A Review of Diterpenes from Marine-Derived Fungi: 2009–2021
Abstract
:1. Introduction
2. Characteristics of Diterpenes from Marine-Derived Fungi
3. Isolation, Structures, and Bioactivities of Marine Fungi-Derived Diterpenes
3.1. Actinomadura
3.2. Arthrinium
3.3. Aspergillus
3.4. Botryotinia
3.5. Curvularia
3.6. Eupenicillium
3.7. Eutypella
3.8. Epicoccum
3.9. Micromonospora
3.10. Mucor irregularis
3.11. Neosartorya
3.12. Penicillium
3.13. Stachybotrys
3.14. Talaromyces
3.15. Trichoderma
3.16. Others
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24389707 (accessed on 9 November 2022). [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. Available online: https://www.ncbi.nlm.nih.gov/pubmed/33570537 (accessed on 9 November 2022). [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28290569 (accessed on 9 November 2022).
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29335692 (accessed on 9 November 2022). [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30663727 (accessed on 9 November 2022). [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32025684 (accessed on 9 November 2022). [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25620233 (accessed on 9 November 2022).
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26837534 (accessed on 9 November 2022).
- Willems, T.; De Mol, M.L.; De Bruycker, A.; De Maeseneire, S.L.; Soetaert, W.K. Alkaloids from Marine Fungi: Promising Antimicrobials. Antibiotics 2020, 9, 340. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A Review of Terpenes from Marine-Derived Fungi: 2015–2019. Mar. Drugs 2020, 18, 321. [Google Scholar] [CrossRef]
- Shabana, S.; Lakshmi, K.R.; Satya, A.K. An Updated Review of Secondary Metabolites from Marine Fungi. Mini Rev. Med. Chem. 2021, 21, 602–642. [Google Scholar] [CrossRef]
- Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A Comprehensive Review of Bioactive Peptides from Marine Fungi and Their Biological Significance. Mar. Drugs 2019, 17, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs 2012, 21, 1801–1818. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.R. Diterpenoids. Nat. Prod. Rep. 1986, 3, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.R. Diterpenoids. Nat. Prod. Rep. 2009, 26, 1156–1171. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19693413 (accessed on 9 November 2022).
- Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep. 2011, 28, 1755–1772. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21713271 (accessed on 9 November 2022). [PubMed]
- Hanson, J.R.; Nichols, T.; Mukhrish, Y.; Bagley, M.C. Diterpenoids of terrestrial origin. Nat. Prod. Rep. 2019, 36, 1499–1512. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31417997 (accessed on 9 November 2022). [CrossRef] [PubMed]
- Takagi, M.; Motohashi, K.; Khan, S.T.; Hashimoto, J.; Shin-Ya, K. JBIR-65, a new diterpene, isolated from a sponge-derived Actinomadura sp. SpB081030SC-15. J. Antibiot. 2010, 63, 401–403. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Sun, C.; Hou, X.; Che, Q.; Zhang, G.; Gu, Q.; Liu, C.; Zhu, T.; Li, D. Ascandinines A-D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152. J. Org. Chem. 2021, 86, 2431–2436. [Google Scholar] [CrossRef]
- Sun, K.; Li, Y.; Guo, L.; Wang, Y.; Liu, P.; Zhu, W. Indole diterpenoids and isocoumarin from the fungus, Aspergillus flavus, isolated from the prawn, Penaeus vannamei. Mar. Drugs 2014, 12, 3970–3981. [Google Scholar] [CrossRef] [Green Version]
- Elsbaey, M.; Tanaka, C.; Miyamoto, T. New secondary metabolites from the mangrove endophytic fungus Aspergillus versicolor. Phytochem. Lett. 2019, 32, 70–76. [Google Scholar] [CrossRef]
