Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Optically Active Dialkoxysulfonium Salts 8
2.2. Stereochemical Course of the Alkaline Hydrolysis of Dialkoxysulfonium Salts 8
2.3. DFT Study on the Mechanism-Stereochemistry Relationship in the Alkaline Hydrolysis of Sulfonium Salts 8 and a Question of the Racemization of Sulfinate Products
3. Materials and Methods
3.1. General Experimental Details
3.2. Synthetic Procedures
3.2.1. Asymmetric Synthesis of Alkyl Isopropanesulfinates 11a–f-General Procedure
3.2.2. Synthesis of Optically Active Alkoxy(methoxy)isopropyl Sulfonium Trifluoromethanesulfonates 8A–E-General Procedure
3.2.3. Alkaline hydrolysis of Alkoxy(methoxy)isopropyl Sulfonium Trifluoromethanesulfonates 8A–E-General Procedure
3.3. Theoretical Methods
4. Conclusions
- A series of optically active alkyl isopropanesulfinates 11 was prepared by asymmetric synthesis, developed in our laboratory;
- The relatively stable alkoxy(methoxy)sulfonium salts 8 were obtained by methylation of the 11 sulfinates with methyl trifluoromethanesulfonate;
- Alkaline hydrolysis of the sulfonium salts 8 afforded two 11 sulfinates, methyl isopropanesulfinate and alkyl isopropanesulfinate—both with a slightly prevailing inversion of their configuration at the sulfonium sulfur atom;
- A high extent of racemization of the sulfinate products is due to competitive side-reactions, with the attack of the hydroxy anion at the carbon atom of the methoxy group and the identity alkoxy exchange reactions in alkyl sulfinates being hydrolysis products;
- DFT calculations revealed that alkaline hydrolysis of 8 salts occurs stepwise according to addition-elimination (A–E) mechanisms involving the formation of tetracoordinate intermediates with a trigonal bipiramidal structure;
- The hydrolysis products, i.e., the methyl and alkyl sulfinates, were formed via the most stable sulfurane intermediates, with hydroxy and alkoxy substituents in the apical positions and their direct decomposition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Westheimer, F.H. Pseudo-rotation in the hydrolysis of phosphate esters. Acc. Chem. Res. 1968, 1, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczyk, M.; Witczak, M. Stereochemistry of organophosphorus cyclic compounds. Part 5. Synthesis and geometry of some 4,5-disubstituted 1,3,2-dioxaphospholan-2-thiones and stereochemistry of nucleophilic displacement reactions at phosphorus. J. Chem. Soc. Perkin Trans. 1977, 20, 2213–2222. [Google Scholar] [CrossRef]
- De’ath, N.J.; Tripett, S. t-Butylphosphonium salts: The alkaline hydrolysis of an acyclic phosphonium salt with retention of configuration at phosphorus. Chem. Commun. 1969, 4, 172–173. [Google Scholar] [CrossRef]
- De’ath, N.J.; Ellis, K.; Smith, D.J.H.; Tripett, S. Alkaline hydrolysis of alkoxy(methylthio)phosphonium salts with retention of configuration at phosphorus. Chem. Commun. 1971, 13, 714. [Google Scholar] [CrossRef]
