Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of SCC Distillation on Wine Composition
2.2. Influence of SCC Distillation on Wine Sensory Profiles
2.3. Influence of SCC Distillation on Juice Composition
3. Materials and Methods
3.1. Remediation of Smoke-Tainted Wine
3.2. Remediation of Smoke-Tainted Juice
3.3. Chemical Analysis of Juice, Condensate and Wine Samples
3.4. Sensory Analysis of Wine
3.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ollat, N.; Touzard, J.; van Leeuwen, C. Climate change impacts and adaptations: New challenges for the wine industry. J. Wine Econ. 2016, 11, 139–149. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Krstic, M.P.; Johnson, D.L.; Herderich, M.J. Review of smoke taint in wine: Smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 2015, 21, 537–553. [Google Scholar] [CrossRef]
- Mirabelli-Montan, Y.A.; Marangon, M.; Graça, A.; Mayr Marangon, C.M.; Wilkinson, K.L. Techniques for mitigating the effects of smoke taint while maintaining quality in wine production: A review. Molecules 2021, 26, 1672. [Google Scholar] [CrossRef] [PubMed]
- Summerson, V.; Gonzalez Viejo, C.; Pang, A.; Torrico, D.D.; Fuentes, S. Review of the effects of grapevine smoke exposure and technologies to assess smoke contamination and taint in grapes and wine. Beverages 2021, 7, 7. [Google Scholar] [CrossRef]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef]
- Ristic, R.; Fudge, A.L.; Pinchbeck, K.A.; De Bei, R.; Fuentes, S.; Hayasaka, Y.; Tyerman, S.D.; Wilkinson, K.L. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theor. Exp. Plant Physiol. 2016, 28, 67–83. [Google Scholar] [CrossRef]
- Favell, J.W.; Wilkinson, K.L.; Zigg, I.; Lyons, S.M.; Ristic, R.; Puglisi, C.J.; Wilkes, E.; Taylor, R.; Kelly, D.; Howell, G.; et al. Correlating sensory assessment of smoke-tainted wines with inter-laboratory study consensus values for volatile phenols. Molecules 2022, 27, 4892. [Google Scholar] [CrossRef]
- Szeto, C.; Ristic, R.; Capone, D.; Puglisi, C.; Pagay, V.; Culbert, J.; Jiang, W.; Herderich, M.; Tuke, J.; Wilkinson, K. Uptake and glycosylation of smoke-derived volatile phenols by Cabernet Sauvignon grapes and their subsequent fate during winemaking. Molecules 2020, 25, 3720. [Google Scholar] [CrossRef]
- Wilkinson, K.; Ristic, R.; McNamara, I.; Loveys, B.; Jiang, W.W.; Krstic, M. Evaluating the potential for smoke from stubble burning to taint grapes and wine. Molecules 2021, 26, 7540. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust. J. Grape Wine Res. 2009, 15, 228–237. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of smoke application to field-grown Merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Aust. J. Grape Wine Res. 2011, 17, S5–S12. [Google Scholar] [CrossRef]
- Jiang, W.W.; Bilogrevic, E.; Parker, M.; Francis, I.L.; Leske, P.; Hayasaka, Y.; Barter, S.; Herderich, M. The effect of pre-veraison smoke exposure of grapes on phenolic compounds and smoky flavour in wine. Aust. J. Grape Wine Res. 2022, in press. [Google Scholar]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of smoke derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef]
- Noestheden, M.; Thiessen, K.; Dennis, E.G.; Zandberg, W.F. Quantitating organoleptic volatile phenols in smoke-exposed Vitis vinifera berries. J. Agric. Food Chem. 2017, 65, 8418–8425. [Google Scholar] [CrossRef]