- Niu, S.; Xia, J.M.; Li, Z.; Yang, L.H.; Yi, Z.W.; Xie, C.L.; Peng, G.; Luo, Z.H.; Shao, Z.; Yang, X.W. Aphidicolin chemistry of the deep-sea-derived fungus Botryotinia fuckeliana MCCC 3A00494. J. Nat. Prod. 2019, 82, 2307–2331. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Bai, M.; Zhou, X.M.; Huang, G.L.; Shao, T.M.; Luo, Y.P.; Niu, Z.G.; Niu, Y.Y.; Chen, G.Y.; Han, C.R. Penicilindoles A-C, cytotoxic indole diterpenes from the mangrove-derived fungus Eupenicillium sp. HJ002. J. Nat. Prod. 2018, 81, 1045–1049. [Google Scholar] [CrossRef]
- Niu, S.; Fan, Z.W.; Xie, C.L.; Liu, Q.; Luo, Z.H.; Liu, G.; Yang, X.W. Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J. Nat. Prod. 2017, 80, 2174–2177. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Chen, Y.; Li, S.; Tan, G.; Sun, Z.; Pan, Q.; Ye, W.; Li, H.; Zhang, W. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat. Prod. Res. 2017, 31, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhang, J.; Zhang, Y.; Wei, F.; Liu, X.; Jia, A.; Liu, C.; Li, W.; She, Z.; Lin, Y. Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg. Med. Chem. Lett. 2012, 22, 3017–3019. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, X.M.; Williams, K.; Proksch, P.; Ji, N.Y.; Wang, B.G. Rhizovarins A-F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J. Nat. Prod. 2016, 79, 2066–2074. [Google Scholar] [CrossRef]
- Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 2009, 65, 1033–1039. [Google Scholar] [CrossRef]
- Dai, L.T.; Yang, L.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Cytotoxic indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. Mar. Drugs 2021, 19, 613. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Li, S.; Chen, M.; Cheng, Y.; Yuan, W.; Cheng, Z.; Li, Q. Penicindopene A, a new indole diterpene from the deep-sea fungus Penicillium sp. YPCMAC1. Nat. Prod. Res. 2019, 33, 2988–2994. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Yi, J.; Chang, Y.B.; Sun, C.P.; Ma, X.C. Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. Phytochemistry 2022, 193, 113011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.-M.; Zhao, J.-L.; Li, N.; Chen, R.-D.; Xie, K.-B.; Zhang, W.-J.; Feng, K.-P.; Yan, Z.; Wang, N.; et al. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. Chin. Chem. Lett. 2016, 27, 957–960. [Google Scholar] [CrossRef]
- Yamada, T.; Suzue, M.; Arai, T.; Kikuchi, T.; Tanaka, R. Trichodermanins C-E, new diterpenes with a fused 6-5-6-6 ring system produced by a marine sponge-derived fungus. Mar. Drugs 2017, 15, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.D.; Li, X.; Li, X.M.; Xu, G.M.; Zhang, P.; Meng, L.H.; Wang, B.G. Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med. 2016, 82, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Li, X.M.; Li, X.; Xu, G.M.; Liu, Y.; Wang, B.G. Aspewentins D-H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J. Nat. Prod. 2016, 79, 1347–1353. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.-M.; Li, X.; Wang, B.-G. New indole-diterpenoids from the algal-associated fungus Aspergillus nidulans. Phytochem. Lett. 2015, 12, 182–185. [Google Scholar] [CrossRef]
- Zhang, D.; Yi, W.; Ge, H.; Zhang, Z.; Wu, B. A new antimicrobial indoloditerpene from a marine-sourced fungus Aspergillus versicolor ZZ761. Nat. Prod. Res. 2021, 35, 3114–3119. [Google Scholar] [CrossRef]
