Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Molecular Identification and Phylogenetic Analysis of the Bacteria Isolate A30804
2.3. Fermentation and Extraction of Bacterial Crude Extract
2.4. Isolation and Structure Elucidation
2.5. Chemical Structural Data
Pos. | 9 | 10 | 11 | 12 | ||||
---|---|---|---|---|---|---|---|---|
13C | 1H, Mult. (J = Hz) | 13C | 1H, Mult. (J = Hz) | 13C | 1H, Mult. (J = Hz) | 13C | 1H, Mult. (J = Hz) | |
1 | 167.7, C | – | 169.8, C | – | * | – | 168.7,C | – |
2 | 102.5, C | – | 104.3, C | – | 103.6 | – | * | – |
3 | 203.0, C | – | 206.1, C | – | * | – | 205.1, C | – |
4 | 55.8, C | – | 56.1, C | – | 56.0, C | – | 56.0, C | – |
5 | 41.8, CH | 1.79, m | 41.4, CH | 1.81, m | 41.6, CH | 1.80, m | 41.5, CH | 1.82, m |
6 | 23.9, CH2 | 1.32, m; 1.80, m | 23.9, CH2 | 1.38, m; 1.81, m | 23.9, CH2 | 1.37, m; 1.82, m | 23.9, CH2 | 1.31, m; 1.84, m |
7 | 33.4, CH2 | 1.63 (2H), m; | 33.3, CH2 | 1.65 (2H), m | 33.4, CH2 | 1.65 (2H), m | 33.1, CH2 | 1.54 (2H), m |
8 | 36.2, CH | 2.12, m | 36.1, CH | 2.14, m | 36.1, CH | 2.12, m | 44.1, CH | 1.77, m |
9 | 77.5, CH | 3.41, dd (5.2, 10.6) | 77.2, CH | 3.42, dd (5.2, 10.6) | 77.3, CH | 3.42, dd (5.1, 10.7) | 77.7, CH | 3.44, dd (4.8, 10.4) |
10 | 40.8, CH | 2.05, m | 40.6, CH | 2.08, t (10.7) | 40.7, CH | 2.06, t (10.2) | 41.4, CH | 2.01, m |
11 | 125.5, CH | 5.79, d (9.9) | 125.7, CH | 5.82, d (9.6) | 125.6, CH | 5.80, d (10.2) | 125.7, CH | 5.83, d (10.3) |
12 | 133.0, CH | 5.65, m | 132.1, CH | 5.67, ddd (2.3, 5.8, 10.1) | 132.7, CH | 5.66, ddd (2.4, 6.0, 9.9) | 132.4, CH | 5.65, ddd (2.3, 5.7, 9.9) |
13 | 43.3, CH | 2.98, m | 44.1, CH | 2.90, br q (5.3) | 43.9, CH | 2.96, m | 43.9, CH | 2.92, m |
14 | 38.1, CH2 | 1.91, m; 2.00, m | 38.0, CH2 | 1.99 (2H), m | 38.0, CH2 | 1.96 (2H), m | 38.0, CH2 | 1.97 (2H), m |
15 | 132.7, CH | 5.24, m | 132.3, CH | 5.17, m | 132.7, CH | 5.21, m | 132.4, CH | 5.19, m |
16 | 128.7, CH | 5.40, m | 129.3, CH | 5.41, m | 129.1, CH | 5.39, m | 129.4, CH | 5.38, m |
17 | 45.7, CH2 | 2.34, m; 2.46, dd (9.3, 12.4) | 46.0, CH2 | 2.34, m; 2.44, m | 45.9, CH2 | 2.33, m; 2.42, m | 46.0, CH2 | 2.33, m; 2.43, m |
18 | 139.5, C | – | 139.3, C | 139.0, C | 139.1, C | |||
19 | 127.3, CH | 4.99, br s | 128.0, CH | 4.94, br s | 128.5, CH | 4.95, br s | 128.3, CH | 4.94, br s |
20 | 44.0, C | – | 43.5, C | 43.6, C | – | 43.6, C | – | |
21 | 144.7, CH | 7.03, d (1.1) | 128.8, CH | 5.57, br t (1.4) | 129.1, C | 5.55, br s | 129.2, C | 5.56, br t (1.7) |
22 | 133.0, C | – | 134.9, C | 134.7, C | – | 134.8, C | – | |
23 | 37.5, CH | 2.64, m | 42.0, CH | 2.17, m | 39.7, CH | 2.27, m | 42.1, CH | 2.15, m |
