Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)-p-cymene Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structures
2.2. Cyclic Voltammetry Results
2.3. Cytotoxicity Assays
3. Conclusions
4. Experimental Section
4.1. General Procedures
4.2. Synthesis of Thiosemicarbazone (TSC) Ligands (HL1 and HL2)
4.2.1. Preparation of N-(4-Methoxybenzyl)-(3-methoxy-4-hydroxybenzophenone) Thiosemicarbazone (HL1)
4.2.2. Preparation of N-(4-Methoxybenzyl)-(2-fluoro-4-hydroxybenzaldehyde)-thiosemicarbazone (HL2)
4.3. Synthesis of Ruthenium Complexes
4.3.1. Preparation of [RuCl(η6-p-cymene)(HL1)] [CF3SO3], 1(TfO)
4.3.2. Preparation of [RuCl(η6-p-cymene)(HL1)]Cl, 1(Cl)
4.3.3. Preparation of [RuCl(η6-p-cymene) (HL2)][CF3SO3], 2(TfO)
4.3.4. Preparation of [RuCl(η6-p-cymene)(HL2)]Cl, 2(Cl)
4.4. Crystallography
4.5. Electrochemistry
4.6. Cytotoxicity Assays
4.6.1. Cell Line and Culture Conditions
4.6.2. Cytotoxicity Study
4.7. Analysis and Expression of the Results
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quiroga, A.G.; Perez, J.M.; Lopez-Solera, I.; Masaguer, J.R.; Luque, A.; Raman, P.; Edwards, A.; Alonso, C.; Navarro-Ranninger, C. Novel Tetranuclear Orthometalated Complexes of Pd(II) and Pt(II) Derived from p-Isopropylbenzaldehyde Thiosemicarbazone with Cytotoxic Activity in cis-DDP Resistant Tumor Cell Lines. Interaction of These Complexes with DNA. J. Med. Chem. 1998, 41, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Offiong, O.E.; Martelli, S. Antibacterial activity of metal complexes of benzil and benzoin thiosemicarbazones. Farmaco 1994, 49, 513–518. [Google Scholar] [PubMed]
- Hadjipavlou-Litina, D. QSAR of thiosemicarbazones derived from formyl- and acyl-diazines designed as antiviral agents. Pharmazie 1996, 51, 468–470. [Google Scholar] [PubMed]
- Campbell, M.J.M. Transition metal complexes of thiosemicarbazide and thiosemicarbazones. Coord. Chem. Rev. 1975, 15, 279–319. [Google Scholar] [CrossRef]
- WEST, D.X.; Padhye, S.B.; Sonawane, P.B. Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. Struct. Bond. 1991, 76, 1–50. [Google Scholar] [CrossRef]
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure of metals–An overview. Coord. Chem. Rev. 2009, 253, 977–1055. [Google Scholar] [CrossRef]
- Garcia-Tojal, J.; Garcia-Orad, A.; Serra, J.L.; Pizarro, J.L.; Lezamma, L.; Arriortua, M.I.; Rojo, T. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of [Cu(C6H6N3S2)2]. J. Inorg. Biochem. 1999, 75, 45–54. [Google Scholar] [CrossRef]
- Petering, D.H. Physico-chemical properties of the antitumor agent, 3-ethoxy-2-oxobutyraldehyde bis (thiosemicarbazonato) copper(II). Bioinorg. Chem. 1972, 1, 255–271. [Google Scholar] [CrossRef]
- West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. Thiosemicarbazone complexes of copper(II): Structural and biological studies. Coord. Chem. Rev. 1993, 123, 49–71. [Google Scholar] [CrossRef]
