Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients
Abstract
:1. Introduction
2. The Role of Vegetables as Food Security Crops
3. Biodiversity among Indigenous Vegetables
4. Nutritional Composition and Health Benefits Associated with ILVs
ILV | Ca | P | Fe | Mg | Na | K | Vit C | References |
---|---|---|---|---|---|---|---|---|
Amaranth | 323.70 | 89.00 | 7.50 | 122.00 | 230.00 | 341.00 | 50.00 | [44] |
Cowpea leaves | 428.01 | 17.23 | 9.62 | 46.73 | 31.25 | 81.25 | 8.00 | [66] |
Nightshade | 100.47 | 62.50 | 8.63 | 461.00 | 74.22 | 100.00 | 54.00 | [44] |
Slender leaf | 1.234.40 | 11.25 | 28.13 | 155.00 | 22.66 | 162.50 | - | [44] |
Spider plant | 1.484.40 | 48.95 | 29.67 | 47.50 | 18.75 | 75.00 | - | [44] |
Lamb’s quarters | 309 | 72 | 1.2 | 34 | 43 | 452 | 80 | [74] |
Purslane | 65 | 44 | 1.99 | 68 | - | 494 | 21 | [74] |
Blackjack | - | - | 15 | - | - | - | 63 | [75] |
Jew’s mallow | 208 | 83 | 4.76 | 64 | - | 559 | 37 | [74] |
Pumpkin leaves | 15 | 41 | 0.87 | 15 | 4 | 170 | 43 | [76,77] |
Chinese cabbage | 77 | 29 | 0.31 | 13 | 8 | 238 | 27 | [78] |
5. Functional Components of Indigenous Leafy Vegetables and Human Health
- Polyphenols
Functional Components | Effect on Human Health | References |
---|---|---|
Phenolic acids: ferulic acid, p-coumaric acid, cinnamic acid, gentisic acid, caffeic acid, p-hydroxybenzoic acid and protocatechuic acid | These have anticancer and anti-inflammatory properties, provide protection against different diseases such as diabetes mellitus, osteoporosis, high blood pressure, arthritis, neurodegenerative disorders and headache, and influence the bioavailability of nitric oxide. | [95,96,97,98] |
Flavonoids: myricetin, rutin, quercetin, kaempferol, delphinidin-3-O-glucoside, cyanidin-3-O-glucoside and quercetin 3-glucoside | These decrease oxidative stress to prevent hyperglycemia, act as an anti-inflammatory, prevent kidney failure, assist in cell growth control, are anticancer agents, have cardio- and neuro-protective properties, reduce the risk of neurodegenerative diseases, prevent stroke, have an antidiabetic effect and exhibit antiviral and antibacterial properties. | [99,100,101,102,103] |
Carotenoids | These reduce the incidence of cataracts and cardiovascular disease, improve the immune response, reduce the likelihood of developing diseases such as cancer, muscular and degenerative diseases, contribute to the maintenance of cardiac cells, the kidney, and other organs and reduce the risk of type 2 diabetes and decrease metabolic syndrome. | [104,105,106,107,108] |
Vitamin C | This inhibits cancer cell growth, reduces oxidation of low- and high-density lipoprotein, reduces oxidative stress and acts as an antihypertensive, boosts the immune system and is used to treat ailments such as scurvy and the simple cold and is involved in collagen synthesis. | [95,97,109,110,111,112] |
Dietary fibre | This improves the digestion process, prevents cancer and is antidiabetic. | [113,114,115] |
- Flavonoids
- Vitamin C
- Carotenoid content
- Dietary fibre
6. Selected Analytical Methods for Determining the Phytochemicals of Indigenous Leafy Vegetables
7. Influence of Processing Methods on the Nutritional and Functional Components of Indigenous Leafy Vegetables
8. Incorporation of Indigenous Leafy Vegetables as Functional Ingredients in Selected Food Products
9. Potential Toxicity of Some Traditional Leafy Vegetables
10. Indigenous Leafy Vegetables’ Potential Role in the Future of Eating
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Srivastava, A.; Lal, E.P. Indigenous leafy vegetables for food and nutritional security in two districts of Jharkhand, India. J. Pharmacogn. Phytochem. 2017, 6, 901–909. [Google Scholar]
- Maseko, I.; Mabhaudhi, T.; Tesfay, S.; Araya, H.T.; Fezzehazion, M.; Plooy, C.P.D. African leafy vegetables: A review of status, production and utilization in South Africa. Sustainability 2018, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Mavengahama, S. Wild Vegetables Contribute to Food Security. Green Times—References for Life. 2014. Available online: http://thegreentimes.co.za/wild-vegetables-contribute-to-food-security (accessed on 12 August 2022).
- Mbhenyane, X.G. Indigenous foods and their contribution to nutrient requirements. S. Afr. J. Clin. Nutr. 2017, 30, 5–7. [Google Scholar]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, G.; Padulosi, S.; Lochetti, G.; Robitaille, R.; Diulgheroff, S. Issues and prospects for the sustainable use and conservation of cultivated vegetable diversity for more nutrition-sensitive agriculture. Agriculture 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Bua, B.; Onang, C. Validating the role of African indigenous vegetables for food and nutrition security in Uganda. J. Food Sci. Eng. 2017, 7, 316–322. [Google Scholar]
- Nyadanu, D.; Lowor, S.T. Promoting competitiveness of neglected and underutilised crop species: Comparative analysis of nutritional composition of indigenous and exotic leafy and fruit vegetables in Ghana. Genet. Resour. Crop Evol. 2015, 62, 131–140. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Simmons, E.B.; Wopereis, M.C.S. Tapping the economic and nutritional power of vegetables. Glob. Food Secur. 2018, 16, 36–45. [Google Scholar] [CrossRef]
- Gido, E.O.; Ayuya, O.I.; Owuor, G.; Bokelmann, W. Consumption intensity of leafy African indigenous vegetables: Towards enhancing nutritional security in rural and urban dwellers in Kenya. Agric. Food Econ. 2017, 5, 14. [Google Scholar] [CrossRef]
- Muntean, E.; Muntean, N.; Duda, M.M. Cucurbita maxima Duch. as a medicinal plant. Hop Med. Plants 2013, 21, 75–80. [Google Scholar]
- Neugart, S.; Baldermann, S.; Ngwene, B.; Wesonga, J.; Schreiner, M. Indigenous leafy vegetables of Eastern Africa—A source of extraordinary secondary plant metabolites. Food Res. Int. 2017, 100 Pt 3, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Musebe, R.; Karanja, D.; Rajendran, S.; Kansiime, R.K.M.; Marandu, D.; Samali, S.; Nicodemus, J.; Nenguwo, N.; Chiwanga, R.; Makuya, P. Development of market opportunities through post-harvest processing of the African indigenous vegetables in Tanzania. Afr. J. Bus. Manag. 2017, 11, 426–437. [Google Scholar]
- Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in Chinese cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun.). Molecules 2020, 25, 1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masarirambi, M.T.; Mavuso, V.; Songwe, V.D.; Nkambule, T.P.; Mhazo, N. Indigenous post-harvest handling and processing of traditional vegetables in Swaziland. Afr. J. Agric. Res. 2010, 5, 3333–3341. [Google Scholar]
- Asogwa, I.S.; Okoye, J.I.; Ohi, K. Promotion of indigenous food preservation and processing knowledge and the challenge of food security in Africa. J. Food Secur. 2017, 5, 75–87. [Google Scholar]
- Food and Agriculture Organisation of the United Nations (FAO). Future Smart Food: Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia; Li, X., Siddique, K., Eds.; UN: New York, NY, USA, 2018; Available online: http://www.fao.org/3/I8907EN/i8907en.pdf (accessed on 15 August 2022).
