In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.1.1. Ligand Synthesis
2.1.2. Complex Synthesis
2.2. FTIR Spectra
2.3. Thermal Study
2.4. Structural Analysis
2.5. In Silico Methods
3. Materials and Methods
3.1. Materials and Analysis
3.2. Methods and Instruments
3.3. In Silico Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Lison, D. Cobalt. In Handbook on the Toxicology of Metals, 5th ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 2, pp. 221–242. [Google Scholar] [CrossRef]
- Ma, Z.; Jacobsen, F.E.; Giedroc, D.P. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 2009, 109, 4644–4681. [Google Scholar] [CrossRef] [Green Version]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Fathy, A.; Ibrahim, A.B.M.; Abd Elkhalik, S.; Villinger, A.; Abbas, S.M. Trivalent Cobalt Complexes with NNS Tridentate Thiosemicarbazones: Preparation, Structural Study and Investigation of Antibacterial Activity and Cytotoxicity against Human Breast Cancer Cells. Inorganics 2022, 10, 145. [Google Scholar] [CrossRef]
- Rickers, E.L.; Brink, N.G.; Koniuszy, F.R.; Wood, T.R.; Folkers, K. Crystalline vitamin B12. Science 1948, 107, 396–397. [Google Scholar] [CrossRef]
- Allen, R.H.; Stabler, S.P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 2008, 87, 1324–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.M.; Cook, N.R.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.A.E. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA 2008, 299, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenech, M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001, 475, 57–67. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Mayeux, R. Reviews Dietary factors and Alzheimer’s disease. October 2004, 3, 579–587. [Google Scholar]
- Malouf, R.; Evans, J.G. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst. Rev. 2008, 4, CD004514. [Google Scholar] [CrossRef]
- Kerr, D.S.M.; Sellschop, J.P.F.; Keddy, R.J.; Nam, T.L. A flexible kilocurie cobalt-60 facility for multi-purpose irradiation applications. Int. J. Appl. Radiat. Isot. 1975, 26, 533–542. [Google Scholar] [CrossRef]
- Verma, R.; Jain, G.K.; Chougule, A. Dosimetric Analysis of Treatment Planning Optimization Techniques for Co-60 and Ir-192 Hdr Brachytherapy Sources in Carcinoma Cervix Patients. Libr. Oncol. 2022, 50, 3–9. [Google Scholar] [CrossRef]
- Jamalludin, Z.; Jong, W.L.; Ho, G.F.; Rosenfeld, A.B.; Ung, N.M. In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer. Australas. Phys. Eng. Sci. Med. 2019, 42, 1099–1107. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Lium, E.K.; Silverstein, S.J. Herpes Simplex Virus Type 1 Entry Is Inhibited by the Cobalt Chelate Complex CTC-96. J. Virol. 2001, 75, 4117–4128. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.P.; Pashinsky, Y.Y.; Gershon, D.; Winicov, I.; Srivilasa, C.; Kristic, K.J.; Asbell, P.A. Efficacy of topical cobalt chelate CTC-96 against adenovirus in a cell culture model and against adenovirus keratoconjunctivitis in a rabbit model. BMC Ophthalmol. 2006, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem. 2017, 10, S157–S173. [Google Scholar] [CrossRef] [Green Version]
- López-Sandoval, H.; Londoño-Lemos, M.E.; Garza-Velasco, R.; Poblano-Meléndez, I.; Granada-Macías, P.; Gracia-Mora, I.; Barba-Behrens, N. Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives. J. Inorg. Biochem. 2008, 102, 1267–1276. [Google Scholar] [CrossRef]
- Poduna, S.O.; Rogan, J. Complexes cobalt(II), zinc(II) and copper(II) with some newly synthesized benzimidazole derivatives and their antibacterial activity. J. Serb. Chem. Soc. 1999, 64, 381–388. [Google Scholar]
- El-Wakiel, N.; El-Keiy, M.; Gaber, M. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2015, 147, 117–123. [Google Scholar] [CrossRef]
- Apohan, E.; Yilmaz, U.; Yilmaz, O.; Serindag, A.; Küçükbay, H.; Yesilada, O.; Baran, Y. Synthesis, cytotoxic and antimicrobial activities of novel cobalt and zinc complexes of benzimidazole derivatives. J. Organomet. Chem. 2017, 828, 52–58. [Google Scholar] [CrossRef]
- Raducka, A.; Czylkowska, A.; Gobis, K.; Czarnecka, K.; Szymański, P.; Świątkowski, M. Characterization of metal-bound benzimidazole derivatives, effects on tumor cells of lung cancer. Materials 2021, 14, 2958. [Google Scholar] [CrossRef]
- Raducka, A.; Świątkowski, M.; Korona-głowniak, I.; Kaproń, B.; Plech, T.; Szczesio, M.; Gobis, K.; Szynkowska-jóźwik, M.I.; Czylkowska, A. Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application. Int. J. Mol. Sci. 2022, 23, 6595. [Google Scholar] [CrossRef]