- Zhang, Y.; Adnani, N.; Braun, D.R.; Ellis, G.A.; Barns, K.J.; Parker-Nance, S.; Guzei, I.A.; Bugni, T.S. Micromonohalimanes A and B: Antibacterial halimane-type diterpenoids from a marine Micromonospora species. J. Nat. Prod. 2016, 79, 2968–2972. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Y.; Meng, L.H.; Li, X.; Yang, S.Q.; Li, X.M.; Wang, B.G. Three new indole diterpenoids from the sea-anemone-derived fungus Penicillium sp. AS-79. Mar. Drugs 2017, 15, 137. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; He, Y.; Lin, S.; Zhang, J.; Li, H.; Wang, J.; Hu, Z.; Zhang, Y. Antimicrobial dolabellanes and atranones from a marine-derived strain of the toxigenic fungus Stachybotrys chartarum. J. Nat. Prod. 2019, 82, 1923–1929. [Google Scholar] [CrossRef]
- Miao, F.P.; Liang, X.R.; Yin, X.L.; Wang, G.; Ji, N.Y. Absolute configurations of unique harziane diterpenes from Trichoderma species. Org. Lett. 2012, 14, 3815–3817. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.R.; Miao, F.P.; Song, Y.P.; Guo, Z.Y.; Ji, N.Y. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 2016, 30, 1605–1610. [Google Scholar] [CrossRef]
- Li, X.D.; Li, X.; Li, X.M.; Xu, G.M.; Liu, Y.; Wang, B.G. 20-nor-isopimarane epimers produced by Aspergillus wentii SD-310, a fungal strain obtained from deep sea sediment. Mar. Drugs 2018, 16, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Qi, J.; Liu, Y.; Jia, A.; Zhang, Y.; Liu, C.; Gao, C.; She, Z. Bioactive isopimarane diterpenes from the fungus, Epicoccum sp. HS-1, associated with Apostichopus japonicus. Mar. Drugs 2015, 13, 1124–1132. [Google Scholar] [CrossRef]
- Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zheng, Z.H.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; et al. Penerpenes A-D, four indole terpenoids with potent protein tyrosine phosphatase iInhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett. 2019, 21, 4864–4867. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.M.; Kong, F.D.; Fan, P.; Ma, Q.Y.; Xie, Q.Y.; Li, J.H.; Zheng, H.Z.; Zheng, Z.H.; Yuan, J.Z.; Dai, H.F.; et al. Indole-diterpenoids with protein tyrosine phosphatase inhibitory activities from the marine-derived fungus Penicillium sp. KFD28. J. Nat. Prod. 2019, 82, 2638–2644. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Han, S.; Zhang, J.; Xu, W.; Li, Q.; Cheng, Z. Penitholabene, a rare 19-nor labdane-type diterpenoid from the deep-sea-derived fungus Penicillium thomii YPGA3. Fitoterapia 2020, 146, 104691. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Y.; Liu, P.; Fu, P.; Zhu, T.; Wang, W.; Zhu, W. Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J. Nat. Prod. 2013, 76, 1328–1336. [Google Scholar] [CrossRef]
- Zhao, D.L.; Yang, L.J.; Shi, T.; Wang, C.Y.; Shao, C.L.; Wang, C.Y. Potent phytotoxic harziane diterpenes from a soft coral-derived strain of the fungus Trichoderma harzianum XS-20090075. Sci. Rep. 2019, 9, 13345. [Google Scholar] [CrossRef] [Green Version]
- Ebada, S.S.; Schulz, B.; Wray, V.; Totzke, F.; Kubbutat, M.H.; Muller, W.E.; Hamacher, A.; Kassack, M.U.; Lin, W.; Proksch, P. Arthrinins A-D: Novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorg. Med. Chem. 2011, 19, 4644–4651. [Google Scholar] [CrossRef]
- Miao, F.P.; Liang, X.R.; Liu, X.H.; Ji, N.Y. Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J. Nat. Prod. 2014, 77, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.P.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Diterpenes and sesquiterpenes from the marine algicolous fungus Trichoderma harzianum X-5. J. Nat. Prod. 2018, 81, 2553–2559. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Xie, C.L.; Xia, J.M.; Liu, Q.M.; Peng, G.; Liu, G.M.; Yang, X.W. Botryotins A-H, tetracyclic diterpenoids representing three carbon skeletons from a deep-sea-derived Botryotinia fuckeliana. Org. Lett. 2020, 22, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, X.; Li, X.; Hu, Z.; Wang, L. Novel harziane diterpenes from deep-sea sediment fungus Trichoderma sp. SCSIOW21 and their potential anti-inflammatory effects. Mar. Drugs 2021, 19, 689. [Google Scholar] [CrossRef]