- Gogo, E.O.; Opiyo, A.; Ulrichs, C.; Huyskens, K.S. Post-harvest treatments of African leafy vegetables for food security in Kenya. A Review. Afr. J. Hort. Sci. 2016, 9, 32–40. [Google Scholar]
- Sseremba, G.; Kabod, N.P.; Kasharu, A.K.; Jaggwe, J.N.; Masanza, M.; Kizito, E.B. Diversity and distribution of African indigenous vegetable species in Uganda. Int. J. Biodivers. Conserv. 2017, 9, 334–341. [Google Scholar]
- Abukutsa, O.M.O. Researching African Indigenous Fruits and Vegetables-Why? Knowledge for Development. Available online: https://knowledge.cta.int/Dossiers/Commodities/Vegetables/Feature-articles/Researching-African-Indigenous-Fruits-and-Vegetables-Why.html. (accessed on 2 September 2020).
- Jena, A.K.; Deuri, R.; Sharma, P.; Singh, S.P. Underutilized vegetable crops and their importance. J. Pharmacogn. Phytochem. 2018, 7, 402–407. [Google Scholar]
- Mavengahama, S. The Contribution of Vegetables to food Security and Nutrition within Selected Sites in South Africa. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, December 2013. [Google Scholar]
- Rajendran, S.; Afari-Sefa, V.; Shee, A.; Bocher, T.; Bekunda, M.; Dominick, I.; Lukumay, P.J. Does crop diversity contribute to dietary diversity? Evidence from integration of vegetables into maize-based farming systems. Agric. Food Secur. 2017, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Keatinge, J.D.H.; Wang, J.F.; Dinssa, F.F.; Ebert, A.W.; Hughes, J.D.A.; Stoilova, T.; Nenguwo, N.; Dhillon, N.P.S.; Easdown, W.J.; Mavlyanova, R.; et al. Indigenous vegetables worldwide: Their importance and future development. Acta Hortic. 2015, 1102, 1–20. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Moreira de Bairros, A.F.; Gindri, D.; Leolato, S.; de Andrade, G.C.; Nerling, D.; Stefen, D.; Arijama, M.; Henriques, E.; Rocha, M. From Neglected and Underutilized Crops to Powerful Sources of Vitamin A: Three Case Studies of Mozambican Cultivated Tacca leontopetaloides, Cowpea and Cassava. 2019. Available online: https://www.intechopen.com/books/vitamin-a/from-neglected-and-underutilized-crops-to-powerful-sources-of-vitamin-a-three-case-studies-of-mozamb (accessed on 13 August 2022).
- Araya, H. Indigenous Traditional African Leafy Vegetables. Agricultural Research Council. Available online: https://www.arc.agric.za/arc-vopi/pages/cropscience/indigenous.crops.aspx. (accessed on 14 June 2022).
- Durst, P. Promotion of Underutilized Indigenous Food Resources for Food Security and Nutrition in Asia and the Pacific. Available online: http://www.fao.org/family-farming/detail/en/c/284551/ (accessed on 10 July 2022).
- Maundu, P.; Kibet, S.; Morimoto, Y.; Imbumi, M.; Adeka, R. Impact of Prosopis juliflora on Kenya’s semi-arid and arid ecosystems and local livelihoods. Biodiversity 2009, 10, 33–50. [Google Scholar] [CrossRef]
- Schonfeldt, H.C.; Pretorius, B. The nutrient content of five traditional South African dark green leafy vegetables—A preliminary study. J. Food Compost. Anal. 2011, 24, 1141–1146. [Google Scholar] [CrossRef]
- Croft, M.M. The Role of African Leafy Vegetables in Food Security. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, December 2016. [Google Scholar]
- Mncwango, N.C.; Mavengahama, S.; Ntuli, N.R.; Van Jaarsveld, C.M. Preferred traditional leafy vegetables at KwaMbonambi area, northern KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2018, 115, 299. [Google Scholar] [CrossRef]
- Kidane, B.; Van de Maesen, L.T.G.; Asfaw, Z.; Sosef, M.S.M.; Van Andel, T. Wild and semi-wild leafy vegetables used by the Maale and Ari ethnic communities in Southern Ethiopia. Genet. Resour. Crop Evol. 2015, 62, 221–234. [Google Scholar] [CrossRef]
- Kuete, V. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In Toxicological Survey of African Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 635–657. [Google Scholar]
- Alisha, B.A.; Shoaib, A.; Harikumar, S.L. Phlorophytum comosum (Thunberg) Jacques: A review. Int. Res. J. Pharm. 2014, 5, 546–549. [Google Scholar]
- Gupta, P.K. Veterinary Toxicology. In Illustrated Toxicology with Study Questions; Academic Press: Cambridge, MA, USA, 2018; pp. 427–517. [Google Scholar]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane (Portulaca oleracea L.). Heliyon 2022, 8, e08669. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Akash, M.S.H.; Rehman, K.; Mahmood, Q.; Qadir, M.I. Analgesic, anti-inflammatory and anti-pyretic activities of Caesalpinia decapetala. Bioimpacts 2014, 4, 43. [Google Scholar] [PubMed]
- Olusanya, A.R.; Ifeoluwa, B.S.; Khadijat, A.J.A.B. Antidiabetic and safety properties of ethanolic leaf extract of Corchorus olitorius in alloxan-induced diabetic rats. In Diabetes Food Plan; IntechOpen: Rijeka, Croatia, 2018; pp. 1–21. [Google Scholar]
- Gao, Y.; Qu, G.; Huang, S.; Liu, Z.; Zhang, M.; Fu, W.; Ren, J.; Feng, H. Comparison between germinated seed and isolated microspore EMS mutagenesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Horticulturae 2022, 8, 232. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef]
- Njeme, C.; Goduka, N.I.; George, G. Indigenous leafy vegetables (imifino, morogo, muhoro) in South Africa: A rich and unexplored source of nutrients and antioxidants. Afr. J. Biotechnol. 2014, 19, 1933–1942. [Google Scholar] [CrossRef]
- Gido, O.E.; Ayuya, I.O.; Owuor, G.; Bokelmann, W. Consumer’s choice of retail outlets for African indigenous vegetables: Empirical evidence among rural and urban households in Kenya. Cogent Food Agric. 2016, 2, 1248523. [Google Scholar]
- Van Rensburg, W.S.; Averbeke, W.; Slabbert, R.; Faber, M.; Van Jaarsveld, P.; Van Heerden, I.; Wenhold, F.; Oelofse, A. African leafy vegetables in South Africa. Water SA 2007, 33, 317–326. [Google Scholar] [CrossRef]
- Silva, F.L.; Fischer, D.C.; Tavares, J.F.; Silva, M.S.; de Athayde-Filho, P.F.; Barbosa-Filho, J.M. Compilation of secondary metabolites from Bidens pilosa L. Molecules 2011, 16, 1070–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, G.D.; Naidoo, K.K.; Coopoosamy, R.M. Bidens Pilosa, L.: Agricultural and pharmaceutical importance. J. Med. Plants Res. 2012, 6, 3282–3287. [Google Scholar] [CrossRef]
- Ndlovu, J.; Afolayan, A.J. Nutritional Analysis of the South African wild vegetable Corchorus olitorius L. Asian J. Plant Sci. 2008, 6, 615–618. [Google Scholar] [CrossRef] [Green Version]
