Comparison of Different Techniques for the Determination of Platinized Cytostatic Drugs in Urine Samples
Abstract
:1. Introduction
2. Results
2.1. LC-UV(DAD) Method
2.2. LC-MS Methods
2.2.1. SIM Mode
2.2.2. MRM Mode
2.2.3. Derivatization and MRM Mode
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Standard Solutions
4.3. Instruments
4.3.1. LC Coupled to UV-DAD Detector
4.3.2. LC Coupled to a MS Detector
4.4. Sample Collection and Treatment
5. Conclusions
6. Application
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Osawa, T.; Naito, T.; Suzuki, N.; Imai, K.; Nakanishi, K.; Kawakami, J. Validated method using liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of contamination of the exterior surface of vials containing platinum anticancer drugs. Talanta 2011, 85, 1614–1620. [Google Scholar] [CrossRef]
- Burger, H.; Loos, W.J.; Eechoute, K.; Verweij, J.; Mathijssen, R.H.J.; Wiemer, E.A.C. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist. Updat. 2011, 14, 22–34. [Google Scholar] [CrossRef]
- Ardizzoni, A.; Boni, L.; Tiseo, M.; Fossella, F.V.; Schiller, J.H.; Paesmans, M.; Radosavljevic, D.; Paccagnella, A.; Zatloukal, P.; Mazzanti, P.; et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: An individual patient data meta-analysis. J. Natl. Cancer Inst. 2007, 99, 847–857. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Kavanagh, J.J.; Hu, W.; Bast, R.C.J. Clinical application of oxaliplatin in epithelial ovarian cancer. Int. J. Gynecol. cancer Off. J. Int. Gynecol. Cancer Soc. 2006, 16, 1717–1732. [Google Scholar] [CrossRef]
- Dehghanpour, S.; Pourzamani, H.R.; Amin, M.M.; Ebrahimpour, K. Evaluation of toxic effects of platinum-based antineoplastic drugs (cisplatin, carboplatin and oxaliplatin) on green alga Chlorella vulgaris. Aquat. Toxicol. 2020, 223, 105495. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.S.; Kim, J.-W. Occupational safety of doxorubicin, cisplatin, paclitaxel, and cremophor-free polymeric micelle formulated paclitaxel during rotational intraperitoneal pressurized aerosol chemotherapy. Gynecol. Oncol. 2021, 162, S216. [Google Scholar] [CrossRef]
- Ametsbichler, P.; Böhlandt, A.; Nowak, D.; Schierl, R. Occupational exposure to cisplatin/oxaliplatin during Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC)? Eur. J. Surg. Oncol. 2018, 44, 1793–1799. [Google Scholar] [CrossRef]
- Roussin, F.; Taibi, A.; Canal-Raffin, M.; Cantournet, L.; Durand-Fontanier, S.; Druet-Cabanac, M.; El Balkhi, S.; Maillan, G. Assessment of workplace environmental contamination and occupational exposure to cisplatin and doxorubicin aerosols during electrostatic pressurized intraperitoneal aerosol chemotherapy. Eur. J. Surg. Oncol. 2021, 47, 2939–2947. [Google Scholar] [CrossRef]
- Fonseca, T.G.; Morais, M.B.; Rocha, T.; Abessa, D.M.S.; Aureliano, M.; Bebianno, M.J. Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. Sci. Total Environ. 2017, 575, 162–172. [Google Scholar] [CrossRef]
- Graham, M.A.; Lockwood, G.F.; Greenslade, D.; Brienza, S.; Bayssas, M.; Gamelin, E. Clinical pharmacokinetics of oxaliplatin: A critical review. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 1205–1218. [Google Scholar]