24 | 30.7, CH2 | 1.79, m; 2.35, m | 31.5, CH2 | 1.75, m; 2.46, m | 35.9, CH2 | 1.69, m; 2.42, m | 31.4, CH2 | 1.74, m; 2.40, m |
25 | 86.3, C | – | 87.8, C | – | 87.6, C | – | 87.6, C | – |
26 | 200.6, C | – | 200.8, C | – | 201.1, C | – | 200.9, C | – |
27 | 24.1, CH2 | 1.83, m; 2.75, q (7.5) | 24.1, CH2 | 1.89, m; 2.72, m | 24.1, CH2 | 1.85, m; 2.72, m | 24.1, CH2 | 1.80, m; 2.72, m |
28 | 13.3, CH3 | 0.93, t (7.5) | 12.2, CH3 | 0.90, t (7.5) | 12.4, CH3 | 0.91, t (7.6) | 12.4, CH3 | 0.90, m |
29 | 12.7, CH3 | 1.00, d (7.0) | 12.6, CH3 | 1.00, d (7.0) | 12.6, CH3 | 1.00, d (6.9) | 18.4, CH2 | 1.76, m |
30 | 27.0, CH3 | 1.27, s | 27.6, CH3 | 1.26, s | 27.4, CH3 | 1.25, s | 13.0, CH3 | 0.92, m |
31 | 171.4, C | – | 22.2, CH3 | 1.79, s | 22.3, CH3 | 1.77, s | 27.5, CH3 | 1.25, s |
32 | 27.3, CH2 | 1.72 (2H), m | 26.2, CH2 | 1.53, dq (7.2, 10.5); 1.79, m | 26.2, CH2 | 1.61 (2H), m | 22.3, CH3 | 1.78, s |
33 | 12.5, CH3 | 0.91, t (7.6) | 13.3, CH3 | 0.91, t (7.4) | 23.7, CH2 | 1.34 (2H), m | 26.2, CH2 | 1.60, m; 1.77, m |
34 | – | – | – | – | 14.3, CH3 | 0.91, t (7.6) | 13.4, CH3 | 0.91, m |
18-CH3 | 19.1, CH3 | 1.76, s | 18.6, CH3 | 1.77, s | 18.6, CH3 | 1.77, s | 18.6, CH3 | 1.77, s |
2.6. Biological Assays
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The Lancet. Antimicrobial Resistance: Time to Repurpose the Global Fund. Lancet 2022, 399, 335. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, M.; Gotfredsen, C.H.; Sassetti, E.; Melchiorsen, J.; Clausen, M.H.; Gram, L.; Ding, L. Azodyrecins A-C: Azoxides from a Soil-Derived Streptomyces Species. J. Nat. Prod. 2020, 83, 3519–3525. [Google Scholar] [CrossRef] [PubMed]
- Sirota, F.L.; Goh, F.; Low, K.-N.; Yang, L.-K.; Crasta, S.C.; Eisenhaber, B.; Eisenhaber, F.; Kanagasundaram, Y.; Ng, S.B. Isolation and Identification of an Anthracimycin Analogue from Nocardiopsis Kunsanensis, a Halophile from a Saltern, by Genomic Mining Strategy. J. Genom. 2018, 6, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Rho, J.R.; Subramaniam, G.; Choi, H.; Kim, E.H.; Ng, S.P.; Yoganathan, K.; Ng, S.; Buss, A.D.; Butler, M.S.; Gerwick, W.H. Gargantulide A, a Complex 52-Membered Macrolactone Showing Antibacterial Activity from Streptomyces sp. Org. Lett. 2015, 17, 1377–1380. [Google Scholar] [CrossRef] [Green Version]
- Goh, F.; Zhang, M.M.; Lim, T.R.; Low, K.N.; Nge, C.E.; Heng, E.; Yeo, W.L.; Sirota, F.L.; Crasta, S.; Tan, Z.; et al. Identification and Engineering of 32 Membered Antifungal Macrolactone Notonesomycins. Microb. Cell Fact. 2020, 19, 71. [Google Scholar] [CrossRef] [Green Version]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Nakashima, T. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, I.; Girão, M.; Alexandrino, D.A.M.; Ribeiro, T.; Santos, C.; Pereira, F.; Mucha, A.P.; Urbatzka, R.; Leão, P.N.; Carvalho, M.F. Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms 2020, 8, 1691. [Google Scholar] [CrossRef]