- Lee, I.; Kim, C.K.; Li, H.G.; Sohn, C.K.; Kim, C.K.; Lee, H.W.; Lee, B.-S. Acyl Transfer Mechanisms Involving Various Acyl Functional Groups: >X = Y with X = C, S, P and Y = O, S.J. Am. Chem. Soc. 2000, 122, 11162–11172. [Google Scholar] [CrossRef]
- Sung, D.D.; Kim, T.J.; Lee, I. Theoretical Studies of the Nucleophilic Substitution of Halides and Amine at a Sulfonyl Center. J. Phys. Chem. A 2009, 113, 7073–7079. [Google Scholar] [CrossRef]
- van Bochowe, M.A.; Swart, M.; Bickelhaupt, M.F. Nucleophilic Substitution at Phosphorus (SN2-P): Disappearance and Reappearance of Reaction Barriers. J. Am. Chem. Soc. 2006, 128, 10738–10744. [Google Scholar] [CrossRef] [PubMed]
- van Bochowe, M.A.; Swart, M.; Bickelhaupt, M.F. Stepwise Walden Inversion in Nucleophilic Substitution at Phosphorus. Phys. Chem. Phys. 2009, 11, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Mikołajczyk, M.; Cypryk, M.; Gostyński, B.; Kowalczewski, J. Nucleophilic Substitution at Heteroatoms—Identity Substitution Reactions at Phosphorus and Sulfur Centers: Do they Proceed in a Concerted or Stepwise (A-E) Way? Molecules 2022, 27, 599. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Hudson, R.F. Optically Active Phosphorus Compounds. Part II. The Configurational Chanige Accompanying Transesterification. J. Chem. Soc. 1963, 540–547. [Google Scholar] [CrossRef]
- Michalski, J.; Mikołajczyk, M.; Halpern, A.; Prószyńska, K. Stereochemistry of nucleophilic displacement reactions at the thiophosphoryl centre. Chloride-chloride exchange at the asymmetric phosphorus atom in O-ethyl ethylphosphonochloridothionate. Tetrahedron Lett. 1966, 7, 1919–1924. [Google Scholar] [CrossRef]
- Mikołajczyk, M.; Drabowicz, J.; Ślebocka-Tilk, H. Nucleophilic substitution at sulfur. Kinetic evidence for inversion of configuration at sulfonyl sulfur in acid-catalyzed transesterification of sulfinates. J. Am. Chem. Soc. 1979, 101, 1302–1303. [Google Scholar] [CrossRef]
- DeBruin, K.; Mislow, K. Stereochemistry of the Alkaline Hydrolysis of Dialkoxyphosphonium Salts. J. Am. Chem. Soc. 1969, 91, 7393–7397. [Google Scholar] [CrossRef]
- DeBruin, K.; Johnson, D.M. Relative Energetics of Modes for Phosphorane Formation and Decomposition in Nucleophilic Displacement Reactions at Acyclic Phosphorus. Alkaline Hydrolysis of Alkoxy(alkylthio)phosphonium Salt. J. Am. Chem. Soc. 1973, 95, 4675–4681. [Google Scholar] [CrossRef]
- Minato, H.; Yamaguchi, K.; Kobayashi, M. Formation of Alkoxyaminosulfonium Ions. Chem. Lett. 1975, 4, 991–994. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Okuma, K.; Kobayashi, M. Syntheses of Some Alkoxy-Sulfonium, Dialkoxy-Sulfonium, and Alkoxyamino-Sulfonium Ions and Their O-Methylene and N-Methylene PMR Chemical-Shifts. Bull. Chem. Soc. Jpn. 1976, 49, 2590–2593. [Google Scholar]
- Mikołajczyk, M.; Drabowicz, J. Asymmetric Synthesis of Sulphinic Esters with the Sulphur Atom As a Sole Chirality Centre. J. Chem. Soc. Chem. Commun. 1974, 14, 547–548. [Google Scholar] [CrossRef]