- Tsukada, M.; Fukai, M.; Miki, K.; Shiraishi, T.; Suzuki, T.; Nishio, K.; Sugita, T.; Ishino, M.; Kinoshita, K.; Takahashi, K.; et al. Chemical constituents of a marine fungus, Arthrinium sacchari. J. Nat. Prod. 2011, 74, 1645–1649. [Google Scholar] [CrossRef]
- Wang, K.W.; Ding, P. New bioactive metabolites from the marine-derived fungi Aspergillus. Mini Rev. Med. Chem. 2018, 18, 1072–1094. [Google Scholar] [CrossRef]
- Li, X.; Li, X.-D.; Li, X.-M.; Xu, G.-M.; Liu, Y.; Wang, B.-G. Wentinoids A–F, six new isopimarane diterpenoids from Aspergillus wentii SD-310, a deep-sea sediment derived fungus. RSC Adv. 2017, 7, 4387–4394. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Rahman, F.I.; Hussain, F.; Rahman, S.M.A.; Rahman, M.M. Antimicrobial Diterpenes: Recent Development from Natural Sources. Front. Pharmacol. 2021, 12, 820312. [Google Scholar] [CrossRef]
- Sun, H.F.; Li, X.M.; Meng, L.; Cui, C.M.; Gao, S.S.; Li, C.S.; Huang, C.G.; Wang, B.G. Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J. Nat. Prod. 2012, 75, 148–152. [Google Scholar] [CrossRef]
- Qiao, M.F.; Ji, N.Y.; Liu, X.H.; Li, K.; Zhu, Q.M.; Xue, Q.Z. Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg. Med. Chem. Lett. 2010, 20, 5677–5680. [Google Scholar] [CrossRef]
- González, M.C.; Lull, C.; Moya, P.; Ayala, I.; Primo, J.; Primo Yúfera, E. Insecticidal activity of penitrems, including penitrem G, a new member of the family isolated from Penicillium crustosum. J. Agric. Food. Chem. 2003, 51, 2156–2160. [Google Scholar] [CrossRef] [PubMed]
- De Miccolis Angelini, R.M.; Rotolo, C.; Masiello, M.; Gerin, D.; Pollastro, S.; Faretra, F. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag. Sci. 2014, 70, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Peng, G.; Xia, J.M.; Xie, C.L.; Li, Z.; Yang, X.W. A new pimarane diterpenoid from the Botryotinia fuckeliana fungus isolated from deep-sea water. Chem. Biodivers. 2019, 16, e1900519. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Xu, K.X.; Xue, Y.; Cao, F.; Yang, L.J.; Hou, X.M.; Wang, C.Y.; Shao, C.L. Sordarin diterpene glycosides with an unusual 1,3-Dioxolan-4-one ring from the zoanthid-derived fungus Curvularia hawaiiensis TA26-15. J. Nat. Prod. 2019, 82, 2477–2482. [Google Scholar] [CrossRef]
- Sun, L.; Li, D.; Tao, M.; Chen, Y.; Dan, F.; Zhang, W. Scopararanes C-G: New oxygenated pimarane diterpenes from the marine sediment-derived fungus Eutypella scoparia FS26. Mar. Drugs 2012, 10, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullowney, M.W.; Ó hAinmhire, E.; Tanouye, U.; Burdette, J.E.; Pham, V.C.; Murphy, B.T. A pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnam’s east sea. Mar. Drugs 2015, 13, 5815–5827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, N.M.; Bessa, L.J.; Buttachon, S.; Costa, P.M.; Buaruang, J.; Dethoup, T.; Silva, A.M.; Kijjoa, A. Antibacterial and antibiofilm activities of tryptoquivalines and meroditerpenes isolated from the marine-derived fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the soil fungi N. fischeri and N. siamensis. Mar. Drugs 2014, 12, 822–839. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.S.; Li, X.M.; Zhang, Y.; Li, C.S.; Wang, B.G. Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 2011, 8, 1748–1753. [Google Scholar] [CrossRef]
- Niu, S.; Fan, Z.; Tang, X.; Liu, Q.; Shao, Z.; Liu, G.; Yang, X.-W. Cyclopiane-type diterpenes from the deep-sea-derived fungus Penicillium commune MCCC 3A00940. Tetrahedron Lett. 2018, 59, 375–378. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, Y.; Xu, W.; Liu, W.; Liu, L.; Zhu, D.; Kang, Y.; Luo, Z.; Li, Q. Three new cyclopiane-type diterpenes from a deep-sea derived fungus Penicillium sp. YPGA11 and their effects against human esophageal carcinoma cells. Bioorg. Chem. 2019, 91, 103129. [Google Scholar] [CrossRef]