- Allardyce, C.S.; Dorcier, A.; Scolaro, C.; Dyson, P.J. Development of organometallic (organo-transition metal) pharmaceuticals. Appl. Organometal. Chem. 2005, 19, 1–10. [Google Scholar] [CrossRef]
- Pete, S.; Roy, N.; Kar, B.; Paira, P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord. Chem. Rev. 2022, 460, 214462. [Google Scholar] [CrossRef]
- Su, W.; Tang, Z.; Li, P.; Wang, G.; Xiao, Q.; Li, Y.; Zhang, Y. New dinuclear ruthenium arene complexes containing thiosemicarbazone ligands: Synthesis, structure and cytotoxic studies. Dalton Trans. 2016, 45, 19329–19340. [Google Scholar] [CrossRef] [PubMed]
- Beckford, F.; Dourth, D.; Shaloski, M.; Didion, J.; Thessing, J.; Woods, J.; Crowell, V.; Gerasimchuk, N.; Gonzalez-Sarrías, A.; Seeram, N.P. Half-sandwich ruthenium–arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonalthiosemicarbazones)Cl]Cl complexes. J. Inorg. Biochem. 2011, 105, 1019–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, A.; Habtemariam, A.; Romero-Canelón, I.; Song, J.I.; Heer, B.; Clarkson, G.J.; Rogolino, D.; Sadler, P.J.; Carcelli, M. Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity. Organometallics 2018, 37, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.; Li, Y.; Khot, H.; Kock, C.; Smith, P.J.; Land, K.; Chibale, K.; Smith, G.S. The synthesis and antiparasitic activity of aryland ferrocenyl-derived thiosemicarbazone ruthenium(II)–arene complexes. Dalton Trans. 2013, 42, 4677–4685. [Google Scholar] [CrossRef]
- Adams, M.; Kock, C.; Smith, P.J.; Land, K.M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A.R.; Stringer, T.; Meyer, M.; et al. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans. 2015, 44, 2456–2468. [Google Scholar] [CrossRef] [Green Version]
- Demoro, B.; Sarniguet, C.; Sánchez-Delgado, R.; Rossi, M.; Liebowitz, D.; Caruso, F.; Gambino, D. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: Potential anti-trypanosomal agents. Dalton Trans. 2012, 41, 1534–1543. [Google Scholar] [CrossRef] [Green Version]
- Bakir, M.; Lawrence, M.A.W.; Nelson, P.N.; Conry, R.R. Spectroscopic and electrochemical properties of di-2-thienyl ketone thiosemicarbazone (dtktsc): Electrochemical reactions with electrophiles (H+ and CO2). Electrochim. Acta 2016, 212, 1010–1020. [Google Scholar] [CrossRef]
- Haribabu, J.; Balakrishnan, N.; Swaminathan, S.; Peter, J.; Gayathri, D.; Echeverria, C.; Bhuvanesh, N.; Karvembu, R. Synthesis, cytotoxicity and docking studies (with SARS-CoV-2) of water-soluble binuclear Ru-p-cymene complex holding indole thiosemicarbazone ligand. Inorg. Chem. Comm. 2021, 134, 109029. [Google Scholar] [CrossRef]
- Nuñez-Montenegro, A.; Carballo, R.; Vázquez-López, E.M. Synthesis, Characterization and Binding Affinities for Estrogen Receptor (α/β) of Rhenium(I) Thiosemicarbazone Complexes. J. Inorg. Biochem. 2014, 140, 53–63. [Google Scholar] [CrossRef]
- Argibay-Otero, S.; Gano, L.; Fernandes, C.; Paulo, A.; Carballo, R.; Vázquez-López, E.M. Chemical and Biological Studies of Re(I)/Tc(I) Thiosemicarbazonate Complexes Relevant for the Design of Radiopharmaceuticals. J. Inorg. Biochem. 2020, 203, 110917–110929. [Google Scholar] [CrossRef] [PubMed]