- Maanda, M.Q.; Bhat, R.B. Wild vegetable use by the Vhavenda in the Venda region of Limpopo Province, South Africa. Phyton-Int. J. Exp. Bot. 2010, 79, 189–194. [Google Scholar]
- Mishra, S.S.; Moharana, S.K.; Dash, M.R. Review on Cleome gynandra. Int. J. Res. Pharm. Chem. 2011, 3, 2231–2781. [Google Scholar]
- Chipurura, B. Nutritional Content, Phenolic Compounds Composition and Antioxidant Activities of Selected Indigenous Vegetables of Zimbabwe. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, November 2010. [Google Scholar]
- Vaishali, S.K.; Varsha, D.J. Traditional leafy vegetables: A future herbal medicine. Int. J. Agric. Food Sci. 2013, 2, 56–58. [Google Scholar]
- Kamga, R.T.; Kouame, C.; Atangana, A.R.; Chagomoka, T.; Ndango, R. Nutritional evaluation of five African indigenous vegetables. J. Hortic. Res. 2013, 21, 99–106. [Google Scholar] [CrossRef]
- Darkwa, S.; Darkwa, A.A. The use of indigenous green leafy vegetables in the preparation of Ghanaian dishes. J. Food Process. Techno. 2013, 4, 12. [Google Scholar]
- Yan, L.; DeMars, L.C. Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Clin. Exp. Metastasis 2010, 27, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Jeeyoo, L.; Aesun, S.; Jae, H.O.; Jeongseon, K. Colours of vegetables and fruits and the risks of collateral cancer. World J. Gastroenterol. 2017, 23, 2527–2530. [Google Scholar]
- Uusiku, N.P.; Oelofse, A.; Duodu, K.G.; Bester, M.J.; Faber, M. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. J. Food Compost. Anal. 2010, 23, 499–509. [Google Scholar] [CrossRef]
- Van Jaarsveld, P.; Faber, M.; Van Heerden, I.; Wenhold, F.; Van Rensburg, W.S.J.; Van Averbeke, W. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compost. Anal. 2014, 33, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Gowele, V.F.; Kinabo, J.; Jumbe, T.; Kirschmann, J.; Frank, J.; Stuetz, W. Provitamin A carotenoids, tocopherols, ascorbic acid and minerals in indigenous leafy vegetables from Tanzania. Foods 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahlogonolo, H.R. Availability and Utilization of Indigenous Leafy Vegetables (ILVs) Found in Limpopo Province and the Response of a Selected ILV to Planting Density and Nitrogen Fertilizer Rate. Available online: http://hdl.handle.net/10386/2212 (accessed on 26 July 2022).
- Justina Ladi, O.; Cornelius Ojo, O.; Peter Awodi, Y.; Nurudeen Alfa, I. Proximate composition, mineral and phytochemical contents of some leafy vegetables native to Igala Kingdom, Kogi State, Nigeria. Int. J. Biochem. Res. Rev. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Odhav, B.; Beekrum, S.; Akula, U.; Baijnath, H. Preliminary assessment of nutrition value of traditional vegetables in KwaZulu-Natal, South Africa. J. Food Compost. Anal. 2007, 20, 430–435. [Google Scholar] [CrossRef]
- Harouna, D.V.; Venkataramana, P.B.; Ndakidemi, P.A.; Matemu, A.O. Under-exploited wild Vigna species potentials in human and animal nutrition: A review. Glob. Food Secur. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Longato, E.; Lucas-González, R.; Peiretti, P.G.; Meineri, G.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Fernández-López, J. The effect of natural ingredients (Amaranth and pumpkin seeds) on the quality properties of chicken burgers. Food Bioprocess Technol. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Tanska, M.; Brandt, W. The influence of drying process conditions on the physical properties, bioactive compounds and stability of encapsulated pumpkin seed oil. Food Bioprocess Technol. 2017, 10, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Menssen, M.; Linde, M.; Omondi, E.O.; Onyango, M.A.; Dinssa, F.F.; Winkelmann, T. Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Sci. Hortic. 2017, 226, 268–276. [Google Scholar] [CrossRef]
- Adewale, B.; Oluwatonyin, M.; Aigbe, O.D. Contribution of Cowpea (Vigna unguiculata) to food security in the sub-Sahara Africa. Glob. J. Plant Breed. Genet. 2016, 3, 154–158. [Google Scholar]
- Habib, A.; Biswas, S.; Abdul, H.S.; Manirujjaman, M.; Uddin, M.; Islam, M.; Hasan, M.; Rahman, M.; Asaduzzaman, M.; Sohanur, R.M.; et al. Nutritional and lipid composition analysis of pumpkin seed (Cucurbita maxima Linn.). J. Nutr. Food Sci. 2015, 5, 374. [Google Scholar]
- Chikwendu, J.N.; Igbatim, A.C.; Obizoba, I.C. Chemical composition of processed cowpea tender leaves and husks. Int. J. Sci. Res. Pub. 2014, 4, 2250–3153. [Google Scholar]
- Timko, M.P.; Ehlers, J.D.; Roberts, P.A. Cowpea. In Pulses, Sugar and Tuber Crops. Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 3. [Google Scholar]
- Ojiewo, C.; Keating, D.J.D.H.; Hughes, J.; Abdou, T.; Nair, R.; Varshney, R.; Siambi, M.; Monyo, E.; Ganga-Rao, N.V.P.R.; Silim, S. The role of vegetables and legumes in assuring food, nutrition and income security for vulnerable groups in sub-Saharan Africa. World Med. Health Policy 2015, 7, 187–210. [Google Scholar] [CrossRef]
- Amin, T.; Naik, H.R.; Hussain, S.Z.; Jabeen, A.; Thakur, M. In-vitro antioxidant and antibacterial activities of pumpkin, quince, muskmelon and bottle gourd seeds. Food Meas. 2018, 12, 182–190. [Google Scholar] [CrossRef]
- Zia-UI-Haq, M.; Ahmad, S.; Amarowicz, R.; De Feo, V. Antioxidant activity of the extracts of some cowpea (Vigna unguiculata (L) Walp.) cultivars commonly consumed in Pakistan. Molecules 2013, 18, 2005–2017. [Google Scholar] [CrossRef]
- Sopan, B.A.; Vasantrao, D.N.; Ajit, S.B. Total phenolic content and antioxidant potential of Cucurbita maxima (pumpkin) powder. Int. J. Pharm. Sci. Res. 2014, 5, 1903–1907. [Google Scholar]
- Apea-Bah, F.B.; Minnaar, A.; Bester, M.J.; Duodu, K.G. Sorghum-cowpea composite porridge as a functional food, Part 11: Antioxidant properties as affected by simulated in vitro gastrointestinal digestion. Food Chem. 2016, 197 Pt A, 307–315. [Google Scholar] [CrossRef]
- United State Department of Agriculture (USDA). National Nutrient Database for Standard Reference. Plants Profile. Senna occidentalis (L). The Plant Database. 2011. Available online: http://plants.usda.gov/java/profile?symbol=SEOC2 (accessed on 17 August 2022).
- Department of Agriculture, Forestry and Fisheries (DAFF). Indigenous Food Crops. 2011. Available online: http://www.nda.agric.za/docs/brochures/indigenous.june.pdf. (accessed on 11 August 2022).
