Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selective Synthesis of Flavonoid Acetamide Derivatives
2.2. High Performance Liquid Chromatography (HPLC) Characterization
2.3. Mass Spectrometry (MS) Characterization
2.4. In Vitro Bioavailability Studies
2.5. Antioxidant Activity by 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.6. Drug Likeness, ADME and Pre-ADMET Properties Prediction
3. Results and Discussion
3.1. Selective Synthesis of Flavonoid Acetamide Derivatives
3.2. High Performance Liquid Chromatography (HPLC) Characterization Results
3.3. Mass Spectrometry (MS) Characterization Results
3.4. In vitro Bioavailability Studies
3.5. Antioxidant Activity by 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay Results
3.6. Structure-Activity Relationship on the Bioavailability and Antioxidant Properties
3.7. Drug Likeness, ADME and Pre-ADMET Properties Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017, 22, 1270. [Google Scholar] [CrossRef] [PubMed]
- Ock, K.C.; Sang, J.C.; Song, W.O. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. J. Nutr. 2007, 137, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G.C. Flavonoid Intake in European Adults (18 to 64 Years). PLoS ONE 2015, 10, e0128132. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; Berenguer, T.; Jakszyn, P.; Barricarte, A.; Ardanaz, E.; Amiano, P.; Dorronsoro, M.; Larrañaga, N.; et al. Estimation of Dietary Sources and Flavonoid Intake in a Spanish Adult Population (EPIC-Spain). J. Am. Diet. Assoc. 2010, 110, 390–398. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure—Activity Relationship: An Update Review. Phyther. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [Green Version]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising Anticancer Agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Kaur, S. Study of Total Phenolic and Flavonoid Content, Antioxidant Activity and Antimicrobial Properties of Medicinal Plants. J. Microbiol. Exp. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Nileeka Balasuriya, B.W.; Vasantha Rupasinghe, H.P. Plant Flavonoids as Angiotensin Converting Enzyme Inhibitors in Regulation of Hypertension. Funct. Foods Health Dis. 2011, 1, 172–188. [Google Scholar] [CrossRef]
- Rahim, A.T.M.A.; Takahashi, Y.; Yamaki, K. Mode of Pancreatic Lipase Inhibition Activity In Vitro by Some Flavonoids and Non-Flavonoid Polyphenols. Food Res. Int. 2015, 75, 289–294. [Google Scholar] [CrossRef]
- Ghani, U.; Nur-e-Alam, M.; Yousaf, M.; Ul-Haq, Z.; Noman, O.M.; Al-Rehaily, A.J. Natural Flavonoid α-Glucosidase Inhibitors from Retama Raetam: Enzyme Inhibition and Molecular Docking Reveal Important Interactions with the Enzyme Active Site. Bioorg. Chem. 2019, 87, 736–742. [Google Scholar] [CrossRef]
- Ng, Z.X.; See, A.N. Effect of in Vitro Digestion on the Total Polyphenol and Flavonoid, Antioxidant Activity and Carbohydrate Hydrolyzing Enzymes Inhibitory Potential of Selected Functional Plant-Based Foods. J. Food Process. Preserv. 2019, 43, 13903. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement Strategies for the Oral Bioavailability of Poorly Water-Soluble Flavonoids: An Overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Teng, H.; Zheng, Y.; Cao, H.; Huang, Q.; Xiao, J.; Chen, L. Enhancement of Bioavailability and Bioactivity of Diet-Derived Flavonoids by Application of Nanotechnology: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef]
- Maan, G.; Sikdar, B.; Kumar, A.; Shukla, R.; Mishra, A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr. Top. Med. Chem. 2020, 20, 1169–1194. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Rosazza, J.P.N. Microbial and Enzymatic Transformations of Flavonoids. J. Nat. Prod. 2006, 69, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers 2021, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Kim, M.K.; Mok, H.; Choo, H.; Chong, Y. Separation of Quercetin’s Biological Activity from Its Oxidative Property through Bioisosteric Replacement of the Catecholic Hydroxyl Groups with Fluorine Atoms. J. Agric. Food Chem. 2012, 60, 6499–6506. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Zhu, W.; Duan, Y.; Qu, W.; Yan, Z. Synthesis, Characterization and Antitumor Activity of the Germanium-Quercetin Complex. Main Group Met. Chem. 2012, 35, 103–109. [Google Scholar] [CrossRef]