- Noestheden, M.; Dennis, E.G.; Romero-Montalvo, E.; DiLabio, G.A.; Zandberg, W.F. Detailed characterization of glycosylated sensory-active volatile phenols in smoke-exposed grapes and wine. Food Chem. 2018, 259, 147–156. [Google Scholar] [CrossRef]
- Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Hayasaka, Y.; Wilkinson, K.L. Effect of leaf removal and grapevine smoke exposure on colour, chemical composition and sensory properties of Chardonnay wines. Aust. J. Grape Wine Res. 2013, 19, 230–237. [Google Scholar] [CrossRef]
- Van der Hulst, L.; Munguia, P.; Culbert, J.A.; Ford, C.M.; Burton, R.A.; Wilkinson, K.L. Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin. Planta 2019, 249, 941–952. [Google Scholar] [CrossRef]
- Favell, J.W.; Noestheden, M.; Lyon, S.M.; Zandberg, W.F. Development and evaluation of a vineyard-based strategy to mitigate smoke-taint in wine grapes. J. Agric. Food Chem. 2019, 67, 14137–14142. [Google Scholar] [CrossRef] [PubMed]
- Favell, J.W.; Fordwour, O.B.; Morgan, S.C.; Zigg, I.; Zandberg, W. Large-scale reassessment of in-vineyard smoke-taint grapevine protection strategies and the development of predictive off-vine models. Molecules 2021, 26, 4311. [Google Scholar] [CrossRef] [PubMed]
- Culbert, J.A.; Krstic, M.P.; Herderich, M.J. Development and utilization of a model system to evaluate the potential of surface coatings for protecting grapes from volatile phenols implicated in smoke taint. Molecules 2021, 26, 5197. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.L.; Ristic, R.; Szeto, C.; Capone, D.L.; Yu, L.; Losic, D. Novel use of activated carbon fabric to mitigate smoke taint in grapes and wine. Aust. J. Grape Wine Res. 2022, 28, 500–507. [Google Scholar] [CrossRef]
- Szeto, C.; Ristic, R.; Wilkinson, K. Thinking inside the box: A novel approach to smoke taint mitigation trials. Molecules 2022, 27, 1667. [Google Scholar] [CrossRef] [PubMed]
- Ristic, R.; Osidacz, P.; Pinchbeck, K.A.; Hayasaka, Y.; Fudge, A.L.; Wilkinson, K.L. The effect of winemaking techniques on the intensity of smoke taint in wine. Aust. J. Grape Wine Res. 2011, 17, S29–S40. [Google Scholar] [CrossRef]
- Fudge, A.L.; Ristic, R.; Wollan, D.; Wilkinson, K.L. Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Aust. J. Grape Wine Res. 2011, 17, S41–S48. [Google Scholar] [CrossRef]
- Fudge, A.L.; Schiettecatte, M.; Ristic, R.; Hayasaka, Y.; Wilkinson, K.L. Amelioration of smoke taint in wine by treatment with commercial fining agents. Aust. J. Grape Wine Res. 2012, 18, 302–307. [Google Scholar] [CrossRef]
- Culbert, J.A.; Jiang, W.; Eleanor, B.; Likos, D.; Francis, I.L.; Krstic, M.P.; Herderich, M.J. Compositional changes in smoke-affected grape juice as a consequence of activated carbon treatment and the impact on phenolic compounds and smoke flavor in wine. J. Agric. Food Chem. 2021, 69, 10246–10259. [Google Scholar] [CrossRef]
- Modesti, M.; Szeto, C.; Ristic, R.; Jiang, W.; Culbert, J.; Bindon, K.; Catelli, C.; Mencarelli, F.; Tonutti, P.; Wilkinson, K. Potential mitigation of smoke taint in wines by post-harvest ozone treatment of grapes. Molecules 2021, 26, 1798. [Google Scholar] [CrossRef]
- Wright, A.J.; Pyle, D.L. An investigation into the use of spinning cone column for in situ ethanol removal from a yeast broth. Process Biochem. 1996, 31, 651–658. [Google Scholar] [CrossRef]