- Igarashi, Y.; Iida, T.; Oku, N.; Watanabe, H.; Furihata, K.; Miyanouchi, K. Nomimicin, a New Spirotetronate-Class Polyketide from an Actinomycete of the Genus Actinomadura. J. Antibiot. 2012, 65, 355–359. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, T.; Yang, T.; Fukaya, K.; Harunari, E.; Saito, S.; Yamada, K.; Imada, C.; Urabe, D.; Igarashi, Y. Nomimicins B-D, New Tetronate-Class Polyketides from a Marine-Derived Actinomycete of the Genus Actinomadura. Beilstein J. Org. Chem. 2021, 17, 2194–2202. [Google Scholar] [CrossRef]
- Ng, S.B.; Kanagasundaram, Y.; Fan, H.; Arumugam, P.; Eisenhaber, B.; Eisenhaber, F. The 160K Natural Organism Library, a Unique Resource for Natural Products Research. Nat. Biotechnol. 2018, 36, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Lacoske, M.H.; Theodorakis, E.A. Spirotetronate Polyketides as Leads in Drug Discovery. J. Nat. Prod. 2015, 78, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Momose, I.; Hirosawa, S.; Nakamura, H.; Naganawa, H.; Iinuma, H.; Ikeda, D.; Takeuchi, T. Decatromicins A and B, New Antibiotics Produced by Actinomadura sp. MK73-NF4. II. Structure Determination. J. Antibiot. 1999, 52, 787–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momose, I.; Ilnuma, H.; Klnoshita, N.; Momose, Y.; Kunimoto, S.; Hamadaand, M.; Takeuchi, T. Decatromicins A and B, New Antibiotics Produced by Actinomadura Sp. MK73-NF4. I. Taxonomy, Isolation, Physico-Chemical Properties and Biological Activities. J. Antibiot. 1999, 52, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Torigoe, K.; Nakajima, S.; Suzuki, H.; Nagashima, M.; Ojiri, K.; Suda, H. Antibacterial Substance BE-45722 Compounds. Japan Patent No. JPH09227587A, 2 September 1997. Available online: https://worldwide.espacenet.com/patent/search/family/013236060/publication/JPH09227587A?q=JPH09227587A (accessed on 10 November 2022).
- Euanorasetr, J.; Intra, B.; Mongkol, P.; Chankhamhaengdecha, S.; Tuchinda, P.; Mori, M.; Shiomi, K.; Nihira, T.; Panbangred, W. Spirotetronate Antibiotics with Anti-Clostridium Activity from Actinomadura sp. 2EPS. World J. Microbiol. Biotechnol. 2015, 31, 391–398. [Google Scholar] [CrossRef]
- Takeuchi, T.; Iinuma, H.; Naganawa, H.; Hamada, M.; Momose, I. New Antibiotics Decatromicin A and B and Production of the same. Japan Patent No. JPH11193280A, 21 July 1999. Available online: https://worldwide.espacenet.com/patent/search/family/018469139/publication/JPH11193280A?q=JPH11193280A (accessed on 10 November 2022).