- Dolatabadi, J.E.N. Molecular Aspects on the Interaction of Quercetin and Its Metal Complexes with DNA. Int. J. Biol. Macromol. 2011, 48, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, C.; Thomas, J.A. Kinetically Inert Transition Metal Complexes that Reversibly Bind to DNA. Chem. Soc. Rev. 2003, 32, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.H.; Li, N.G.; Tang, Y.P.; Shi, Q.P.; Tang, H.; Li, W.; Zhang, X.; Fu, H.A.; Duan, J.A. Biological Evaluation and SAR Analysis of O-Methylated Analogs of Quercetin as Inhibitors of Cancer Cell Proliferation. Drug Dev. Res. 2014, 75, 455–462. [Google Scholar] [CrossRef]
- Martins, I.L.; Charneira, C.; Gandin, V.; Ferreira Da Silva, J.L.; Justino, G.C.; Telo, J.P.; Vieira, A.J.S.C.; Marzano, C.; Antunes, A.M.M. Selenium-Containing Chrysin and Quercetin Derivatives: Attractive Scaffolds for Cancer Therapy. J. Med. Chem. 2015, 58, 4250–4265. [Google Scholar] [CrossRef]
- Danihelová, M.; Veverka, M.; Šturdík, E.; Jantová, S. Antioxidant Action and Cytotoxicity on HeLa and NIH-3T3 Cells of New Quercetin Derivatives. Interdiscip. Toxicol. 2013, 6, 209–216. [Google Scholar] [CrossRef]
- Cárdenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor Activity of Some Natural Flavonoids and Synthetic Derivatives on Various Human and Murine Cancer Cell Lines. Bioorganic Med. Chem. 2006, 14, 2966–2971. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, S.; Sahoo, S.K. In Silico ADMET and Molecular Docking Study on Searching Potential Inhibitors from Limonoids and Triterpenoids for COVID-19. Comput. Biol. Med. 2020, 124, 103936. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Deng, G.; Zhang, Y.C. Multiple Free Radical Scavenging Reactions of Flavonoids. Dyes Pigments 2022, 198, 109877. [Google Scholar] [CrossRef]
- Son, N.T.; Thuy, P.T.; Van Trang, N. Antioxidative Capacities of Stilbenoid Suaveolensone A and Flavonoid Suaveolensone B: A Detailed Analysis of Structural-Electronic Properties and Mechanisms. J. Mol. Struct. 2021, 1224, 129025. [Google Scholar] [CrossRef]
- Hassan, S.S.u.; Samanta, S.; Dash, R.; Karpiński, T.M.; Habibi, E.; Sadiq, A.; Ahmadi, A.; Bunagu, S. The Neuroprotective Effects of Fisetin, a Natural Flavonoid in Neurodegenerative Diseases: Focus on the Role of Oxidative Stress. Front. Pharmacol. 2022, 13, 1015835. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumria, R.; Garg, M.; Gupta, M. Recent Updates on Free Radicals Scavenging Flavonoids: An Overview. Asian J. Plant Sci. 2010, 9, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Isika, D.; Çeşme, M.; Osonga, F.J.; Sadik, O.A. Novel Quercetin and Apigenin-Acetamide Derivatives: Design, Synthesis, Characterization, Biological Evaluation and Molecular Docking Studies. RSC Adv. 2020, 10, 25046–25058. [Google Scholar] [CrossRef]
- Isika, D.K.; Özkömeç, F.N.; Çeşme, M.; Sadik, O.A. Synthesis, Biological and Computational Studies of Flavonoid Acetamide Derivatives. RSC Adv. 2022, 12, 10037–10050. [Google Scholar] [CrossRef]
- Heřmánková, E.; Zatloukalová, M.; Biler, M.; Sokolová, R.; Bancířová, M.; Tzakos, A.G.; Křen, V.; Kuzma, M.; Trouillas, P.; Vacek, J. Redox Properties of Individual Quercetin Moieties. Free Radic. Biol. Med. 2019, 143, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; Sala, M.; Gomez-Monterrey, I.M.; Musella, S.; Bertamino, A.; Caruso, A.; Sinicropi, M.S.; Sirianni, R.; Puoci, F.; Parisi, O.I.; et al. Biological Activity of 3-Chloro-Azetidin-2-One Derivatives Having Interesting Antiproliferative Activity on Human Breast Cancer Cell Lines. Bioorganic Med. Chem. Lett. 2013, 23, 6401–6405. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Parisi, O.I.; Mordocco, R.A.; Rocca, C.; Puoci, F.; Scrivano, L.; Quintieri, A.M.; Cantafio, P.; Ferla, S.; Brancale, A.; et al. Quercetin Derivatives as Novel Antihypertensive Agents: Synthesis and Physiological Characterization. Eur. J. Pharm. Sci. 2016, 82, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Bioquest, A.A.T. Inc Quest GraphTM IC50 Calculator. Available online: https://www.aatbio.com/tools/ic50-calculator (accessed on 22 August 2022).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Sander, T.; Freyss, J.; Von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an Entirely in-House Developed Drug Discovery Informatics System. J. Chem. Inf. Model. 2009, 49, 232–246. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Çeşme, M. 2-Aminophenol-Based Ligands and Cu(II) Complexes: Synthesis, Characterization, X-Ray Structure, Thermal and Electrochemical Properties, and in Vitro Biological Evaluation, ADMET Study and Molecular Docking Simulation. J. Mol. Struct. 2023, 1271, 134073. [Google Scholar] [CrossRef]