- Riley, P.C.; Sykes, S.J. Industrial applications of spinning cone column technology: A review. In Distillation and Absorption, Proceedings of the International Conference on Distillation and Absorption, Baden-Baden, Germany, 30 September–2 October 2002; Institution of Chemical Engineers: Rugby, UK, 2003. [Google Scholar]
- Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marin-Iniesta, F.; López-Gómez, A. Dealcoholized wine by spinning cone column distillation: Phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J. Agric. Food Chem. 2009, 57, 6770–6778. [Google Scholar] [CrossRef]
- Khonsha, I.; Zivdar, M.; Fard, M.H. Estimation of hydrodynamic parameters in spinning cone column using computational fluid dynamics. Arab. J. Sci. Eng. 2013, 38, 767–776. [Google Scholar] [CrossRef]
- Prince, R.G.H.; Desho, S.Y.; Langrish, T.A.G. Spinning cone column capacity and mass-transfer performance. I. Chem. Eng. Symp. Ser. 1997, 142, 769–781. [Google Scholar]
- Makarytchev, S.V.; Langrish, T.A.G.; Prince, R.G.H. Structure and regimes of liquid film flow in spinning cone columns. Chem. Eng. Sci. 1998, 53, 1541–1550. [Google Scholar] [CrossRef]
- Makarytchev, S.V.; Langrish, T.A.G.; Fletcher, D.F. Mass transfer analysis of spinning cone columns using CFD. Chem. Eng. Res. Des. 2004, 82, 752–761. [Google Scholar] [CrossRef]
- Makarytchev, S.V.; Langrish, T.A.G.; Fletcher, D.F. Exploration of spinning cone column capacity and mass transfer performance using CFD. Chem. Eng. Res. Des. 2005, 83, 1372–1380. [Google Scholar] [CrossRef]
- Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marin-Iniesta, F.; Iguaz-Gainza, A.; López-Gómez, A. Aroma recovery in wine dealcoholization by SCC distillation. Food Bioprocess Technol. 2012, 5, 2529–2539. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Romano, P. Advanced fractionation process for wine-based products diversification. J. Food Sci. Technol. 2021, 58, 4685–4692. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.-Z.; Salifu, R.; Wang, J.; Jiang, Y.-M.; Zhang, B.; Han, S.-Y. Techniques for dealcoholization of wines: Their impact on wine phenolic composition, volatile composition and sensory characteristics. Foods 2021, 10, 2498. [Google Scholar] [CrossRef]
- Wilkinson, K.L.; Prida, A.; Hayasaka, Y. Role of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid in the evolution of oak lactone in wine during oak maturation. J. Agric. Food Chem. 2013, 61, 4411–4416. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Noble, A.C. The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. Am. J. Enol. Vitic. 1994, 45, 6–10. [Google Scholar]
- Zamora, M.C.; Golder, M.C.; Galmarini, M.V. Sourness-sweetness interactions in different media: White wine, ethanol and water. J. Sens. Stud. 2006, 21, 601–611. [Google Scholar] [CrossRef]
- Coulter, A.; Baldock, G.; Parker, M.; Hayasaka, Y.; Francis, I.L.; Herderich, M. Concentration of smoke marker compounds in non-smoke-exposed grapes and wine in Australia. Aust. J. Grape Wine Res. 2022, 28, 459–474. [Google Scholar] [CrossRef]
- Nahon, D.F.; Harrison, M.; Roozen, J.P. Modelling flavor release from aqueous sucrose solutions, using mass transfer and partition coefficients. J. Agric. Food Chem. 2000, 48, 1278. [Google Scholar] [CrossRef]
- Delarue, J.; Giampaoli, P. Carbohydrate-flavour interactions. In Flavour in Food; Voilley, A., Etiévant, P., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp. 208–228. [Google Scholar]