- Ajuru, M.; Nmom, F. A review on the economic uses of species of Cucurbitaceae and their sustainability in Nigeria. Am. J. Plant Biol. 2017, 2, 17–24. [Google Scholar]
- Elinge, C.M.; Muhammad, A.; Atiku, F.A.; Hodo, A.U.; Peni, I.J.; Sanni, O.M.; Mbongo, A.N. Proximate, mineral and anti-nutrient composition of pumpkin (Cucurbita pepo L) seeds extract. Int. J. Plant Res. 2012, 2, 146–150. [Google Scholar]
- Rudrappa, U. Pumpkin Preparation, Selection, Storage, Health Benefits. Nutrit. Facts. 2014. Available online: www.nutrition-and-you.com/pumpkin.html (accessed on 10 July 2022).
- Carrasco-Valencia, R.P.; Hellström, J.; Pihlava, J.M.; Mattila, P. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Eastwood, M.A. Interaction of dietary antioxidants in vivo: How fruit and vegetables prevent disease? Q. J. Med. 1999, 92, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.; Miller, N.J. Antioxidants—The case for fruits and vegetable in diet. Brit. Food J. 1995, 19, 35–40. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.K.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, W.A.; Gieck, J.H.; Perrin, D.H.; Saliba, E.N.; Kahler, D.M. Mechanisms and management of stress fractures in physically active persons. J. Athl. Train. 2002, 37, 306–314. [Google Scholar]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of main and healthy phenolic compounds in foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef]
- Tarascou, I.; Souquet, J.M.; Mazauric, J.P.; Carrillo, S.; Coq, S.; Canon, F.; Fulcrand, H.; Cheynier, V. The hidden face of food phenolic composition. Arch. Biochem. Biophys. 2010, 501, 16–22. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Maggi, F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean. Prod. 2018, 198, 91–95. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffaryazdi, A.; Ganjeali, A.; Farhoosh, R.; Cheniany, M. Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiol. Mol. Biol. Plants 2020, 26, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Karama’c, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.Y.; Ko, M.O.; Kim, D.S.; Lim, S.B. Enhanced production of phenolic compounds from pumpkin leaves by subcritical water hydrolysis. Prev. Nutr. Food Sci. 2016, 21, 132–137. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Bulnes, P.; Zúñiga, M.C.; Pérez-Jiménez, J.; Torres, J.L.; Mateos-Martín, M.L.; Agosin, E.; Pérez-Correa, J.R. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef]
- Mashitoa, F.M.; Shoko, T.; Shai, J.L.; Slabbert, R.M.; Sivakumar, D. Changes in phenolic metabolites and biological activities of pumpkin leaves (Cucurbita moschata Duchesne ex Poir.) during blanching. Front. Nutr. 2021, 8, 641939. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasing, H.P.V. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, B.R.; Haldhar, S.M.; Maheshwari, S.K.; Bhargava, R.; Sharma, S.K. Phytochemicals and antioxidants in watermelon (Citrullus Lanatus) genotypes under hot arid region. Indian J. Agric. Sci. 2015, 85, 414–417. [Google Scholar]
- Vaccaa, R.A.; Valenti, D.; Caccamese, S.; Dagliac, M.; Braidy, N.; Nabavi, S.M. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci. Biobehav. Rev. 2016, 71, 865–877. [Google Scholar] [CrossRef]
- Choudhary, B.R.; Jayaprakasha, G.K.; Porat, R.; Patil, B.S. Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of star ruby grapefruit. Food Chem. 2014, 153, 243–249. [Google Scholar] [CrossRef]
- Maoto, M.M.; Beswa, D.; Jideani, A.I.O. Watermelon as a potential fruit snack. Int. J. Food Prop. 2019, 22, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, K.P.; Rajavel, T.; Habtemariam, S.; Nabavi, S.F.; Nabavi, S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 2015, 142, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol. 2017, 807, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xiong, J.; Ding, L.-S.; Chen, L.; Zhou, H.; Liu, L.; Zhang, Z.-F.; Hu, X.-M.; Luo, P.; Qing, L.-S. A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J. Chromatogr. A 2018, 1576, 10–18. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C.P. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.J.; Cha, M.R.; Lee, M.R.; Yoon, M.Y.; Park, H.R. Methanolic extracts of Uncaria rhynchophylla induce cytotoxicity and apoptosis in HT-29 human colon carcinoma cells. Plant Food Hum. Nutr. 2008, 63, 77–82. [Google Scholar] [CrossRef]
- Kulczynski, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The role of carotenoids in the prevention and treatment of cardiovascular disease—Current state of knowledge. J. Funct. Foods. 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Chen, J.; Li, F.; Li, Z.; McClements, D.J.; Xiao, H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 2017, 69, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Barkura, S.; Bankapura, A.; Chidangila, S.; Mathura, D. Effect of infrared light on live blood cells: Role of βetacarotene. J. Photochem. Photobiol. 2017, 171, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Ijah, U.J.J.; Ayodele, H.S.; Aransiola, S.A. Microbiological and some sensory attributes of watermelon juice and watermelon-orange juice mix. J. Food Resour. Sci. 2015, 4, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.Y.; Kaufman, N.H.; Katy, H.S.; Figueroa, A.; Kern, M. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic. Diet. Nutr. Res. 2015, 35, 251–258. [Google Scholar] [CrossRef]
- Doll, S.; Ricou, B. Severe Vitamin C deficiency in a critically Ill adult: A case report. Eur. J. Clin. Nutr. 2013, 67, 881–882. [Google Scholar] [CrossRef] [Green Version]
- Lemos, A.T.; Ribeiro, A.C.; Fidalgo, L.G.; Jorge, I.D.; Saraiva, A. Extension of raw watermelon juice shelf-life up to 58 days by hyperbaric storage. Food Chem. 2017, 231, 61–69. [Google Scholar] [CrossRef]
- Benhura, C.; Benhura, M.A.N.; Muchuweti, M.; Nyagura, S.F.; Gombiro, P.E. Proximate analysis of Parinari curatellifolia fruit pulp of fruit from parts of Harare and a rural area in Zimbabwe. Pak. J. Nutri. 2012, 11, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fibre in food and protection against colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Stephen, A.M.; Cummings, J.H. Mechanism of action of dietary fibre in the human colon. Nature 1980, 284, 283–284. [Google Scholar] [CrossRef]
- Cheptoo, G.I.; Owino, W.I.; Kenji, G. Nutritional quality, bioactive compounds and antioxidant activity of selected African indigenous leafy vegetables as influenced by maturity and minimal processing. Afr. J. Food Agric. Nutri. Dev. 2019, 19, 14769–14789. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 2006, 19, 544–551. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Bang, J.-H.; Lee, K.J.; Jeong, W.T.; Han, S.; Jo, I.-H.; Choi, S.H.; Cho, H.; Hyun, T.K.; Sung, J.; Lee, J.; et al. Antioxidant activity and phytochemical content of nine Amaranthus species. Agronomy 2021, 11, 1032. [Google Scholar] [CrossRef]
