Secondary Metabolites and Their Cytotoxic Activity of Artemisia nitrosa Weber. and Artemisia marschalliana Spreng.
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Materials
2.3. Extraction and Isolation of A. nitrosa
2.4. Extraction and Isolation of A. marschalliana
2.5. Cytotoxicity Assay
2.6. Cell Viability Evaluation
2.7. Measurement of Nitric Oxide (NO) Production
3. Results and Discussion
3.1. Structural Elucidation of Compounds from A. nitrosa
3.2. Structural Elucidation of Compounds from A. marschalliana
3.3. Cytotoxicity Activity
3.4. Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abad, M.J.; Bedoya, L.M.; Bermejo, P. Essential Oils from the Asteraceae Family Active against Multidrug-Resistant Bacteria. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components; Mahendra, K.R., Volodymyrivna, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 205–221. [Google Scholar] [CrossRef]
- Zibaee, A.; Bandani, A.R. Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res. 2010, 100, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Uroš, G.; Dejan, S.; Kostić, M.; Mišić, D.; Soković, M. New Evidence for Artemisia absinthium L. Application in Gastrointestinal Ailments: Ethnopharmacology, Antimicrobial Capacity, Cytotoxicity, and Phenolic Profile. Evid.-Based Complement. Altern. Med. 2021, 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, B.; Aili, M. Effect of Artemisia rupestris L. Extract on Gastrointestinal Hormones and Brain-Gut Peptides in Functional Dyspepsia Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 2528617. [Google Scholar] [CrossRef] [PubMed]
- Zant, D.; Gubler, D.A. The presence of eucalyptol in Artemisia australis validates its use in traditional Hawaiian medicine. Asian Pac. J. Trop. Biomed. 2014, 4, 520–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Guo, M.Y.; Luo, Y. Effect of Artemisia annua extract on treating active rheumatoid arthritis: A randomized controlled trial. Chin. J. Integr. Med. 2017, 23, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Lee, H.; Seo, C.S. Artemisia capillaris inhibits atopic dermatitis-like skin lesions in Dermatophagoides farinae-sensitized Nc/Nga mice. BMC Complement. Altern. Med. 2014, 14, 100. [Google Scholar] [CrossRef] [Green Version]
- Han, H.M.; Kim, S.J.; Kim, J.S. Ameliorative effects of Artemisia argyi Folium extract on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Mol. Med. Rep. 2016, 14, 3206–3214. [Google Scholar] [CrossRef] [Green Version]
- Elfawal, M.A.; Towler, M.J.; Reich, N.G.; Golenbock, D.; Weathers, P.J.; Rich, S.M. Dried whole plant Artemisia annua as an antimalarial therapy. PLoS ONE 2012, 7, e52746. [Google Scholar] [CrossRef]
- Sajid, M.; Khan, M.R.; Shah, N.A. Proficiencies of Artemisia scoparia against CCl4 induced DNA damages and renal toxicity in rat. BMC Complement. Altern Med. 2019, 16, 149. [Google Scholar] [CrossRef]
- Xia, M.; Liu, D.; Liu, Y.; Liu, H. The Therapeutic Effect of Artemisinin and Its Derivatives in Kidney Disease. Front. Pharmacol. 2020, 11, 380. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Ganapathi, S.; Ster, I.C. A Randomised, Double Blind, Placebo-Controlled Pilot Study of Oral Artesunate Therapy for Colorectal Cancer. eBioMedicine 2014, 2, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. Genus: A Review of Bioactive Essential Oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [Green Version]