- Siddik, Z.H.; Jones, M.; Boxall, F.E.; Harrap, K.R. Comparative distribution and excretion of carboplatin and cisplatin in mice. Cancer Chemother. Pharmacol. 1988, 21, 19–24. [Google Scholar] [CrossRef]
- Guichard, N.; Guillarme, D.; Bonnabry, P.; Fleury-Souverain, S. Antineoplastic drugs and their analysis: A state of the art review. Analyst 2017, 142, 2273–2321. [Google Scholar] [CrossRef] [Green Version]
- Baumann, R.A.; Gooijer, C.; Velthorst, N.H.; Frei, R.W.; Klein, I.; van der Vijgh, W.J.F. Quantitative determination of cisplatin in body fluids by liquid chromatography with quenched phosphorescence detection. J. Pharm. Biomed. Anal. 1987, 5, 165–170. [Google Scholar] [CrossRef]
- Zalba, S.; Navarro-Blasco, I.; Moreno, D.; Garrido, M.J. Application of non-aggressive sample preparation and electrothermal atomic absorption spectrometry to quantify platinum in biological matrices after cisplatin nanoparticle administration. Microchem. J. 2010, 96, 415–421. [Google Scholar] [CrossRef]
- Pierre, P.V.; Wallin, I.; Eksborg, S.; Ehrsson, H. Quantitative liquid chromatographic determination of intact cisplatin in blood with microwave-assisted post-column derivatization and UV detection. J. Pharm. Biomed. Anal. 2011, 56, 126–130. [Google Scholar] [CrossRef]
- Myers, A.L.; Zhang, Y.-P.; Kawedia, J.D.; Trinh, V.A.; Tran, H.; Smith, J.A.; Kramer, M.A. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags. J. Oncol. Pharm. Pract. 2014, 22, 31–36. [Google Scholar] [CrossRef]
- Cairns, W.R.L.; Ebdon, L.; Hill, S.J. A high performance liquid chromatography—Inductively coupled plasma-mass spectrometry interface employing desolvation for speciation studies of platinum in chemotherapy drugs. Fresenius. J. Anal. Chem. 1996, 355, 202–208. [Google Scholar] [CrossRef]
- Vidmar, J.; Martinčič, A.; Milačič, R.; Ščančar, J. Speciation of cisplatin in environmental water samples by hydrophilic interaction liquid chromatography coupled to inductively coupled plasma mass spectrometry. Talanta 2015, 138, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Ida, M.; LaFayette, A.; Fast, D.M. Determination of carboplatin in human plasma using HybridSPE-precipitation along with liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 2162–2170. [Google Scholar] [CrossRef]
- Fleury-Souverain, S.; Maurin, J.; Guillarme, D.; Rudaz, S.; Bonnabry, P. Development and application of a liquid chromatography coupled to mass spectrometry method for the simultaneous determination of 23 antineoplastic drugs at trace levels. J. Pharm. Biomed. Anal. 2022, 221, 115034. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Mini, E.; Squillaci, D.; Marrubini, G.; Bartolucci, G.; Bucaletti, E.; Cappelli, G.; Trevisani, L.; Arcangeli, G. Characterization and separation of platinum-based antineoplastic drugs by zwitterionic hydrophilic interaction liquid chromatography (Hilic)–tandem mass spectrometry, and its application in surface wipe sampling. Separations 2021, 8, 69. [Google Scholar] [CrossRef]
- Gerina-Berzina, A.; Hasnere, S.; Kolesovs, A.; Umbrashko, S.; Muceniece, R.; Nakurte, I. Determination of cisplatin in human blood plasma and urine using liquid chromatography-mass spectrometry for oncological patient s with a variety of fatty tissue mass for prediction of to xicity. Exp. Oncol. 2017, 39, 124–130. [Google Scholar] [CrossRef]