- Stracke, B.A.; Rüfer, C.E.; Weibel, F.P.; Bub, A.; Watzl, B. Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. Cultivar ‘Golden Delicious’). J. Agric. Food Chem. 2009, 57, 4598–4605. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, A.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Lillian Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.Y.; Quah, E.P.L. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem. 2007, 103, 734–740. [Google Scholar] [CrossRef]
- Seong, G.U.; Hwang, I.W.; Chung, S.K. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chem. 2016, 199, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z. Antioxidant activity of hydroxycinnamic acid derivatives in human low-density lipoprotein: Mechanism and structure–activity relationship. Food Chem. 2007, 104, 132–139. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Jiang, N.; Chung, S.O.; Lee, J.; Ryu, D.; Lim, Y.P.; Park, S.; An, G. Increase of phenolic compounds in new Chinese cabbage cultivar with red phenotype. Hortic. Environ. Biotechnol. 2013, 54, 82–88. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Managa, M.G.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of moist cooking blanching on colour, phenolic metabolites and glucosinolate content in Chinese cabbage (Brassica rapa L. subsp. chinensis). Foods 2019, 8, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thovhogi, F.; Mchau, G.R.A.; Gwata, E.T.; Ntushelo, N. Evaluation of leaf mineral, flavonoid, and total phenolic content in Spider plant germplasm. Molecules 2021, 26, 3600. [Google Scholar] [CrossRef] [PubMed]
- Maina, S.; Ryu, D.H.; Bakari, G.; Misinzo, G.; Nho, C.W.; Kim, H.-Y. Variation in phenolic compounds and antioxidant activity of various organs of African cabbage (Cleome gynandra L.) accessions at different growth stages. Antioxidants 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Ncube, B.; Van Staden, J. Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 2015, 20, 12698–12731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moloto, M.R.; Phan, A.D.T.; Shai, J.L.; Sultanbawa, Y.; Sivakumar, D. Comparison of phenolic compounds, carotenoids, amino acid composition, in vitro antioxidant and anti-diabetic activities in the leaves of seven cowpea (Vigna unguiculata) cultivars. Foods 2020, 9, 1285. [Google Scholar] [CrossRef]
- Cai, R.; Hettiarachchy, N.S.; Jalaluddin, A. High-performance liquid chromatography determination of phenolic constituents in 17 varieties of cowpeas. J. Agric. Food Chem. 2003, 51, 1623–1627. [Google Scholar] [CrossRef]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Pan, M.-H.; Lai, C.-S.; Dushenkov, S.; Ho, C.-T. Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agric. Food Chem. 2009, 57, 4467–4477. [Google Scholar] [CrossRef]
- He, H.F.; Wei, K.; Yin, J.; Ye, Y. Insight into tea flavonoids: Composition and chemistry. Food Rev. Int. 2021, 37, 812–823. [Google Scholar] [CrossRef]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Salawu, S.O.; Bester, M.J.; Duodu, K.G. Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. J. Food Biochem. 2014, 38, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Sato, Y.; Okuno, R.; Kameda, K.; Isobe, M.; Kondo, T. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, phaseolus, and Glycine legumes. Biosci. Biotechnol. Biochem. 1996, 60, 589–593. [Google Scholar] [CrossRef]
- Ojwang, L.O.; Banerjee, N.; Noratto, G.D.; Angel-Morales, G.; Hachibamba, T.; Awika, J.M.; Mertens-Talcott, S.U. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation–modulation of microRNA 126. Food Funct. 2015, 6, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Wong, Y.S. Identification of flavonoids in hakmeitau beans (Vigna sinensis) by high-performance liquid chromatography-electrospray mass spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, M.H.; Jeong, Y.N.; Lee, J.H.; Han, S.I.; Park, C.H.; Park, K.Y. Anthocyanins in cowpea Vigna unguiculata (L.) Walp. ssp unguiculata. Food Sci. Biotechnol. 2010, 19, 821–826. [Google Scholar] [CrossRef]
- Stintzinga, F.C.; Kammerera, D.; Schiebera, A.; Adamab, H.; Nacoulmab, O.G.; Carle, R. Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z. Naturforsch C J. Biosci. 2004, 59, 1–8. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutraceuticals, phytochemicals, and radical quenching ability of selected drought tolerant advance lines of vegetable amaranth. BMC Plant Biol. 2020, 20, 564. [Google Scholar] [CrossRef]
- Mandl, J.; Szarka, A.; Bánhegyi, G. Vitamin C: Update on physiology and pharmacology. Br. J. Pharmacol. 2009, 157, 1097–1110. [Google Scholar] [CrossRef] [Green Version]
- Agbo, A.E.; Kouame, C.; Anin, A.O.L.; Soro, L.C.; N’zi, J.C.; Fondio, L.; Gnakri, D. Seasonal variation in nutritional compositions of spider plant (Cleome gynandra L.) in south Côte d’Ivoire. Int. J. Agric. Policy Res. 2014, 2, 406–413. [Google Scholar]
- Herzog, F.; Farah, Z.; Amado, R. Nutritive value of four wild leafy vegetables in Côte d’Ivoire. Int. J. Vit. Nutr. Res. 1993, 63, 234–238. [Google Scholar]
- K’Opondo, F.B.O.; Muasya, R.M.; Kiplagat, O.K. A review on the seed production and handling of indigenous vegetable (Spider plant, Jute mallow and African nightshade complex). In Proceedings of the Third Horticulture Workshop on Sustainable Horticultural Production in the tropics, Maseno, Kenya, 26–29 November 2003; p. 274. [Google Scholar]
- Mibei, E.K.; Ojijo, N.N.O. Effects of processing on chemical composition of four African leafy vegetables. Electr. J. Environ. Agric. Food. Chem. 2011, 10, 3121–3131. [Google Scholar]
- Gqaza, B.M.; Collise Njume, C.; Goduka, N.I.; George, G. Nutritional assessment of Chenopodium album L. (Imbikicane) young shoots and mature plant-leaves consumed in the Eastern Cape province of South Africa. IPCBEE 2013, 53, 97–101. [Google Scholar]
- Akter, M.S.; Ahmed, M.; Eun, J.B. Effect of blanching and drying temperatures on the physicochemical characteristics, dietary fiber composition and antioxidant-related parameters of dried persimmons peel powder. Int. J. Food Sci. Nutr. 2010, 61, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Kusznierewicz, B.; Bartoszek, A.; Wolska, L.; Drzewiecki, J.; Gorinstein, S.; Namies´nik, J. Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT—Food Sci. Technol. 2008, 41, 1–9. [Google Scholar] [CrossRef]