- Koul, B.; Taak, P. The Artemisia Genus: A Review on Traditional Uses, Phytochemical Constituents, Pharmacological Properties and Germplasm Conservation. J. Glycom. Lipidom. 2017, 7, 142–149. [Google Scholar] [CrossRef]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, Genome Evolution, Biotechnological Issues and Research Including Applied Perspectives in Artemisia (Asteraceae). Adv. Bot. Researc. 2011, 60, 349–419. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Gendron, F.; Kindscher, K. Bioactive prairie plants and aging adults: Role in health and disease. In Bioactive Prairie Plants and Aging Adults. Bioactive Food as Dietary Interventions for the Aging Population; Watson, R.R., Preedy, V.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 263–275. [Google Scholar] [CrossRef]
- Anwar, F.; Ahmad, N.; Alkharfy, K.M.; Gilani, A.H. Mugwort (Artemisia vulgaris) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 573–579. [Google Scholar] [CrossRef]
- Willcox, M. Artemisia Species: From Traditional Medicines to Modern Antimalarials—And Back Again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Sainz, P.; Cruz-Estrada, Á.; Díaz, C.E. The genus Artemisia: Distribution and phytochemistry in the Iberian Peninsula and the Canary and Balearic Islands. Phytochem. Rev. 2017, 16, 1023–1043. [Google Scholar] [CrossRef]
- Plavlov, H.V. Flora Kazakhstan, 9th ed.; Compositae; Academy of Sciences of the Kazakh SSR; In-t Botany: Almaty, Kazakhstan, 1966; p. 651. [Google Scholar]
- Nurlybekova, A.; Kudaibergen, A.; Kazymbetova, A.; Amangeldi, M.; Baiseitova, A.; Ospanov, M.; Aisa, H.A.; Ye, Y.; Ibrahim, M.A.; Jenis, J. Traditional Use, Phytochemical Profiles and Pharmacological Properties of Artemisia Genus from Central Asia. Molecules 2022, 27, 5128. [Google Scholar] [CrossRef]
- Lone, S.H.; Bhat, K.A.; Khuroo, M.A. Arglabin: From isolation to antitumor evaluation. Chem.-Bio. Interact. 2015, 240, 180–198. [Google Scholar] [CrossRef]
- Seo, H.J.; Surh, Y.J. Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human promyelocytic leukemia cells. Mut. Res./Gen. Toxicol. Environmen. Mutagen. 2001, 496, 191–198. [Google Scholar] [CrossRef]
- Abilova, Z.; Yuan, J.; Janar, J.; Tang, C.P.; Ye, Y. Monomeric and dimeric sesquiterpene lactones from Artemisia heptapotamica. Chin. J. Nat. Med. 2019, 17, 785–791. [Google Scholar] [CrossRef]
- Namzalov, B.B.; Namzalov, M.B.; Zhigzhizhapova, S.V. About the new discovery wormwood Artemisia nitrosa web ex STECHM.—Rare species in the flora of Zabaikalya. Vestn. Buryat State Univ. Biol. Geogr. 2018, 108, 87–92. [Google Scholar] [CrossRef]
- Asgharian, P.; Zadehkamand, M.; Delazar, A.; Safarzadeh, E.; Asnaashari, S. Chemical composition and some biological activities of Artemisia marschalliana essential oi. Res. J. Pharmacog. 2019, 6, 71–77. [Google Scholar] [CrossRef]
- Salehi, S.; Mirzaie, A.; Sadat-Shandiz, S.A.; Noorbazargan, H.; Rahimi, A.; Yarmohammadi, S.; Ashrafi, F. Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract. Nat. Prod. Res. 2013, 31, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhong, Y.; Wang, D.; Lu, Z. A simple colorimetric method for viable bacteria detection based on cell counting kit-8. Anal. Methods 2021, 13, 5211–5215. [Google Scholar] [CrossRef] [PubMed]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Feng, Z.-L.; Zhang, L.-L.; Zheng, Y.-D.; Liu, Q.-Y.; Liu, J.-X.; Feng, L.; Huang, L.; Zhang, Q.-W.; Lu, J.-J.; Lin, L.-G. Norditerpenoids and Dinorditerpenoids from the Seeds of Podocarpus nagi as Cytotoxic Agents and Autophagy Inducers. J. Nat. Prod. 2017, 80, 2110–2117. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, J.; Feng, L.; Chen, C.; Ye, Y.; Lin, L. Polyisoprenylated benzophenone derivatives from Garcinia cambogia and their anti-inflammatory activities. Food Funct. 2021, 12, 6432–6441. [Google Scholar] [CrossRef]