- Chen, M.Y.; Xie, Q.Y.; Kong, F.D.; Ma, Q.Y.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Two new indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. J. Asian Nat. Prod. Res. 2021, 23, 1030–1036. [Google Scholar] [CrossRef]
- Zhao, M.; Ruan, Q.; Pan, W.; Tang, Y.; Zhao, Z.; Cui, H. New polyketides and diterpenoid derivatives from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Fitoterapia 2020, 143, 104561. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, W.; Zhang, S.; Gao, W.; Lin, S.; Yang, B.; Chai, C.; Li, H.; Wang, J.; Hu, Z.; et al. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. Chin. Chem. Lett. 2020, 31, 197–201. [Google Scholar] [CrossRef]
- Wang, W.; Wan, X.; Liu, J.; Wang, J.; Zhu, H.; Chen, C.; Zhang, Y. Two new terpenoids from Talaromyces purpurogenus. Mar. Drugs 2018, 16, 150. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Ding, L.; He, S. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini Rev. Med. Chem. 2018, 18, 1702–1713. [Google Scholar] [CrossRef]
- Xie, Z.-L.; Li, H.-J.; Wang, L.-Y.; Liang, W.-L.; Liu, W.; Lan, W.-J. Trichodermaerin, a new diterpenoid lactone from the marine fungus Trichoderma erinaceum associated with the sea star Acanthaster planci. Nat. Prod. Commun. 2013, 8, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.P.; Liu, X.H.; Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Ji, N.Y. Bisabolane, cyclonerane, and harziane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Phytochemistry 2018, 152, 45–52. [Google Scholar] [CrossRef]
- Yamada, T.; Fujii, A.; Kikuchi, T. New diterpenes with a fused 6-5-6-6 ring system isolated from the marine sponge-derived fungus Trichoderma harzianum. Mar. Drugs 2019, 17, 480. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.X.; Song, Y.P.; Zeng, Z.Q.; Ji, N.Y. Proharziane and harziane derivatives from the marine algicolous fungus Trichoderma asperelloides RR-dl-6-11. J. Nat. Prod. 2021, 84, 1414–1419. [Google Scholar] [CrossRef]
- Ishino, M.; Kiyomichi, N.; Takatori, K.; Sugita, T.; Shiro, M.; Kinoshita, K.; Takahashi, K.; Koyama, K. Phomactin I, 13-epi-phomactin I, and phomactin J, three novel diterpenes from a marine-derived fungus. Tetrahedron 2010, 66, 2594–2597. [Google Scholar] [CrossRef]
- Ishino, M.; Kinoshita, K.; Takahashi, K.; Sugita, T.; Shiro, M.; Hasegawa, K.; Koyama, K. Phomactins K–M, three novel phomactin-type diterpenes from a marine-derived fungus. Tetrahedron 2012, 68, 8572–8576. [Google Scholar] [CrossRef]
- Ishino, M.; Kamauchi, H.; Takatori, K.; Kinoshita, K.; Sugita, T.; Koyama, K. Three novel phomactin-type diterpenes from a marine-derived fungus. Tetrahedron Lett. 2016, 57, 4341–4344. [Google Scholar] [CrossRef]
Compound Number | Compound Name | Producing Organism | Activity | Reference |
---|---|---|---|---|
Cytotoxicity to cancer cell lines | ||||
31 | Ascandinine D | Aspergillus candidus HDN15-152 | Cytotoxicity against HL-60 cells with an IC50 value of 7.8 µM | [18] |
38 | (2R,4bR,6aS,12bS,12cS,14aS)-4b-Deoxy-β-aflatrem | Aspergillus flavus OUCMDZ-2205 | Activity to A-549 cell cycle in the S phase with an IC50 value of 10 µM | [19] |
39 | (2R,4bS,6aS,12bS,12cR)-9-Isopentenylpaxilline D | Aspergillus flavus OUCMDZ-2205 | Activity to A-549 cell cycle in the S phase with an IC50 value of 10 µM | [19] |
46 | Anthcolorin H | Aspergillus versicolor | Activity to Hela cells with an IC50 value of 43.7 µM | [20] |