- Tang, C.; Li, C.; Tang, C.; Zhan, W.; Zheng, H.; Peng, X. Quantitative determination of platinum derived from cisplatin in human plasma ultrafiltrate using derivatization with diethyldithiocarbamate and liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Anal. Methods 2013, 5, 7117–7126. [Google Scholar] [CrossRef]
- Shaik, A.N.; Altomare, D.A.; Lesko, L.J.; Trame, M.N. Development and validation of a LC–MS/MS assay for quantification of cisplatin in rat plasma and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1046, 243–249. [Google Scholar] [CrossRef]
- Eurpean Commission. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Off. J. Eur. Communities 2002, 221, 8–36. [Google Scholar]
Compound | Precursor Ion (m/z) | Product Ions (Quantifier/Qualifier) (m/z) | CE (eV) | Fragmentor (V) |
---|---|---|---|---|
Cisplatin | 317.9 | 264.5/300.7 | 15/15 | 166 |
Carboplatin | 372.0 | 355.0/294.0 | 10/20 | 166 |
Oxaliplatin | 398.0 | 308.0/96.0 | 20/25 | 166 |
Compound | Precursor Ion (m/z) | Product ions (Quantifier/Qualifier) (m/z) | CE (eV) | Fragmentor (V) | RT (min) |
---|---|---|---|---|---|
Pt-DDTC | 492 | 116.0/88.0 | 25/25 | 166 | 5.346 |
Quality Parameter | LC-UV(DAD) | LC-MS (SIM) | Derivatization + LC-MS/MS (MRM) | LC-MS/MS (MRM) | |
---|---|---|---|---|---|
Linearity (R2) | Cisplatin | 0.999 | 0.991 | 0.998 | 0.991 |
Oxaliplatin | 0.999 | 0.996 | 0.992 | ||
Carboplatin | 0.998 | 0.991 | 0.994 | ||
Precision (RSD%) | Cisplatin | 1.5 | 12 | 8 | 7.9 |
Oxaliplatin | 2.0 | 10 | 7.6 | ||
Carboplatin | 5.1 | 15 | 12.8 | ||
Selectivity | No (Interferences) | Yes | No (Single product as sum) | Yes | |
MDL (µg mL−1) | Cisplatin | 1.5 | 1.5 | 0.0003 | 0.30 |
Oxaliplatin | 1.5 | 0.75 | 0.015 | ||
Carboplatin | 7.5 | 2.25 | 0.15 | ||
MQL (µg mL−1) | Cisplatin | 5.0 | 5.0 | 0.001 | 1.0 |
Oxaliplatin | 5.0 | 2.5 | 0.05 | ||
Carboplatin | 25 | 7.5 | 0.50 |
Sample | Compound | Concentration (µg mL−1) |
---|---|---|
01 | Cisplatin | 11.6 |
02 | Cisplatin | 7.34 |
03 | Oxaliplatin | 0.33 |
04 | Cisplatin | 8.43 |
05 | Oxaliplatin | 11.9 |
06 | Carboplatin | 42.5 |
07 | Oxaliplatin | 1.07 |
08 | Carboplatin | 58.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Fernández-Sanfrancisco, O.; Alonso, E. Comparison of Different Techniques for the Determination of Platinized Cytostatic Drugs in Urine Samples. Molecules 2022, 27, 8139. https://doi.org/10.3390/molecules27238139
Arenas M, Martín J, Santos JL, Aparicio I, Fernández-Sanfrancisco O, Alonso E. Comparison of Different Techniques for the Determination of Platinized Cytostatic Drugs in Urine Samples. Molecules. 2022; 27(23):8139. https://doi.org/10.3390/molecules27238139
Chicago/Turabian StyleArenas, Marina, Julia Martín, Juan Luis Santos, Irene Aparicio, Omar Fernández-Sanfrancisco, and Esteban Alonso. 2022. "Comparison of Different Techniques for the Determination of Platinized Cytostatic Drugs in Urine Samples" Molecules 27, no. 23: 8139. https://doi.org/10.3390/molecules27238139
APA StyleArenas, M., Martín, J., Santos, J. L., Aparicio, I., Fernández-Sanfrancisco, O., & Alonso, E. (2022). Comparison of Different Techniques for the Determination of Platinized Cytostatic Drugs in Urine Samples. Molecules, 27(23), 8139. https://doi.org/10.3390/molecules27238139