- Piccone, P.; Lonzarich, V.; Navarini, L.; Fusella, G.; Pittia, P. Effect of sugars on liquid-vapour partition of volatile compoudns in ready-to-drink coffee beverages. J. Mass Spectrom. 2012, 47, 1120–1131. [Google Scholar] [CrossRef]
- Tsitlakidou, P.; Van Loey, A.; Methven, L.; Elmore, J.S. Effect of sugar reduction on flavour release and sensory perception in an orange juice soft drink model. Food Chem. 2019, 284, 125–132. [Google Scholar] [CrossRef]
- Pan, X.; Wu, J.; Zhang, W.; Liu, J.; Yang, X.; Liao, X.; Hu, X.; Lao, F. Effects of sugar matrices on the release of key aroma compounds in fresh and high hydrostatic pressure processed Tainong mango juices. Food Chem. 2021, 338, 128117. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Pollnitz, A.P.; Pardon, K.H.; Sykes, M.; Sefton, M.A. The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. J. Agric. Food Chem. 2004, 52, 3244–3252. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of an HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2013, 61, 25–33. [Google Scholar] [CrossRef]
- Siebert, T.E.; Smyth, H.E.; Capone, D.L.; Neuwöhner, C.; Pardon, K.H.; Skouroumounis, G.K.; Herderich, M.J.; Sefton, M.A.; Pollnitz, A.P. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal. Bioanal. Chem. 2005, 381, 937–947. [Google Scholar] [CrossRef]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a rating-based variant of check-all-that-apply questions: Rate-all-that-apply (RATA). Food Qual. Pref. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D.W. Chemical and sensory profiles of rosé wines from Australia. Food Chem. 2016, 196, 682–693. [Google Scholar] [CrossRef]
- Smyth, H.E. The Compositional Basis of the Aroma of Riesling and Unwooded Chardonnay Wine. Ph.D. Thesis, The University of Adelaide, Adelaide, SA, Australia, January 2005. [Google Scholar]
Shiraz Sangiovese | Petit Verdot Sangiovese | |||||||
---|---|---|---|---|---|---|---|---|
Untreated | 1% Strip | 13% Strip | 29% Strip | Untreated | 1% Strip | 14% Strip | 29% Strip | |
alcohol (% abv) | 15.1 | 14.5 | 7.9 | 0.3 | 14.2 | 13.8 | 6.8 | 0.3 |
residual sugar (g/L) | 1.4 | 1.4 | 1.6 | 1.4 | 0.7 | 0.7 | 0.8 | 0.8 |
pH | 3.7 | 3.7 | 3.6 | 3.5 | 3.7 | 3.7 | 3.6 | 3.5 |
TA (g/L) | 6.3 | 6.4 | 7.2 | 8.5 | 5.7 | 5.7 | 6.4 | 7.3 |
VA (g/L) | 0.53 | 0.50 | 0.42 | 0.48 | 0.36 | 0.36 | 0.38 | 0.48 |
malic acid (g/L) | 1.35 | 1.42 | 1.67 | 1.99 | <0.10 | <0.10 | <0.10 | <0.10 |
wine color (au) | 6.5 | 6.6 | 7.7 | 9.2 | 4.2 | 4.4 | 5.1 | 5.9 |
wine hue | 0.87 | 0.89 | 0.89 | 0.87 | 0.96 | 0.96 | 0.91 | 0.95 |
phenolics (au) | 48 | 49 | 55 | 65 | 32 | 33 | 38 | 43 |
Treatment | Guaiacol | 4-Methyl Guaiacol | o-Cresol | m-Cresol | p-Cresol | Syringol | 4-Methyl Syringol | GuR | 4MGR | PhR | CrR | SyrGB | 4MSGB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shiraz Sangiovese | Untreated | 49 | 7 | 8 | 10 | 11 | 13 | 3 | 41 | 37 | 26 | 27 | 112 | 7 |
1% strip | 50 | 6 | 7 | 9 | 12 | 13 | 3 | 40 | 34 | 24 | 26 | 107 | 7 | |
13% strip | 52 | 7 | 7 | 10 | 13 | 15 | 3 | 47 | 42 | 28 | 32 | 127 | 8 | |
29% strip | 46 | 6 | 6 | 10 | 13 | 18 | 4 | 55 | 51 | 35 | 38 | 152 | 11 | |
1% strip condensate | 30 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
13% strip condensate | 35 | nd | 5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
29% strip condensate | 80 | 10 | 10 | 5 | 10 | nd | nd | nd | nd | nd | nd | nd | nd | |
