 | 0 |
AC_NH4NO3 | 88 | 9 | 3 |
AC_NH4NO3_1h | 91 | 6 | 3 |
AC_NH4NO3_2h | 89 | 8 | 3 |
AC_NH4NO3_3h | 87 | 9 | 4 |
AC_NH4ClO4 | 90 | 7 | 3 |
AC_NH4ClO4_1h | 91 | 8 | 2 |
AC_NH4ClO4_2h | 90 | 8 | 2 |
AC_NH4ClO4_3h | 85 | 13 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałamaga, A.; Román-Martínez, M.C.; Lillo-Ródenas, M.A.; Wróbel, R.J. The Influence of NH4NO3 and NH4ClO4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol. Molecules 2022, 27, 7860. https://doi.org/10.3390/molecules27227860
Kałamaga A, Román-Martínez MC, Lillo-Ródenas MA, Wróbel RJ. The Influence of NH4NO3 and NH4ClO4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol. Molecules. 2022; 27(22):7860. https://doi.org/10.3390/molecules27227860
Chicago/Turabian StyleKałamaga, Agnieszka, Maria Carmen Román-Martínez, Maria Angeles Lillo-Ródenas, and Rafał Jan Wróbel. 2022. "The Influence of NH4NO3 and NH4ClO4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol" Molecules 27, no. 22: 7860. https://doi.org/10.3390/molecules27227860
APA StyleKałamaga, A., Román-Martínez, M. C., Lillo-Ródenas, M. A., & Wróbel, R. J. (2022). The Influence of NH4NO3 and NH4ClO4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol. Molecules, 27(22), 7860. https://doi.org/10.3390/molecules27227860