- Marco, J.A.; Sanz-Cervera, J.F.; Ocete, G.; Carda, M.; Rodríguez, S.; Vallès-Xirau, J. New Germacranolides and Eudesmanolides from North African Artemisia herba-alba. J. Nat. Prod. 1994, 57, 939–946. [Google Scholar] [CrossRef]
- Segal, R.; Feuerstein, I.; Duddeck, H.; Kaiser, M.; Danin, A. The sesquiterpene lactones from two populations of Artemisia herba alba. Phytochemistry 1983, 22, 129–131. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Esmail, A.M.; El-Saade, A.M. Terpenes from Artemisia herba-alba. Z. Nat. 2013, 68, 343–346. [Google Scholar] [CrossRef]
- Marco, J.A.; Sanz-cervera, J.F.; Manglano, E.; Sancenon, F.; Rustaiyan, A.; Kardar, M. Sesquiterpene lactones from iranian Artemisia species. Phytochemistry 1993, 34, 1561–1564. [Google Scholar] [CrossRef]
- Marco, J.A.; Sanz, J.F.; Yuste, A.; Carda, M.; Jakupovic, J. Sesquiterpene lactones from Artemisia barrelieri. Phytochemistry 1991, 30, 3661–3668. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Zare, K.; Ganj, M.T.; Sadri, H.A. A melampolide and two dihydro artemorin derivatives from Artemisia gypsacea. Phytochemistry 1989, 28, 1535–1536. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, Z.H.; Yue, J.M. Five New Sesquiterpenoids from Parasenecio petasitoides. Helv. Chem. Acta. 2004, 87, 976–982. [Google Scholar] [CrossRef]
- Kusumoto, T.; Miyamoto, T.; Higuchi, R.; Doi, S.; Sugimoto, H.; Yamada, H. Isolation and Structures of Two New Compounds from the Essential Oil of Brazilian Propolis. Chem. Pharmaceut. Bull. 2001, 49, 1207–1209. [Google Scholar] [CrossRef] [Green Version]
- Jakupovic, J.; Bohlmann, F.; Tan, R.X.; Jia, Z.J.; Huneck, S. Prenylated coumarates from Artemisia xanthochroa. Phytochemistry 1990, 29, 3683–3685. [Google Scholar] [CrossRef]
- Jin, L.; Zhou, W.; Li, R.; Jin, M.; Jin, C.; Sun, J.; Li, G. A new polyacetylene and other constituents with anti-inflammatory activity from Artemisia halodendron. Nat. Prod. Res. 2019, 35, 1010–1013. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, J.; Gong, J.; Bao, W. Isolation and structure elucidation of two new compounds from Artemisia Ordosica Krasch. Nat. Prod. Res. 2019, 34, 1862–1867. [Google Scholar] [CrossRef]
- Rocha, D.D.; Dantas, I.N.; Albuquerque, M.R. Studies on the cytotoxicity of miscellaneous compounds from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). Chem. Biodivers. 2007, 4, 2835–2844. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; King, R.M.; Robinson, H. Further 5-methyl coumarins and other constituents from the subtribe mutisiinae. Phytochemistry 1986, 25, 509–516. [Google Scholar] [CrossRef]
- Maatooq, G.T.; Hoffmann, J.J. Fungistatic sesquiterpenoids from Parthenium. Phytochemistry 1996, 43, 67–69. [Google Scholar] [CrossRef]
- Stavri, M.; Ford, C.H.; Bucar, F.; Streit, B.; Hall, M.L.; Williamson, R.T.; Mathew, K.T.; Gibbons, S. Bioactive constituents of Artemisia monosperma. Phytochemistry 2005, 66, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Gok, M.; Zeybek, N.D.; Bodur, E. Butyrylcholinesterase expression is regulated by fatty acids in HepG2 cells. Chem.-Biol. Interact. 2016, 259, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tian, W.J.; Liao, Z.J.; Wang, G.H.; Zeng, D.Q.; Liu, X.Z.; Lin, T. Chemical constituents from endophytic fungus Annulohypoxylon cf. stygium in leaves of Anoectochilus roxburghii (Wall.) Lindl. Chem. Biodivers. 2020, 17, e2000424. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, W.; Wei, C.X.; Zhang, Z.; Jin, X.; Li, G. A new benzofuran from Artemisia halodendron Turcz. ex Bess. Nat. Prod. Res. 2008, 33, 226–232. [Google Scholar] [CrossRef]