- Raducka, A.; Świątkowski, M.; Korona-Głowniak, I.; Kaproń, B.; Plech, T.; Szczesio, M.; Gobis, K.; Czylkowska, A. Design, Synthesis, and Characterization of Novel Coordination Compounds of Benzimidazole Derivatives with Cadmium. Pharmaceutics 2022, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-Z.; Wan, S.-M.; Kirillova, M.V.; Kirillov, A.M. H-bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: Structural variety and functional properties. Dalt. Trans. 2020, 49, 7197–7209. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, H.M.; Roger, S.; Parr, C.A. Uniimolecular kinetics of pyridine ion fragimentation. Int. J. Mass Spectrom. Ion Phys. 1981, 38, 323–331. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J.Chem. Inf. Moodel. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
C1 [Co(L1)2Cl2∙2H2O] (C22H20N8O2CoCl2) (558.2858 g/mol) | calc. Co 10.56 C 47.33 H 3.61 N 20.07 exp. Co 18.75 C 37.12 H 2.86 N 16.46 |
C2 [Co(L2)2Cl2] (C22H16N8CoCl2) (522.2552 g/mol) | calc. Co 11.28 C 50.60 H 3.09 N 21.46 exp. Co 17.92 C 37.34 H 2.91 N 16.39 |
C4 [Co(L4)2Cl2∙2H2O]∙H2O (C22H20N8O3CoBr2Cl2) (734.0932 g/mol) | calc. Co 8.03 C 35.99 H 2.75 N 15.26 exp. Co 14.62 C 30.69 H 2.15 N 13.54 |
C1 | C2 | C4 | m/z | |
---|---|---|---|---|
Dehydration | 185–225 °C 6.3% | - | 30–50 °C 2.2% 90–145 °C 4.2% | 17, 18 |
1st stage of ligand decomposition | 295–385 °C 30.0% | - | 265–375 °C 33.4% | 12, 17, 18, 22, 26, 27, 29, 30, 40, 44, 45, 46, 50, and 52 |
2nd stage of ligand decomposition and chlorides removal | 385–725 °C 47.9% | 375–600 °C 74.6% | 375–595 °C 49.9% | 12, 13, 17, 18, 26, 27, 29, 30, 35, 36, 37, 38, 41, 44, 45, 46, 70, 72, 79 *, 81 *, 158 *, 160 *, and 162 * |
Final product (CoO) | 15.8% | 25.4% | 10.3% | - |
i—j | dij (Å) | i—j—k | αijk (°) |
---|---|---|---|
Co1—Cl1 | 2.5086 (4) | Cl1—Co1—N1 | 90.72 (4) |
Co1—N1 | 2.1419 (15) | Cl1—Zn1—O1 | 88.04 (4) |
Co1—O1 | 2.0682 (12) | N1—Zn1—O1 | 89.90 (5) |
D—H···A | d(D—H) (Å) | d(H···A) (Å) | d(D···A) (Å) | <(DHA) (°) |
---|---|---|---|---|
O1—H1A···N4 (i) | 0.89 | 1.84 | 2.7226 (19) | 170 |
O1—H1B···Cl1 (ii) | 0.89 | 2.42 | 3.2626 (14) | 159 |
N3—H3···O11 | 0.84 | 1.92 | 2.7458 (19) | 164 |
O11—H11A···N2 (iii) | 0.85 | 2.09 | 2.8966 (19) | 158 |
O11—H11B···Cl1 (iv) | 0.82 | 2.29 | 3.1083 (13) | 172 |
R(I)···R(J) | d(Cg···Cg) (Å) | α (°) | β (°) | dp (Å) |
N1···N4 (v) | 3.5335 (11) | 0.03 (11) | 23.4 | 3.2419 (8) |
N1···N4 (vi) | 3.7522 (11) | 0.03 (11) | 28.5 | 3.2988 (8) |
N2···N2 (v) | 3.6078 (11) | 3.08 (10) | 26.6 | 3.2946 (8) |
N2···N2 (vi) | 3.5451 (11) | 3.08 (10) | 20.5 | 3.2556 (8) |
Empirical Formula | C22H24Cl2CoN8O4 |
---|---|
Formula weight | 594.32 |
Temperature (K) | 100.0 (2) |
Crystal system | triclinic |
Space group | P-1 |
a (Å) | 6.5580 (1) |
b (Å) | 8.3007 (1) |
c (Å) | 11.4458 (1) |
α (°) | 86.425 (1) |
β (°) | 81.127 (1) |
γ (°) | 74.308 (1) |
Volume (Å3) | 592.524 (13) |
Z | 1 |
Calculated density (g/cm3) | 1.666 |
Absorption coefficient (mm−1) | 8.181 |
F(000) | 305.0 |
Crystal size (mm) | 0.083 × 0.038 × 0.022 |
Radiation | Cu Kα (λ = 1.54184) |
θ Range for data collection (°) | 7.82 to 157.298 |
Index ranges | −7 ≤ h ≤ 8, −10 ≤ k ≤ 10, −14 ≤ l ≤ 13 |
Reflections collected | 21,845 |
Independent reflections | 2343 [Rint = 0.0580, Rsigma = 0.0239] |
Data/restraints/parameters | 2343/0/169 |
Goodness-of-fit on F2 | 1.161 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0276, wR2 = 0.0756 |
Final R indexes (all data) | R1 = 0.0282, wR2 = 0.0759 |
Largest diff. peak/hole/e Å−3 | 0.32/−0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raducka, A.; Świątkowski, M.; Gobis, K.; Szymański, P.; Czylkowska, A. In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure. Molecules 2022, 27, 8011. https://doi.org/10.3390/molecules27228011
Raducka A, Świątkowski M, Gobis K, Szymański P, Czylkowska A. In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure. Molecules. 2022; 27(22):8011. https://doi.org/10.3390/molecules27228011
Chicago/Turabian StyleRaducka, Anita, Marcin Świątkowski, Katarzyna Gobis, Paweł Szymański, and Agnieszka Czylkowska. 2022. "In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure" Molecules 27, no. 22: 8011. https://doi.org/10.3390/molecules27228011
APA StyleRaducka, A., Świątkowski, M., Gobis, K., Szymański, P., & Czylkowska, A. (2022). In Silico ADME and Toxicity Prediction of Benzimidazole Derivatives and Its Cobalt Coordination Compounds. Synthesis, Characterization and Crystal Structure. Molecules, 27(22), 8011. https://doi.org/10.3390/molecules27228011