56 | Aphidicolin A8 | Botryotinia fuckeliana MCCC 3A00494 | Activity to T24 and HL-60 cells with IC50 values of 2.5 and 6.1 µM, respectively | [21] |
129 | Penicilindole A | Eupenicillium sp. HJ002 | Activity to A-549 and HepG2 cell lines with IC50 values of 5.5 and 1.5 µM, respectively | [22] |
132 | Scopararane C | Eutypella scoparia FS26 | Cytotoxicity against the MCF-7 cell line with an IC50 value of 35.9 µM | [23] |
133 | Scopararane D | Eutypella scoparia FS26 | Cytotoxicity against the MCF-7 cell line with an IC50 value of 25.6 µM | [23] |
138 | Scopararane I | Eutypella sp. FS46 | Inhibitory activities against NCI-H460 and SF-268 cell lines with IC50 values of 13.59 and 25.31 µg/mL, respectively | [24] |
139 | Aspergilone A | Epicoccum sp. HS-1 | Inhibits the growth of human epidermis carcinoma cell line and multidrug-resistant cell line expressing high levels of P-gp with IC50 values of 3.51 and 2.34 µg/mL, respectively | [25] |
140 | Aspergilone B 1 | Epicoccum sp. HS-1 | Inhibits the growth of human epidermis carcinoma cell line and multidrug-resistant cell line expressing high levels of P-gp with IC50 values of 20.74 and 14.47 µg/mL, respectively | [25] |
146 | Rhizovarin A | Mucor irregularis QEN-189 | Activity against A-549 and HL-60 cancer cell lines with IC50 values of 11.5 and 9.6 µM, respectively | [26] |
147 | Rhizovarin B | Mucor irregularis QEN-189 | Activity against A-549 and HL-60 cancer cell lines with IC50 values of 6.3 and 5.0 µM, respectively | [26] |
151 | Rhizovarin F | Mucor irregularis QEN-189 | Activity against the A-549 cancer cell line with an IC50 value of 9.2 µM | [26] |
153 | Conidiogenone B | Penicillium sp. F23-2 | Cytotoxicity to A-549 and HL-60 cell lines with IC50 values of 40.3 and 28.2 µM, respectively | [27] |
154 | Conidiogenone C | Penicillium sp. F23-2 | Activity to HL-60 and BEL-7402 cell lines with IC50 values of 0.038 and 0.97 µM, respectively | [27] |
155 | Conidiogenone D | Penicillium sp. F23-2 | Activity to A-549, HL-60, BEL-7402, and MOLT-4 cell lines with IC50 values of 9.3, 5.3, 11.7, and 21.1 µM, respectively | [27] |
156 | Conidiogenone E | Penicillium sp. F23-2 | Activity to A-549 and HL-60 cell lines with IC50 values of 15.1 and 8.5 µM, respectively | [27] |
157 | Cnidiogenone F | Penicillium sp. F23-2 | Activity to A-549, HL-60, BEL-7402, and MOLT-4 cell lines with IC50 values of 42.2, 17.8, 17.1, and 25.8 µM, respectively | [27] |
158 | Conidiogenone G | Penicillium sp. F23-2 | Activity to A-549, HL-60, BEL-7402, and MOLT-4 cell lines with IC50 values of 8.3, 1.1, 43.2, and 4.7 µM, respectively | [27] |
189 | Penerpene M | Penicillium sp. KFD28 | Activity against HeLa cells with an IC50 value of 36.3 µM | [28] |
192 | Penicindopene A | Penicillium sp. YPCMAC1 | Cytotoxicity against A-549 and HeLa cell lines with IC50 values of 15.2 and 20.5 µM, respectively | [29] |
201 | Roussoellol C | Talaromyces purpurogenus PP-414 | Cytotoxic to MCF-7 cells with an IC50 value of 6.5 µM | [30] |
206 | (9R,10R)-dihydro-harzianone | Trichoderma sp. Xy24 | Activity against HeLa and MCF-7 cell lines with IC50 values of 30.1 and 30.7 µM, respectively | [31] |
208 | Trichodermanin C | Trichoderma harzianum OUPS-111D-4 | Cytotoxic activity against P388, HL-60, and L1210 cell lines with IC50 values of 7.9, 6.8, and 7.6 µM, respectively | [32] |
Antimicrobial activity | ||||
10 | Asperolide D | Aspergillus wentii SD-310 | Inhibits Edwardsiella tarda with an MIC value of 16 µg/mL | [33] |
12 | Aspewentin D | Aspergillus wentii SD-310 | Activity against Fusarium graminearum and Micrococcus luteus, with MIC values of 2.0 and 4.0 µg/mL, respectively | [34] |
14 | Aspewentin F | Aspergillus wentii SD-310 | Inhibitory activity against Edwardsiella tarda and Vibrio harveyi with MIC values of 4.0 and 8.0 µg/mL, respectively | [34] |