- Yuan, B.; Byrnes, D.; Giurleo, D.; Villani, T.; Simon, J.E.; Wu, Q. Rapid screening of toxic glycoalkaloids and micronutrients in edible nightshades (Solanum spp.). J. Food Drug Anal. 2018, 26, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Evaluation of minerals, phytochemical compounds and antioxidant activity of Mexican, central American and African green leafy vegetables. Plant Foods Hum. Nutr. 2015, 70, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Oguntoyinbo, F.A.; Fusco, V.; Cho, G.-S.; Kabisch, J.; Neve, H.; Bockelmann, W.; Huch, M.; Frommherz, L.; Trierweiler, B.; Becker, B.; et al. Produce from Africa’s gardens: Potential for leafy vegetable and fruit fermentations. Front. Microbiol. 2016, 7, 981. [Google Scholar] [CrossRef] [Green Version]
- Nesamvuni, C.; Steyn, N.; Potgieter, M. Nutritional value of wild, leafy plants consumed by the Vhavenda. S. Afr. J. Sci. 2001, 97, 51–54. [Google Scholar]
- Jinazali, H.; Mtimuni, B.; Chilembwe, E. Nutrient compositions of cat’s whiskers (Cleome gynandra L.) from different agro ecological zones in Malawi. Afr. J. Food Sci. 2017, 11, 24–29. [Google Scholar]
- Sarker, U.; Hossain, M.d.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.M.; Paul, D.K.; Shaha, R.K. Nutritional importance of some leafy vegetables available in Bangladesh. Pak. J. Biol. Sci. 2004, 7, 1380–1384. [Google Scholar]
- Lozoya-Gloria, E. Biotechnology for an ancient crop: Amaranth. In Amaranth Biology, Chemistry and Technology; Paredes-Lopez, O., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 1–7. [Google Scholar]
- Ogundare, D.O.; Tanimola, A.R. Nutritional composition of some selected, unprocessed amaranth grain (Amaranthus spp) varieties in nigeria. Afr. J. Food Agric. Nutr. Dev. 2022, 22, 21383–21396. [Google Scholar] [CrossRef]
- Tanimola, A.R.; Otegbayo, B.; Akinoso, R. Chemical, functional, rheological and sensory properties of Amaranth flour and Amaranth flour—Based paste. Afr. J. Food. Sci. 2016, 10, 313–319. [Google Scholar] [CrossRef]
- Kram, B.; Szot, B. Aerodynamic and geometric properties of amaranth seeds. Int. Agrophys. 1999, 13, 227–232. [Google Scholar]
- Dakora, F.D.; Belane, A.K. Evaluation of Protein and Micronutrient Levels in Edible Cowpea (Vigna unguiculata L. Walp.) Leaves and Seeds. Front. Sustain. Food Syst. 2019, 3, 70. [Google Scholar] [CrossRef]
- Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J. Funct. Foods 2017, 38, 686–697. [Google Scholar] [CrossRef]
- López-Barrios, L.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. J. Food Sci. 2014, 79, R273–R283. [Google Scholar] [CrossRef]
- Marques, M.R.; Fontanari, G.G.; Pimenta, D.C.; Soares-Freitas, R.M.; Arêas, J.A.G. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Res. Int. 2015, 77 Pt 1, 43–48. [Google Scholar] [CrossRef]
- Marques, M.R.; Soares Freitas, R.A.M.; Corrêa, C.A.C.; Siguemoto, É.S.; Fontanari, G.G.; Arêas, J.A.G. Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles. Food Chem. 2015, 168, 288–293. [Google Scholar] [CrossRef]
- Boonla, O.; Kukongviriyapan, U.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P.; Thawornchinsombut, S. Peptides-derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients 2015, 7, 5783–5799. [Google Scholar] [CrossRef] [Green Version]
- Udenigwe, C.C.; Rouvinen-Watt, K. The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions. Int. J. Mol. Sci. 2015, 16, 9303–9313. [Google Scholar] [CrossRef] [Green Version]
- Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, M.; Uruakpa, F.; Udenigwe, C. Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. J. Nutr. Health Food Sci. 2015, 3, 1–3. [Google Scholar]
- Elhardallou, S.B.; Khalid, I.I.; Gobouri, A.A.; Abdel-Hafez, S.H. Amino acid composition of cowpea (Vigna ungiculata L. Walp) flour and its protein isolates. Food Nutr. Sci. 2015, 6, 790–797. [Google Scholar]
- Gupta, P.; Singh, R.; Malhotra, S.; Boora, K.S.; Singal, H.R. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiol. Mol. Biol. Plants 2010, 16, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Ritika, B.Y.; Baljeet, S.Y.; Mahima, S.; Roshanlal, Y. Suitability of wheat flour blends with malted and fermented cowpea flour for noodle making. Int. Food Res. J. 2016, 23, 2193–2202. [Google Scholar]
- Sun, T.; Tanumihardjo, S.A. An Integrated Approach to Evaluate Food Antioxidant Capacity. J. Food Sci. 2007, 72, R159–R165. [Google Scholar] [CrossRef]
- Stalikas, C.D. Phenolic Acids and Flavonoids: Occurrence and Analytical Methods. In Free Radicals and Antioxidant Protocols, Methods in Molecular Biology; Uppu, R.M., Murthy, S.N., Pryor, W.A., Parinandi, N.L., Eds.; Humana Press: New York, NY, USA, 2010; p. 74. [Google Scholar]
- Avanza, M.V.; Álvarez-Rivera, G.; Cifuentes, A.; Mendiola, J.A.; Ibáñez, E. Phytochemical and Functional Characterization of Phenolic Compounds from Cowpea (Vigna unguiculata (L.) Walp.) Obtained by Green Extraction Technologies. Agronomy 2021, 11, 162. [Google Scholar] [CrossRef]
- Gbashi, S.; Njobeh, P.; Steenkamp, P.; Madala, N. Pressurized hot water extraction and chemometric fingerprinting of flavonoids from Bidenspilosa by UPLC-tandem mass spectrometry. CyTA—J. Food 2017, 15, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Sánchez-Camargo, A.P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef]
- Liang, X.; Fan, Q. Application of sub-critical water extraction in pharmaceutical industry. J. Mater. Sci. Chem. Eng. 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Habwe, F.O.; Walingo, K.M.; Onyango, M.O.A. Food processing and preparation technologies for sustainable utilization of African indigenous vegetables for nutrition security and wealth creation in Kenya. In Using Food Science and Technology to Improve Nutrition and Promote National Development; Robertson, G.L., Lupien, J.R., Eds.; Ch 13; International Union of Food Science & Technology: Oakville, ON, Canada, 2008. [Google Scholar]
- Shazia, K.; Anwar, F.C.; Dilawar, K.; Bushra, K. Estimation of demand for processed fruit and vegetable products in Hayatabad, Peshawar. Sarhad J. Agric. 2007, 23, 1273–1278. [Google Scholar]
- Wafula, E.N.; Franz, C.M.A.P.; Rohn, S.; Huch, M.; Becker, B.; Mathara, J.M.; Trierweiler, B. Fermentation of African leafy vegetables to lower post-harvest losses, maintain quality and increase product safety. Afr. J. Hortic. Sci. 2016, 9, 1–13. [Google Scholar]
- Degrain, A.; Manhivi, V.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in African nightshade. Microorg 2020, 8, 1324. [Google Scholar] [CrossRef]
- Sangija, F.; Martin, H.; Matemu, A. Effect of lactic acid fermentation on the nutritional quality and consumer acceptability of African nightshade. Food Sci. Nutr. 2022, 10, 3128–3142. [Google Scholar] [CrossRef]