- Lam, K.S.; Hesler, G.A.; Gustavson, D.R.; Berry, R.L.; Tomita, K.; Macbeth, J.L.; Rossf, J.; Miller, D.; Forenza, S. Pyrrolosporin A, a New Antitumor Antibiotic from Micromonospora sp. C39217-R109-7 I. Taxonomy of Producing Organism, Fermentation and Biological Activity. J. Antibiot. 1996, 49, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, D.R.; Colson, K.L.; Klohr, S.E.; Lee, M.S.; Matson, J.A.; Brinen, L.S.; Clardy, J. Pyrrolosporin A, a New Antitumor Antibiotic from Micromonospora sp. C39217-R109-7. II. Isolation, Physico-Chemical Properties, Spectroscopic Study and X-Ray Analysis. J. Antibiot. 1996, 49, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, J.R.; Sato, T.; Weightman, A.J.; Martin, T.A.; Fry, J.C.; Hiom, S.J.; Wade, W.G. Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S RRNA. Appl. Environ. Microbiol. 1998, 64, 795–799. [Google Scholar] [CrossRef]
- Mazzetti, C.; Ornaghi, M.; Gaspari, E.; Parapini, S.; Maffioli, S.; Sosio, M.; Donadio, S. Halogenated Spirotetronates from Actinoallomurus. J. Nat. Prod. 2012, 75, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
Pos. | 7 | 8 | ||
---|---|---|---|---|
13C, Type | 1H, Mult. (J = Hz) | 13C, Type | 1H, Mult. (J = Hz) | |
1 | 164.7, C | – | 169.5, C | – |
2 | 104.5, C | – | 104.0, C | – |
3 | 206.2, C | – | 205.5, C | – |
4 | 56.1, C | – | 56.0, C | – |
5 | 41.9, CH | 1.82, m | 41.7, CH | 1.84, m |
6 | 23.9, CH2 | 1.37, m; 1.80, m | 24.0, CH2 | 1.38, m; 1.81, m |
7 | 33.3, CH2 | 1.59 (2H), m | 33.2, CH2 | 1.63 (2H), m |
8 | 35.6, CH | 2.34, m | 35.4, CH | 2.40, m |
9 | 87.3, CH | 3.37, dd (5.3, 10.2) | 87.4, CH | 3.39, m |
10 | 40.0, CH | 2.15, t (10.7) | 39.7, CH | 2.17, t (10.6) |
11 | 125.4, CH | 5.59, m | 125.5, CH | 5.68, t (10.4) |
12 | 132.8, CH | 5.69, ddd (2.2, 5.9, 10.1) | 132.6, CH | 5.70, ddd (1.4, 5.2, 9.9) |
13 | 44.8, CH | 2.94, m | 43.9, CH | 2.90, br dd (4.5, 9.1) |
14 | 37.8, CH2 | 1.95 (2H), m | 38.0, CH2 | 2.02 (2H), m |
15 | 129.0, CH | 5.30, m | 132.5, CH | 5.21, m |
16 | 129.0, CH | 5.35, m | 129.1, CH | 5.43, ddd (5.3, 9.5, 14.9) |
17 | 35.2, CH2 | 2.53 (2H), m | 45.7, CH2 | 2.37, dd (4.8, 12.3); 2.50, dd (9.0, 12.0) |
18 | 132.3, CH | 5.63, dd (8.1, 16.1) | 140.2, C | – |
19 | 134.2, CH | 5.41, d (15.9) | 126.8, CH | 5.00, br s |
20 | 43.3, C | – | 44.0, C | – |
21 | 143.9, CH | 6.76, d (1.8) | 143.9, CH | 7.06, d (1.5) |
22 | 133.8, C | – | 132.8, C | – |
23 | 37.5, CH | 2.65, m | 37.2, CH | 2.70, m |
24 | 31.5, CH2 | 1.83, m; 2.46, m | 31.0, CH2 | 1.83, m; 2.47, m |
25 | 86.7, C | – | 86.9, C | – |
26 | 200.4, C | – | 200.4, C | – |
27 | 24.2, CH2 | 1.82, m; 2.74, m | 24.1, CH2 | 1.87, m; 2.73, m |
28 | 12.4, CH3 | 0.94, t (7.5) | 12.2, CH3 | 0.92, t (7.2) |
29 | 13.5, CH3 | 1.01, d (7.0) | 13.5, CH3 | 1.04, d (7.0) |
30 | 24.4, CH3 | 1.28, s | 26.9, CH3 | 1.31, s |