Petit Verdot Sangiovese | Untreated | 55 | 10 | 7 | 11 | 12 | 15 | 3 | 39 | 33 | 20 | 26 | 94 | 6 |
1% strip | 56 | 10 | 7 | 11 | 12 | 14 | 3 | 42 | 35 | 23 | 25 | 99 | 6 | |
14% strip | 59 | 11 | 7 | 12 | 13 | 16 | 3 | 50 | 43 | 26 | 32 | 114 | 7 | |
29% strip | 50 | 9 | 6 | 11 | 13 | 17 | 3 | 61 | 51 | 32 | 38 | 138 | 8 | |
1% strip condensate | 35 | 5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
14% strip condensate | 45 | 5 | 5 | nd | 5 | nd | nd | nd | nd | nd | nd | nd | nd | |
29% strip condensate | 65 | 10 | 10 | 5 | 5 | nd | nd | nd | nd | nd | nd | nd | nd |
Treatment | Guaiacol | 4-Methyl Guaiacol | o-Cresol | m-Cresol | p-Cresol | Syringol | 4-Methyl Syringol | GuR | 4MGR | PhR | CrR | SyrGB | 4MSGB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
white juice | 4 | nd | 1 | 2 | 1 | nd | nd | 27 | 23 | 11 | 28 | 34 | 4 |
clarified white juice | 4 | 1 | 2 | 2 | nd | nd | nd | 25 | 22 | 12 | 25 | 29 | 4 |
condensate (pre-IEX) | 4 | 1 | 1 | 2 | nd | 2 | nd | nd | nd | nd | nd | nd | nd |
condensate (post-IEX) | 2 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
reconstituted white juice | 2 | nd | nd | nd | nd | 3 | nd | 27 | 23 | 11 | 28 | 22 | 3 |
white wine | 5 | 1 | 2 | 2 | 2 | nd | nd | na | na | na | na | na | na |
red juice | 10 | 2 | 3 | 3 | nd | nd | nd | 19 | 27 | 10 | 23 | 85 | 11 |
clarified red juice | 9 | 2 | 3 | 3 | nd | nd | nd | 19 | 27 | 10 | 24 | 84 | 11 |
condensate (pre-IEX) | 42 | 6 | 12 | 9 | 2 | 5 | nd | nd | nd | nd | nd | nd | nd |
condensate (post-IEX) | 1 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
reconstituted red juice | 2 | nd | nd | 1 | nd | 22 | 2 | 20 | 28 | 11 | 24 | 62 | 10 |
red wine | 4 | nd | nd | 2 | 1 | 30 | 3 | na | na | na | na | na | na |
Operating | Shiraz Sangiovese | Petit Verdot Sangiovese | ||||
---|---|---|---|---|---|---|
1% Strip | 13% Strip | 29% Strip | 1% Strip | 14% Strip | 29% Strip | |
feed flow (L/h) | 2978 | 1823 | 1793 | 3173 | 1879 | 1852 |
inlet temperature (°C) | 15.9 | 16.5 | 16.7 | 15.6 | 16.0 | 16.3 |
top vapour temperature (°C) | 28.5 | 31.1 | 37.1 | 28.5 | 31.8 | 37.3 |
bottom product temperature (°C) | 31.4 | 36.2 | 48.4 | 31.5 | 37.2 | 48.9 |
vacuum pressure (kPa) | 94.9 | 95.0 | 95.0 | 95.0 | 94.9 | 95.0 |
drive motor current (A) | 11.5 | 11.0 | 12.8 | 11.0 | 10.4 | 13.4 |
steam flow rate (kg/h) | 17 | 127 | 412 | 20 | 145 | 432 |
condensate strip rate (%) | 1.1 | 13.0 | 29.0 | 1.0 | 14.3 | 29.0 |
condensate flow rate (L/h) | 32 | 233 | 519 | 32 | 256 | 522 |
condensor temperature (°C) | 3 | 2 | 4 | 3 | 2 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, C.; Ristic, R.; Saint, J.; Wilkinson, K. Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine. Molecules 2022, 27, 8096. https://doi.org/10.3390/molecules27228096
Puglisi C, Ristic R, Saint J, Wilkinson K. Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine. Molecules. 2022; 27(22):8096. https://doi.org/10.3390/molecules27228096
Chicago/Turabian StylePuglisi, Carolyn, Renata Ristic, Jamie Saint, and Kerry Wilkinson. 2022. "Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine" Molecules 27, no. 22: 8096. https://doi.org/10.3390/molecules27228096
APA StylePuglisi, C., Ristic, R., Saint, J., & Wilkinson, K. (2022). Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine. Molecules, 27(22), 8096. https://doi.org/10.3390/molecules27228096