- Abdalla, M.M.; Attia, M.; Yousef, M.I.; Abd el-Aal, M.H. Effect of cooking on nutritive value of Jew’s mallow (Corchorus olitorius L.) and mallow (Malva parviflora L.) leaves. Alex. J. Food Sci. Technol. 2016, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chavasit, V.; Pisaphab, R.; Sungpuag, P.; Jittinandana, S.; Wasantwisut, E. Changes in β-carotene and vitamin A contents of vitamin A-rich foods in Thailand during preservation and storage. J. Food Sci. 2002, 67, 375–379. [Google Scholar] [CrossRef]
- Mashiane, P.; Manhivi, V.E.; Shoko, T.; Slabbert, R.M.; Sultanbawa, Y.; Sivakumar, D. Cooking African pumpkin leaves (Momordica balsamina L.) by stir-frying improved bioactivity and bioaccessibility of metabolites—Metabolomic and chemometric approaches. Foods 2021, 10, 2890. [Google Scholar] [CrossRef]
- Ifesan, B.O.; Egbewole, O.O.; Ifesan, B.T. Effect of fermentation on nutritional composition of selected commonly consumed green leafy vegetables in Nigeria. Int. J. Appl. Sci. Biotechnol. 2014, 2, 291–297. [Google Scholar] [CrossRef]
- Konsam, S.; Thongam, B.; Handique, A.K. Assessment of wild leafy vegetables traditionally consumed by the ethnic communities of Manipur, northeast India. J. Ethnobiol. Ethnomed. 2016, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Beswa, D.; Dlamini, N.R.; Siwela, M.; Amonsou, E.O.; Kolanisi, U. Effect of Amaranth addition on the nutritional composition and consumer acceptability of extruded provitamin A-biofortified maize snacks. Food Sci. Technol. 2016, 36, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Tepe, J.; Lemken, D. Improving the nutritional value of conventional food with underutilized leafy vegetables—Consumers’ acceptance of combining porridge with cowpea leaf powder. Afr. J. Food Sci. 2022, 16, 45–57. [Google Scholar]
- Sugumar, J.K.; Guha, P. Study on the formulation and optimization of functional soup mix of Solanum nigrum leaves. Int. J. Gastron. Food Sci. 2020, 20, 100208. [Google Scholar] [CrossRef]
- Singh, L.; Yadav, N.; Kumar, A.R.; Gupta, A.K.; Chacko, J.; Parvin, K.; Tripathi, U. Preparation of value-added products from dehydrated bathua leaves (Chenopodium album Linn.). Nat. Prod. Radiance. 2007, 6, 6–10. [Google Scholar]
- Delvarianzadeh, M.; Nouri, L.; Nafchi, A.M.; Ebrahimi, H. Physicochemical, rheological, and sensory evaluation of voluminous breads enriched by purslane (Portulaca oleracea L.). Ital. J. Food Sci. 2020, 32, 815–830. [Google Scholar]
- Falowo, A.B.; Muchenje, V.; Hugo, A.; Aiyegoro, O.A.; Fayemi, P.O. Antioxidant activities of Moringa oleifera L. and Bidens pilosa L. leaf extracts and their effects on oxidative stability of ground raw beef during refrigeration storage. CyTA—J. Food. 2017, 15, 249–256. [Google Scholar] [CrossRef]
- Lawal, O.M.; Fogliano, V.; Rotte, I.; Fagbemi, T.N.; Dekker, M.; Linnemann, A.R. Leafy vegetables fortification enhanced the nutritional profile and reduced the glycemic index of yellow cassava pasta. Food Funct. 2022, 13, 6118–6128. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, M.-J.; Lee, J.-W.; Moon, B. Muffins enriched with dietary fiber from kimchi by-product: Baking properties, physical–chemical properties, and consumer acceptance. Food Sci. Nutr. 2019, 7, 1778–1785. [Google Scholar] [CrossRef]
- Sango, C.; Marufu, L.; Zimudzi, C. Phytochemical, anti-nutrients and toxicity evaluation of Cleome gynandra and Solanum nigrum: Common indigenous vegetables in Zimbabwe. Biotechnol. J. Int. 2016, 13, 100027. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Katnoria, J.K.; Nagpal, A.K. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 2016, 5, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.H.; Ali, S.; Rehman, M.; Hasanuzzaman, M.; Rizwan, M.; Irshad, S.; Shafiq, F.; Iqbal, M.; Alharbi, B.M.; Alnusaire, T.S.; et al. Jute: A potential candidate for phytoremediation of metals—A review. Plants 2020, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Durgesh Kumar Tripathi, D.K.; Dubey, N.K.; Chauhan1, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M.; Wani, K.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 2018, 41, 1744–1763. [Google Scholar] [CrossRef]
- Mutune, A.N.; Makobe, M.A.; Abukutsa-Onyango, M.O.O. Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. Afr. J. Environ. Sci. Technol. 2014, 8, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Vorster, I.H.J.; van Rensburg, W.J.; Van Zijl, J.; Venter, S.L. The importance of traditional leafy vegetables in South Africa. Afr. J. Food. Agric. Nutr. Dev. 2007, 7, 1–13. [Google Scholar]
- Chadha, M. AVRDC’s Experiences within Marketing of Indigenous Vegetables—A Case Study on Commercialization of African Eggplant. Available online: https://pdfs.semanticscholar.org/b0af/973a646dbc8bef4a015070e29dd46ef155fb.pdf?_ga=2.159811960.476604070.1591086015-1367754174.1581675374 (accessed on 2 June 2022).
- Chivenge, P.; Mabhaudhi, A.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health. 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Musotsi, A.A.; Bruckner, M.; Teherani-Kronner, P.; Kingiri, A. The gender dynamics of provisioning African indigenous vegetables as a meal in Kenya: A meal security perspective. J. Gend. Agric. Food Secur. 2018, 3, 36–50. [Google Scholar]
- Berkelaar, D. The Importance of Indigenous Food Plants. ECHO. Development Notes. Available online: https://www.echocommunity.org/en/resources/a118dadf-50d6-492c-a19f-948a23c93e83 (accessed on 2 July 2022).
- Borelli, T.; Hunter, D.; Powell, B.; Ulian, T.; Mattana, E.; Termote, C.; Pawera, L.; Beltrame, D.; Penafiel, D.; Tan, A.; et al. Born to eat wild: An integrated conservation approach to secure wild food plants for food security and nutrition. Plants 2020, 9, 1299. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.; Beletse, Y. Response of taro (Colocasia esculenta L. Schott) Landraces to varying water regimes under a rainshelter. Agric. Water Manag. 2013, 121, 102–112. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A. Drought tolerance of selected South African taro (Colocasia esculenta L. Schott) landraces. Exp. Agric. 2015, 51, 451–466. [Google Scholar] [CrossRef]
- Dweba, T.P.; Mearns, M.A. Conserving indigenous knowledge as the key to the current and future use of traditional vegetables. Int. J. Inf. Manag. 2012, 31, 564–571. [Google Scholar] [CrossRef]
- Labadarios, D.; Mchiza, Z.J.R.; Steyn, N.P.; Gericke, G.; Maunder, E.M.W.; Davids, Y.D.; Parker, W. Food Security in South Africa: A Review of National Surveys. Available online: https://www.who.int/bulletin/volumes/89/12/11-089243/en/ (accessed on 17 July 2022).