- Yeşilkaynak, T.; Özkömeç, F.N.; Çeşme, M.; Demirdöğen, R.E.; Kutlu, E.; Kutlu, H.M.; Emen, F.M. Synthesis of New Thiourea Derivatives and Metal Complexes: Thermal Behavior, Biological Evaluation, in Silico ADMET Profiling and Molecular Docking Studies. J. Mol. Struct. 2022, 1269, 133758. [Google Scholar] [CrossRef]
- Şahin, İ.; Çeşme, M.; Yüce, N.; Tümer, F. Discovery of New 1,4-Disubstituted 1,2,3-Triazoles: In Silico ADME Profiling, Molecular Docking and Biological Evaluation Studies. J. Mol. Struct. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. J. Comput. Biol. 2020, 27, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R. Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega 2021, 6, 24891–24901. [Google Scholar] [CrossRef] [PubMed]
- Chodankar, R.S.; Mahajan, A.A. Characterization and In-Silico Toxicity Prediction of Degradation Products of Felbamate. Futur. J. Pharm. Sci. 2021, 7, 198. [Google Scholar] [CrossRef]
Compound | MW | TPSA (Ų) | R.B | H.A | H.D | L.V | Log S (ESOL) |
---|---|---|---|---|---|---|---|
4 | 530.44 | 259.72 | 13 | 11 | 5 | 2 | −2.11 |
11 | 384.34 | 155.08 | 7 | 7 | 3 | 0 | −3.17 |
15 | 457.39 | 207.40 | 10 | 9 | 4 | 1 | −2.75 |
5 | 616.53 | 275.02 | 18 | 13 | 4 | 2 | −2.31 |
7 | 499.43 | 205.63 | 10 | 10 | 3 | 1 | −2.51 |
Compounds | Toxicity Prediction | Name of Test | Result |
---|---|---|---|
4 | Ames | Ames TA100 (+S9) | Negative |
Ames TA100 (−S9) | Negative | ||
Ames TA1535 (+S9) | Negative | ||
Ames TA1535 (−S9) | Negative | ||
Carcinogenicity | Carcinogenicity (Mouse) | Negative | |
Carcinogenicity (Rat) | Negative | ||
11 | Ames | Ames TA100 (+S9) | Negative |
Ames TA100 (−S9) | Negative | ||
Ames TA1535 (+S9) | Negative | ||
Ames TA1535 (−S9) | Negative | ||
Carcinogenicity | Carcinogenicity (Mouse) | Positive | |
Carcinogenicity (Rat) | Negative | ||
15 | Ames | Ames TA100 (+S9) | Negative |
Ames TA100 (−S9) | Negative | ||
Ames TA1535 (+S9) | Negative | ||
Ames TA1535 (−S9) | Negative | ||
Carcinogenicity | Carcinogenicity (Mouse) | Positive | |
Carcinogenicity (Rat) | Negative | ||
5 | Ames | Ames TA100 (+S9) | Negative |
Ames TA100 (−S9) | Negative | ||
Ames TA1535 (+S9) | Negative | ||
Ames TA1535 (−S9) | Negative | ||
Carcinogenicity | Carcinogenicity (Mouse) | Negative | |
Carcinogenicity (Rat) | Negative | ||
7 | Ames | Ames TA100 (+S9) | Negative |
Ames TA100 (−S9) | Negative | ||
Ames TA1535 (+S9) | Negative | ||
Ames TA1535 (−S9) | Negative | ||
Carcinogenicity | Carcinogenicity (Mouse) | Negative | |
Carcinogenicity (Rat) | Negative |
Compound | Toxicity | Drug-Relevant Properties | ||||||
---|---|---|---|---|---|---|---|---|
Irritant Effect | Reproductive Effect | Tumorigenicity | Mutagenic Effect | cLogP | Drug-Likeness | Solubility | Drug Score | |
4 | Green | Green | Green | Red | −2.33 | 1.57 | −2.96 | 0.36 |
11 | Green | Red | Green | Green | 0.35 | 2.71 | −3.19 | 0.48 |
15 | Green | Green | Green | Green | −0.99 | 1.95 | −3.06 | 0.71 |
5 | Green | Green | Green | Red | −2.09 | −2.36 | −3.48 | 0.18 |
7 | Green | Green | Green | Red | −0.66 | −5.47 | −3.57 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isika, D.K.; Sadik, O.A. Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. Molecules 2022, 27, 8133. https://doi.org/10.3390/molecules27238133
Isika DK, Sadik OA. Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. Molecules. 2022; 27(23):8133. https://doi.org/10.3390/molecules27238133
Chicago/Turabian StyleIsika, Daniel Kasungi, and Omowunmi A. Sadik. 2022. "Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties" Molecules 27, no. 23: 8133. https://doi.org/10.3390/molecules27238133
APA StyleIsika, D. K., & Sadik, O. A. (2022). Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. Molecules, 27(23), 8133. https://doi.org/10.3390/molecules27238133