- Stringer, T.; Therrien, B.; Hendricks, D.T.; Guzgay, H.; Smith, G.S. Mono- and dinuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorg. Chem. Comm. 2011, 14, 956–960. [Google Scholar] [CrossRef]
- Su, W.; Qian, Q.; Li, P.; Lei, X.; Xiao, Q.; Huang, S.; Huang, C.; Cui, J. Synthesis, Characterization, and Anticancer Activity of a Series of Ketone-N4-Substituted Thiosemicarbazones and Their Ruthenium(II) Arene Complexes. Inorg. Chem. 2013, 52, 21, 12440–12449. [Google Scholar] [CrossRef] [PubMed]
- Beckford, F.; Thessing, J.; Woods, J.; Didion, J.; Gerasimchuk, N.; Gonzalez-Sarrias, A.; Seeram, N.P. Synthesis and structure of [(η6-p-cymene)Ru(2-anthracen-9-ylmethylene-N-ethylhydrazinecarbothioamide)Cl]Cl; biological evaluation, topoisomerase II inhibition and reaction with DNA and human serum albumin. Metallomics 2011, 3, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haribabu, J.; Sabapathi, G.; Tamizh, M.M.; Balachandran, C.; Bhuvanesh, N.S.P.; Venuvanalingam, P.; Karvembu, R. Water-Soluble Mono- and Binuclear Ru(η6-p-cymene) Complexes Containing Indole Thiosemicarbazones: Synthesis, DFT Modeling, Biomolecular Interactions, and In Vitro Anticancer Activity through Apoptosis. Organometallics 2018, 37, 1242–1257. [Google Scholar] [CrossRef]
- Kumar, R.; Ramesh, R.; Małecki, J.G. Steric Control on the Coordination Behaviour of Carbazole Thiosemicarbazones towards [RuH(Cl)(CO)(AsPh3)3]: A Combined Experimental and Theoretical Study. New J. Chem. 2016, 40, 10084–10093. [Google Scholar] [CrossRef]
- Muralisankar, M.; Dheepika, R.; Haribabu, J.; Balachandran, C.; Aoki, S.; Bhuvanesh, N.S.; Nagarajan, S. Design, synthesis, DNA/HSA binding, and cytotoxic activity of half-sandwich Ru (II)-Arene complexes containing triarylamine–thiosemicarbazone hybrids. ACS Omega 2019, 4, 11712–11723. [Google Scholar] [CrossRef] [Green Version]
- Devagi, G.; Reyhaneh, F.; Dallemer, F.; Jayakumar, R.; Kalaivani, P.; Prabhakaran, R. Morphological and in Vitro Evaluation of Programmed Cell Death in MCF-7 Cells by New Organoruthenium(ii) Complexes. New J. Chem. 2017, 41, 8620–8636. [Google Scholar] [CrossRef]
- Rogolino, D.; Bacchi, A.; De Luca, L.; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. Investigation of the Salicylaldehyde Thiosemicarbazone Scaffold for Inhibition of Influenza Virus PA Endonuclease. J. Biol. Inorg. Chem. 2015, 20, 1109–1121. [Google Scholar] [CrossRef]
- Balaji, S.; Subarkhan, M.K.M.; Ramesh, R.; Wang, H.; Semeril, D. Synthesis and structure of arene Ru (II) N-O-chelating complexes: In vitro cytotoxicity and cancer cell death mechanism. Organometallics 2020, 39, 1366–1375. [Google Scholar] [CrossRef]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Argibay-Otero, S.; Graña, A.; Carballo, R.; Vázquez-López, E.M. Synthesis of novel dinuclear N-substituted-(4-methylaminobenzaldehyde) thiosemicarbazonates rhenium(I): Formation of four- and/or five-membered chelate rings, conformation analysis and reactivity. Inorg. Chem. 2020, 59, 14101–14117. [Google Scholar] [CrossRef] [PubMed]