- Lipton, M.; Saghai, Y. Food security, farmland access ethics and land reform. Glob. Food Sec. 2017, 12, 59–66. [Google Scholar] [CrossRef]
- Dinu, M.; Soare, R.; Hoza, G.; Becherescu, A.D. Biochemical composition of some local pumpkin population. Agric. Agric. Sci. Procedia 2016, 10, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoeven, M.; Osei, J.; Greeff, M.; Kruger, A.; Faber, M.; Smuts, C.M. Indigenous and traditional plants: South African parents’ knowledge, perceptions and uses and their children’s sensory acceptance. J. Ethnobiol. Ethnomed. 2013, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; McElhenney, W.; Egnin, M. Influence of green leafy vegetables in diets with an elevated ω-6:ω-3 fatty acid ratio on rat blood pressure, plasma lipids, antioxidant status and markers of inflammation. Nutrients 2019, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.T.; Nguyen, A.T. The neglected and underutilized species in the Northern mountainous provinces of Vietnam. Genet. Resour. Crop Evol. 2017, 64, 1115–1124. [Google Scholar] [CrossRef]
- Mokganya, M.G.; Tshikhawe, M.P. Medicinal uses of selected wild edible vegetables consumed by Vhavenda of the Vhembe District Municipality, South Africa. S. Afr. J. Bot. 2018, 122, 184–188. [Google Scholar] [CrossRef]
ILV | Scientific Name | Local Name | Family | Parts Consumed | References |
---|---|---|---|---|---|
Lamb’s quarters | Chenopodium album | Imbilicane | Chenopodiaceae | Leaves and young shoots | [43] |
Amaranth | Amaranthus hybrids | Unomdlomboyi | Amaranthaceae | Leaves | [44] |
Purslane | Portulaca oleracea | Igwanitsha | Portulaeaceae | Succulent stems and leaves | [43] |
Blackjack | Bidens pilosa | Mothagaraga | Asteraceae | Young tender shoots and leaves | [45,46,47] |
Nightshade | Solanum retroflexum | Umsobo | Solanaceae | Leaves and tender shoots | [44] |
Jew’s mallow | Corchorus olitorius | Delele | Tiliaceae | Leaves and fruit | [48,49] |
Pumpkin | Cucurbita maxima | Mpodi | Cucurbitaceae | Leaves, fruit, young shoots, flowers and seeds | [45] |
Chinese cabbage | Brassica rapa | Isiqwashumbe | Brassicaceae | Leaves | [45] |
Cat’s whiskers | Cleome gynandra | Amazonde | Capparaceae | Leaves and tips | [50] |
Cowpea | Vigna unguiculata | Dinawa | Fabaceae | Young shoots and leaves | [51] |
Indigenous Leafy Vegetable | Processing Method | Effect on the Functional Components and Nutritional Value | Reference |
---|---|---|---|
Nightshade | Solar drying | Increased the leaves’ overall carotenoid content by 40% | [14] |
Increased phenolic acids such as caffeoylmalic acid, rutin and kaempferol-3-O-rutinoside in the leaves | [14] | ||
Increased the chlorogenic and neochlorogenic acid levels in leaves | [14] | ||
Improved FRAP activity | [14] | ||
Fermentation | Improved amounts of vitamins B1, B2 and C of the leaves | [184] | |
Increased TPC and phenolic compound bioavailability, especially for phenolic acids and flavonoids in the leaves | [185] | ||
Steaming or cooking in plain hot water | Enhanced the levels of hydroxycinnamic acid derivatives and caffeoylmalic acid | [14] | |
Steam blanching (water or lemon juice) | Increased the level of caffeoylmalic acid | [14] | |
Stir frying | Increased the amounts of 3-caffeoylquinic, 4-caffeoylquinic and 5-caffeoylquinic acids, Ekaempferol-3-O-rutinoside, chlorogenic acid, caffeoylmalic acid and quercetin-3-O-xylosyl-rutinoside | [14] | |
Nightshade pickle and relish | Fermentation | Improved the β-carotene content of both products | [186] |
Jew’s mallow | Cooking | Improved mineral content (phosphorous, potassium, calcium, magnesium, sodium and micro minerals (iron, manganese, zinc)) of the leaves | [187] |
Enhanced protein, ash and dietary (soluble and insoluble) fibre | [187] | ||
Improved cellulose and hemicellulose of the leaves and enhanced essential amino acids except phenylalanine | [187] | ||
Chinese cabbage | Blanching in 5% lemon juice | Increased total chlorophyll retention | [128] |
Increased TPC, FRAP and TEAC | [128] | ||
Improved quinic and ferulic acids | [128] | ||
Improved levels of kaempferol-dihexoside, sinapoyl malate, rutin, isorhamnetin-O-dihexoside and kaempferol-3-O-hydroxyferuloyl-trihexoside in the leaves | [128] | ||
Stir frying | Improved levels of kaempferol-3-O-hydroxyferuloyl-trihexoside, kaempferol-dihexoside, sinapoyl malate, rutin and isorhamnetin-O-dihexoside | [128] | |
Fermentation | Increased β-carotene content | [188] | |
Improved mineral content (iron, zinc, calcium, potassium, copper and nickel) | [188] | ||
Pumpkin leaves | Boiling | Improved the bioaccessibility of most polyphenols apart from methylquinic acid, cis-4-feruloylquinic acid and phenethyl rutinoside | [189] |
Stir frying | Enhanced the release and bioaccessibility of β-carotene as well as antioxidant activities | [189] | |
Significantly improved the FRAP activity | |||
Steam blanching (plain water) | Retained TPC and minimised the loss of quercetin | [93] | |
3-glucoside 7-rhamnoside, kaempferol 7-neohesperidoside, isoorientin 2′′-O-rhamnoside, isorhamnetin-3-O-rutinoside, quercetin 3-galactoside, coumaroyl glucaric acid, isorhamnetin-3-galactoside-6′′-rhamnoside, 2-caffeoylisocitric acid and quercetin 3-galactoside 7-rhamnoside | |||
Enhanced antioxidant capacity (FRAP and ABTS). | |||
Amaranthus leaves | Fermentation | Improved the mineral content (calcium, magnesium, zinc, iron, selenium and copper) | [190] |
Indigenous Leafy Vegetable | Food Products | Effects on Consumer Acceptability and Nutritional Quality | References |
---|---|---|---|
Amaranthus | Provitamin A-biofortified maize extruded snacks | Consumer acceptability was negatively affected at higher amaranth concentrations (3% w/w) but incorporation of amaranth leaf powder improved the essential amino acid, provitamin A and iron content of extrudates. | [192] |
Vigna unguiculata (cowpea) leaves | Porridge | Porridge enhanced with cowpea leaf powder was less acceptable than plain cereal porridge even though they were rated equally high by consumers in terms of their willingness to purchase. | [193] |
Solanum nigrum (nightshade) leaves | Soup | The formulation with 4% leaf powder, 30% starch and 66% spice mix was more accepted by consumers with regard to colour, flavour, taste and mouth feel. The soup contained higher levels of polyphenols, antioxidant content, crude protein, carbohydrates and crude fibre. | [194] |
Chenopodium album Linn (lamb’s quarters) | Green gram dal and paratha (conventional foods) | Those foods that contained 7% or 5% dehydrated Chenopodium album leaves were most accepted by consumers. The final products had higher iron content than the control sample. | [195] |
Portulaca oleracea (purslane) | Bread | Bread samples with low concentration of purslane powder were highly acceptable compared to the bread sample with 15% purslane powder.The proximate composition of purslane-enriched breads was significantly improved compared to the control. | [196] |
Bidens pilosa (blackjack) | Raw ground beef | Used to reduce lipid oxidation during storage period. | [197] |
Cucurbita maxima (pumpkin) leaves | Cassava pasta | The consumer appeal of cassava pasta with pumpkin leaf powder was negatively affected as it was less acceptable compared to the yellow pasta (control).Substantially higher content of protein, fibre, ash, beta-carotene, iron and zinc was reported. | [198] |
Brassica rapa L. ssp. Pekinensis (Chinese cabbage) outer leaf powder | Muffin | Increased hardness of the muffins resulted in lower acceptance score for texture. Flavour was also affected by high leaf powder levels as shown by lower acceptance score compared to the control. Overall, the sensory attributes of muffins with up to 2% of Chinese cabbage dietary fibre were acceptable. A substantial increase in dietary fibre content and high antioxidant activity of the muffins compare to the control were observed. | [199] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mungofa, N.; Sibanyoni, J.J.; Mashau, M.E.; Beswa, D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. Molecules 2022, 27, 7995. https://doi.org/10.3390/molecules27227995
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. Molecules. 2022; 27(22):7995. https://doi.org/10.3390/molecules27227995
Chicago/Turabian StyleMungofa, Nyarai, July Johannes Sibanyoni, Mpho Edward Mashau, and Daniso Beswa. 2022. "Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients" Molecules 27, no. 22: 7995. https://doi.org/10.3390/molecules27227995
APA StyleMungofa, N., Sibanyoni, J. J., Mashau, M. E., & Beswa, D. (2022). Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. Molecules, 27(22), 7995. https://doi.org/10.3390/molecules27227995