31 | 170.6, C | – | 170.5 | – |
32 | 27.6, CH2 | 1.53, m; 1.65, m | 27.3, CH2 | 1.60, m; 1.75, m |
33 | 13.6, CH3 | 0.91, t (7.2) | 13.2, CH3 | 0.92, t (7.2) |
1′ | 102.7, CH | 4.47, d (8.8) | 103.0, CH | 4.52, dd (1.3, 9.6) |
2′ | 40.7, CH2 | 1.56, m; 2.22, m | 41.2, CH2 | 1.59, m; 2.27, ddd (1.3, 4.6, 12.4) |
3′ | 70.0, CH | 3.72, dt (4.9, 11.2) | 70.3, CH | 3.71, ddd (4.9, 9.8, 11.3) |
4′ | 59.8, CH | 3.61, t (9.5) | 59.4, CH | 3.57, t (9.8) |
5′ | 72.6, CH | 3.44, m | 72.5, CH | 3.42, m |
6′ | 18.9, CH3 | 1.24, d (6.2) | 18.7, CH3 | 1.22, d (6.2) |
2″ | 129.1, C | – | 127.0 | – |
3″ | 121.9, C | – | 122.9, CH | 6.90, dd (1.4, 2.5) |
4″ | 110.3, C | – | 110.1, CH | 6.16, dd (2.6, 3.6) |
5″ | 116.8, C | – | 111.7, CH | 6.82, dd (1.4, 3.7) |
6″ | 161.1, C | – | 164.3, C | – |
18-CH3 | – | – | 19.1, CH3 | 1.79, s |
Target Organism or Cell Line (ATCC® Number) | Minimal Inhibitory Concentration, MIC90 of Decatromicin Compounds (μM) | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Acinetobacter baumannii (ATCC® 19606™) | >100 | 28.3 | 12.3 | >100 | >100 | >100 | 36.3 | >100 | >100 | >100 | >100 | >100 |
Staphylococcus aureus Rosenbach (ATCC® 25923™) | 3.3 | 1.4 | 1.7 | 6.4 | 5.3 | 3.4 | 2.3 | 15.7 | >100 | 17.5 | >100 | 15.6 |
Target organism or cell line (ATCC® number) | Minimal bactericidal concentration, MBC90 of decatromicin compounds (μM) | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Acinetobacter baumannii (ATCC® 19606™) | >100 | >100 | 30.4 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
Staphylococcus aureus Rosenbach (ATCC® 25923™) | 3.9 | 3.1 | 8.7 | 7.5 | 7.6 | 4.7 | 7.4 | 16.3 | >100 | >100 | >100 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, K.-C.; Chin, E.J.; Wibowo, M.; Tan, Z.Y.; Yang, L.-K.; Seow, D.C.; Leong, C.-Y.; Ng, V.W.; Ng, S.-B.; Kanagasundaram, Y. Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804. Molecules 2022, 27, 8196. https://doi.org/10.3390/molecules27238196
Ching K-C, Chin EJ, Wibowo M, Tan ZY, Yang L-K, Seow DC, Leong C-Y, Ng VW, Ng S-B, Kanagasundaram Y. Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804. Molecules. 2022; 27(23):8196. https://doi.org/10.3390/molecules27238196
Chicago/Turabian StyleChing, Kuan-Chieh, Elaine J. Chin, Mario Wibowo, Zann Y. Tan, Lay-Kien Yang, Deborah C. Seow, Chung-Yan Leong, Veronica W. Ng, Siew-Bee Ng, and Yoganathan Kanagasundaram. 2022. "Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804" Molecules 27, no. 23: 8196. https://doi.org/10.3390/molecules27238196
APA StyleChing, K. -C., Chin, E. J., Wibowo, M., Tan, Z. Y., Yang, L. -K., Seow, D. C., Leong, C. -Y., Ng, V. W., Ng, S. -B., & Kanagasundaram, Y. (2022). Antibacterial Spirotetronate Polyketides from an Actinomadura sp. Strain A30804. Molecules, 27(23), 8196. https://doi.org/10.3390/molecules27238196