- Mishraa, D.; Naskara, S.; Drew, M.; Chattopadhyay, S.K. Synthesis, Spectroscopic and Redox Properties of some Ruthenium(II) Thiosemicarbazone Complexes: Structural Description of Four of these Complexes. Inorg. Chim. Acta 2006, 359, 585–592. [Google Scholar] [CrossRef]
- Tabares, J.P.G.; Santos, R.L.S.R.; Cassiano, J.L.; Zaim, M.H.; Honorato, J.; Batista, A.A.; Teixeira, S.F.; Ferreira, A.K.; Viana, R.B.; Martínez, S.Q.; et al. A Ru(II)-p-cymene compound bearing naproxen-pyridineamide. Synthesis, spectroscopic studies, computational analysis and in vitro anticancer activity against lung cells compared to Ru(II)-p-cymene-naproxen and the corresponding drug ligands. Inorg. Chim. Acta 2019, 489, 27–38. [Google Scholar] [CrossRef]
- Perrin, D.D.; Armarego, W.L.F. Purification of Laboratory Chemicals, 3rd ed.; Butterworth/Heinemann: London/Oxford, UK, 1988. [Google Scholar]
- Bennett, M.A.; Smith, A.K. Arene ruthenium(II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(III) trichloride. J. Chem Soc. Dalton Trans. 1974, 2, 233–241. [Google Scholar] [CrossRef]
- APEX3, SAINT and SADABS; Software for Chemical Crystallography Bruker AXS: Madison, WI, USA, 2015.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. Sect. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst. 2006, 39, 453–457. [Google Scholar] [CrossRef]
N2–H | N1–H | N3=C2H | N3=CC9H3 | Ha,bHc,d | –CH3 p-cym | –iPr p-cym | ||
---|---|---|---|---|---|---|---|---|
HL1 | 8.66 | 7.85 | 2.25 | |||||
1(Cl) | Ea | 12.73 | 10.89 | 2.91 | 5.35; 4.91; 4.71; 4.01 | 1.99 | 1.11; 1.04 | |
1(TfO) | Ea | 10.84 | 8.87 | 2.74 | 5.35; 4.91; 4.71; 4.01 | 1.99 | 1.10; 1.02 | |
Za | 10.64 | 8.42 | 2.98 | 5.63; 5.47; 4.66; 4.60 | 2.26 | 1.23; 1.12 | ||
HL2 | 8.97 | 7.68 | 7.91 | |||||
2(Cl) | Ea | 14.06 | 8.69 | 8.38 | 5.47; 4.99; 4.90 | 2.08 | 1.14; 1.07 | |
2(TfO) | Ea | 10.62 | 8.84 | 8.55 | 5.50; 5.04; 4.93 | 2.12 | 1.17; 1.09 | |
Za | 12.10 | 8.58 | 8.49 | 5.71, 5.57; 5.60, 5.39 | 2.69 | 1.29; 1.23 |
HL1 | 1(Cl).MeOH | 1(TfO).2(MeOH) | HL2 | 2′(TfO) | ||
---|---|---|---|---|---|---|
A | B | |||||
X = | Cl(1) | Cl(1) | Cl(2) | S(1) d | ||
Ru(1)–N(3) | 2.1638(13) | 2.127(4) | 2.126(4) | 2.104(3) | ||
Ru(1)–S(1) | 2.3464(4) | 2.3744(13) | 2.3767(13) | 2.3617(10) | ||
Ru(1)–X | 2.4238(4) | 2.3997(14) | 2.4015(14) | 2.4085(9) | ||
Ru(1)–Cc b | 1.6913(2) | 1.6965(4) | 1.6907(4) | 1.4728(3) | ||
Ru(1)–Cm c | 2.208(1) | 2.208(2) | 2.206(2) | 2.215(2) | ||
S(1)–C(1) | 1.6897(13) | 1.6970(16) | 1.698(5) | 1.701(5) | 1.699(3) a | 1.795(3) |
N(2)–C(1) | 1.3628(16) | 1.349(2) | 1.348(6) | 1.333(6) | 1.356(4) a | 1.303(4) |
N(2)–N(3) | 1.3934(14) | 1.3960(18) | 1.387(6) | 1.413(6) | 1.370(4) a | 1.397(4) |
N(3)–C(2) | 1.2909(16) | 1.303(2) | 1.304(6) | 1.293(6) | 1.279(4) a | 1.295(4) |