- Pang, N.; Gu, S.S.; Wang, J.; Cui, H.S.; Wang, F.Q.; Liu, X.; Wu, F.A. A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Bioresour. Technol. 2013, 139, 337–342. [Google Scholar] [CrossRef]
Positions | 1H | 13C * |
---|---|---|
1 | 3.93 dt (10.5, 1.4) | 74.8 |
2 | 2.18–2.04 m | 31.34 |
3 | 2.36–2.21 m | 37.94 |
4 | - | 153.51 |
5 | 5.13 dd (10.2, 1.6) | 121.28 |
6 | 4.34 t (9.8) | 80.05 |
7 | 2.36–2.21 m | 41.56 |
8 | 1.97–1.80 m | 36.81 |
9 | 4.76 dt (10.2, 1.5) | 78.81 |
10 | - | 145.18 |
11 | 1.97–1.80 m | 51.05 |
12 | - | 175.06 |
13 | 1.27 d (6.9) | 12.55 |
14 | 5.42 d (1.2); 5.34 br s | 114.37 |
15 | 1.58 d (1.3) | 17.48 |
16 | - | 177.43 |
17 | 2.36–2.21 m | 27.64 |
18 | 1.11 t (7.6) | 8.53 |
Positions | 1H | 13C * |
---|---|---|
1 | - | 76.63 |
2 | 5.57 (d, J = 9.8 Hz, 1H) | 130.60 |
3 | 6.22 (t, J = 13.6 Hz, 2H) | 121.53 |
4 | 7.10 (s, 1H) | 129.44 |
5 | - | 128.41 |
6 | 6.96 (s, 1H) | 123.08 |
7 | - | 135.27 |
8 | - | 152.67 |
9 | - | 120.60 |
10 | 6.22 (t, J = 13.6 Hz, 2H) | 113.92 |
11 | 7.58 (d, J = 15.6 Hz, 1H) | 146.23 |
12 | 3.25 (d, J = 7.2 Hz, 2H) | 27.29 |
13 | 5.48 (s, 1H) | 124.09 |
14 | - | 125.98 |
15 | 3.98 (s, 2H) | 68.33 |
16 | 1.72 (s, 3H) | 13.37 |
17 | 1.36 (s, 6H) | 27.80 |
18 | 1.36 (s, 6H) | 27.80 |
Compounds of A. nitrosa | Inhibition against A-549 (%) | Compounds A. marschallina | Inhibition against A-549 (%) | ||
---|---|---|---|---|---|
25 μM | 1 μM | 20 Μm | 2 μM | ||
2 | 23.7 | 24.8 | 2’ | <1 | <1 |
4 | 28.8 | 30.0 | 3’ | <1 | <1 |
5 | 8.7 | 21.5 | 4’ | 10.42 | <1 |
6 | <1 | <1 | 5’ | 3.07 | <1 |
9 | 22.7 | 24.4 | 8’ | <1 | <1 |
11 | 4.5 | 4.7 | 10’ | ND a | ND a |
- | - | - | 12’ | <1 | <1 |
ADT b | 84.4 | ADT b | 86.1 |
Compounds of A. nitrosa | Inhibition against HL-60 (%) | Compounds A. marschallina | Inhibition against HL-60 (%) | ||
---|---|---|---|---|---|
25 μM | 1 μM | 20 Μm | 2 μM | ||
5 | 8.7 | 21.5 | 4’ | 13.04 | <1 |
6 | 18.2 | <1 | 5’ | <1 | <1 |
7 | 8.7 | 21.5 | 6’ | 2.12 | <1 |
11 | <1 | 1.9 | 10’ | <1 | <1 |
- | - | - | 12’ | 6.16 | <1 |
ADT b | 82.5 | ADT b | 84.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazymbetova, A.; Amangeldi, M.; Nurlybekova, A.; Amzeyeva, U.; Baktybala, K.; Tang, C.-P.; Ke, C.-Q.; Yao, S.; Ye, Y.; Jenis, J. Secondary Metabolites and Their Cytotoxic Activity of Artemisia nitrosa Weber. and Artemisia marschalliana Spreng. Molecules 2022, 27, 8074. https://doi.org/10.3390/molecules27228074
Kazymbetova A, Amangeldi M, Nurlybekova A, Amzeyeva U, Baktybala K, Tang C-P, Ke C-Q, Yao S, Ye Y, Jenis J. Secondary Metabolites and Their Cytotoxic Activity of Artemisia nitrosa Weber. and Artemisia marschalliana Spreng. Molecules. 2022; 27(22):8074. https://doi.org/10.3390/molecules27228074
Chicago/Turabian StyleKazymbetova, Aizhan, Magzhan Amangeldi, Aliya Nurlybekova, Ulpan Amzeyeva, Kunbike Baktybala, Chun-Ping Tang, Chang-Qiang Ke, Sheng Yao, Yang Ye, and Janar Jenis. 2022. "Secondary Metabolites and Their Cytotoxic Activity of Artemisia nitrosa Weber. and Artemisia marschalliana Spreng." Molecules 27, no. 22: 8074. https://doi.org/10.3390/molecules27228074
APA StyleKazymbetova, A., Amangeldi, M., Nurlybekova, A., Amzeyeva, U., Baktybala, K., Tang, C. -P., Ke, C. -Q., Yao, S., Ye, Y., & Jenis, J. (2022). Secondary Metabolites and Their Cytotoxic Activity of Artemisia nitrosa Weber. and Artemisia marschalliana Spreng. Molecules, 27(22), 8074. https://doi.org/10.3390/molecules27228074