- Cahn, R.S.; Ingold, C.; Prelog, V. Spezifikation der molekularen Chiralität. Angew. Chem. 1966, 78, 413–447. [Google Scholar] [CrossRef]
- Sabol, M.A.; Andersen, K.K. Nucleophilic substitution at tetracoordinate hexavalent sulfur. Reaction of (-)-menthyl phenylmethanesulfonate with p-tolylmagnesium bromide. J. Am. Chem. Soc. 1969, 91, 3603–3605. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Jens, A.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154122. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, M.K.; Brauer, B.; Martin, J.M.L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
(RO)PriS(O) (11a–e) | (RO)(MeO)PriS+ (8a–e) | (RO)PriS(O) (11a–e) | ||||||
---|---|---|---|---|---|---|---|---|
R | [α]D | op | conf | [α]D | conf | [α]D | op | conf |
a, CD3 | +21.3° | 18 | R | +0.2° * | R | - | - | - |
b, Et | +23.8° | 20 | R | +0.5° | R | −3.1° | 2.6 | S |
c, nPr | +35.1° | 27 | R | +1.9° | R | −1.4° | 2.7 | S |
d, nBu | +24.6° | 20 | R | +0.2° | R | −1.2° | 1 | S |
e, Np | +17.9° | 15 | R | +0.84° | R | −3.5° | 3 | S |
Sulfonium Salt (8a–e) | iPrS(O)OMe (11f) (%) | |
---|---|---|
1H NMR | G-C | |
(a) MeO(CD3O)PriS+ | 40 | 44 |
(b) EtO(MeO)PriS+ | 18 | 15 |
(c) iPrO(MeO)PriS+ | 10 | 9 |
(d) nBuO(MeO)PriS+ | 2 | 3 |
(e) NPO(MeO)PriS+ | 0 | 0 |
Sulfurane SIV | ΔHr | ΔGr | ΔHrel | ΔGrel |
---|---|---|---|---|
(EtO)PriS(OMe)OH, HO-S-OMe-ax (A) | −31.4 | −21.7 | 3.7 | 2.9 |
(EtO)PriS(OMe)OH, HO-S-OEt-ax (B) | −32.0 | −20.7 | 3.1 | 3.9 |
(EtO)PriS(OMe)OH, HO-S-iPr-ax (C) | −16.5 | −6.3 | 18.6 | 18.3 |
(EtO)PriS(OMe)OH, HO-S-:-ax (D) (not found) | NA | NA | NA | NA |
(EtO)PriS(OMe)OH, EtO-S-OMe-ax, OH…Me (E1) | −34.9 | −24.6 | 0.2 | 0 |
(EtO)PriS(OMe)OH, EtO-S-OMe-ax, OH…OEt (E2) | −35.1 | −24.6 | 0 | 0 |
(EtO)PriS(OMe)OH, EtO-S-OMe-ax, leaving OMe (TS1) | −34.0 | −23.3 | 0.9 * | 1.3 * |
(EtO)PriS(OMe)OH, EtO-S-OMe-ax, leaving OEt (TS2) | −34.5 | −24.0 | 0.6 | 0.6 |
(EtO)iPrS(OMe)OH, HO-S-OMe-ax, leaving OEt (TS1(eq)) | −0.7 | 9.8 | ||
(EtO)iPrS(OMe)OH, HO-S-OEt-ax, leaving OMe (TS2(eq)) | −1.1 | 9.2 | ||
(EtO)PriS(OMe)OH, HO-S-:-ax (TS-D) | 5.1 | 15.4 | 40.2 | 40.2 |
Pseudorotation (HO,Me)→(Pri,OEt) (TS-B) | −14.6 | −2.6 | ||
Pseudorotation (HO,Pri)→(MeO,OEt) (TS-C) | −12.7 | −0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikołajczyk, M.; Bujnicki, B.; Drabowicz, J.; Cypryk, M. Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics. Molecules 2022, 27, 8212. https://doi.org/10.3390/molecules27238212
Mikołajczyk M, Bujnicki B, Drabowicz J, Cypryk M. Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics. Molecules. 2022; 27(23):8212. https://doi.org/10.3390/molecules27238212
Chicago/Turabian StyleMikołajczyk, Marian, Bogdan Bujnicki, Józef Drabowicz, and Marek Cypryk. 2022. "Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics" Molecules 27, no. 23: 8212. https://doi.org/10.3390/molecules27238212
APA StyleMikołajczyk, M., Bujnicki, B., Drabowicz, J., & Cypryk, M. (2022). Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics. Molecules, 27(23), 8212. https://doi.org/10.3390/molecules27238212