C(1)–N(1) | 1.3326(16) | 1.332(2) | 1.329(7) | 1.339(7) | 1.327(4) a | 1.340(5) |
N(1)–C(11) | 1.4520(16) | 1.454(2) | 1.478(7) | 1.468(7) | 1.465(4) a | 1.461(5) |
N(3)–Ru(1)–S(1) | 82.30(4) | 80.99(12) | 81.09(12) | 79.10(9) | ||
N(3)–Ru(1)–X | 87.06(4) | 84.63(12) | 84.65(12) | 83.43(9) | ||
S(1)–Ru(1)–X | 87.307(15) | 88.75(5) | 88.80(5) | 81.75(3) | ||
S(1)–Ru(1)–Cc b | 125.504(12) | 126.86(4) | 127.03(4) | 131.25(3) | ||
N(3)–Ru(1)–Cc b | 132.05(4) | 132.57(11) | 132.60(12) | 129.51(9) | ||
X–Ru(1)–Cc b | 127,322(11) | 127.24(4) | 126.95(4) | 132.48(3) | ||
C(2)–N(3)–Ru(1) | 129.91(11) | 130.7(4) | 132.1(4) | 121.4(3) | ||
N(2)–N(3)–Ru(1) | 114.87(9) | 114.4(3) | 114.1(3) | 120.9(2) | ||
C(1)–S(1)–Ru(1) | 99.90(6) | 98.77(18) | 98.72(18) | 95.04(13) | ||
C(2)–N(3)–N(2) | 116.67(11) | 114.81(13) | 120.8(4) | 120.4(4) | 118.5(3) a | 117.4(3) |
N(3)–C(2)–C(3) | 115.67(11) | 119.63(14) | 122.5(5) | 123.3(5) | 120.0(4) a | 131.6(4) |
N(1)–C(1)–N(2) | 116.15(11) | 116.04(14) | 115.8(5) | 116.1(5) | 115.5(3) a | 121.6(3) |
N(1)–C(1)–S(1) | 124.78(10) | 121.15(12) | 124.3(4) | 123.4(4) | 124.3(2) a | 114.8(3) |
N(2)–C(1)–S(1) | 119.06(9) | 122.81(13) | 119.9(4) | 120.5(4) | 120.1(2) a | 123.5(3) |
Compound | Epa (V) | Epc (V) | Epa − Epc |
---|---|---|---|
HL1 | 0.59 | - | |
−0.61 | −0.75 | 0.14 | |
1(TfO) | 0.46 | 0.07 | |
0.63 | - | ||
−0.59 | −0.71 | 0.12 | |
HL2 | 0.58 | - | |
−0.40 | −0.80 | ||
2(TfO) | 0.49 | - | |
0.72 | - | ||
−0.57 | −0.73 | 0.16 |
NCl-H460 #1 | A549 #2 | MDA-MB-231 #3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Inh #4 | IC50 | Emax #5 | Inh #4 | IC50 | Emax #5 | Inh #4 | IC50 | Emax #5 | |
HL1 | 19(3) | 29.6(2.12) | 62(1) | 34.2(0.9) | 59(3) | ||||
1(TfO) | 41(4) | 28.5(0.48) | 92(2) | 30.7(0.9) | 89(1) | ||||
HL2 | 49(1) | 50(3) | 37(2) | ||||||
2(TfO) | 40(2) | 52.6(17.1) | 55(2) | 49(1) | |||||
Cisplatin | 6.1(0.3) | 68(2) | 10.0(0.28) | 84(1) | 17.9(0.7) | 79(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Estévez, M.; García-Fontán, S.; Argibay-Otero, S.; Prieto, I.; Vázquez-López, E.M. Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)-p-cymene Complexes. Molecules 2022, 27, 7976. https://doi.org/10.3390/molecules27227976
Martínez-Estévez M, García-Fontán S, Argibay-Otero S, Prieto I, Vázquez-López EM. Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)-p-cymene Complexes. Molecules. 2022; 27(22):7976. https://doi.org/10.3390/molecules27227976
Chicago/Turabian StyleMartínez-Estévez, Mónica, Soledad García-Fontán, Saray Argibay-Otero, Inmaculada Prieto, and Ezequiel M. Vázquez-López. 2022. "Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)-p-cymene Complexes" Molecules 27, no. 22: 7976. https://doi.org/10.3390/molecules27227976
APA StyleMartínez-Estévez, M., García-Fontán, S., Argibay-Otero, S., Prieto, I., & Vázquez-López, E. M. (2022). Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)-p-cymene Complexes. Molecules, 27(22), 7976. https://doi.org/10.3390/molecules27227976