15 | Aspewentin G | Aspergillus wentii SD-310 | Inhibitory activity against Vibrio harveyi with an MIC value of 4.0 µg/mL | [34] |
16 | Aspewentin H | Aspergillus wentii SD-310 | Activity against Pseudomonas aeruginosa and Fusarium graminearum with MIC values of 4.0 and 4.0 µg/mL, respectively | [34] |
43 | 19-hydroxypenitrem A | Aspergillus nidulans EN-330 | Activity against pathogens Edwardsiella tarda, Vibrio anguillarum, Escherichia coli, and Staphylococcus aureus with MIC values of 16, 32, 16, and 16 µg/mL, respectively | [35] |
47 | (3R,9S,12R,13S,17S,18S)-2-carbonyl-3-hydroxylemeniveol | Aspergillus versicolor ZZ761 | Antimicrobial activity against Escherichia coli and Candida albicans with MIC values of 20.6 and 22.8 µM, respectively | [36] |
145 | Micromonohalimane B | Micromonospora sp. | Inhibitory effect on methicillin-resistant Staphylococcus aureus with an MIC value of 40 µg/mL | [37] |
169 | 6-hydroxylpaspalinine | Penicillium sp. AS-79 | Activity against the aquatic pathogen Vibrio parahaemolyticus with an MIC value of 64.0 µg/mL | [38] |
199 | Stachatranone B | Stachybotrys chartarum TJ403-SS6 | Activity against Acinetobacter baumannii and Enterococcus faecalis with MIC values of 16 and 32 µg/mL | [39] |
202 | Harzianone | Trichoderma longibrachiatum | Effect on Escherichia coli and Staphylococcus aureus at 30 µg/disk (with inhibitory diameters of 8.3 and 7.0 mm, respectively) | [40] |
204 | Trichocitrin | Trichoderma citrinoviride cf-27 | Inhibit Escherichia coli with an inhibitory diameter of 8.0 mm at 20 µg/disk | [41] |
17–18 | Aspewentins I–J | Aspergillus wentii SD-310 | Inhibitory activity against Edwardsiella tarda, Vibrio harveyi, and V. parahemolyticus, each with an MIC value of 8.0 µg/mL | [42] |
Inhibition of enzymes | ||||
38 | (2R,4bR,6aS,12bS,12cS,14aS)-4b-Deoxy-β-aflatrem | Aspergillus flavus OUCMDZ-2205 | Inhibitory effect on the kinase PKC-β with an IC50 value of 15.6 µM | [19] |
142 | Isopimarane diterpene | Epicoccum sp. HS-1 | Inhibits α-glucosidase with an IC50 value of 4.6 µM | [43] |
177–178 | Penerpenes A–B | Penicillium sp. KFD28 | Inhibitory activity against protein tyrosine phosphatase (PTP1B) with IC50 values of 1.7 and 2.4 µM, respectively | [44] |
181–182 | Penerpenes E–F | Penicillium sp. KFD28 | Inhibitory activity against PTP1B with an IC50 value of 14 and 27 µM, respectively | [45] |
184–185 | Penerpenes H–I | Penicillium sp. KFD28 | Inhibitory activity against PTP1B with an IC50 value of 23 and 31.5 µM, respectively | [45] |
190 | Penerpene N | Penicillium sp. KFD28 | Inhibitory activity against PTP1B with an IC50 value of 9.5 µM | [28] |
193 | Penitholabene | Penicillium thomii YPGA3 | Inhibitory effect against α-glucosidase with an IC50 value of 282 µM | [46] |
Antivirus | ||||
30 | Ascandinine C | Aspergillus candidus HDN15-152 | Anti-influenza virus A (H1N1) activity with an IC50 value of 26 µM | [18] |
161 | 3-deoxo-4b-deoxypaxilline | Penicillium camemberti OUCMDZ-1492 | Activity against the H1N1 virus with an IC50 value of 28.3 µM | [47] |
162 | 4a-demethylpaspaline-4a-carboxylic acid | Penicillium camemberti OUCMDZ-1492 | Activity against the H1N1 virus with an IC50 value of 38.9 µM | [47] |
163 | 4a-demethylpaspaline-3,4,4a-triol | Penicillium camemberti OUCMDZ-1492 | Activity against the H1N1 virus with an IC50 value of 32.2 µM | [47] |
165 | 9,10-diisopentenylpaxilline | Penicillium camemberti OUCMDZ-1492 | Activity against the H1N1 virus with an IC50 value of 73.3 µM | [47] |
Inhibition of the germination of seeds | ||||
216−219 | Harzianones A−D | Trichoderma harzianum XS 20090075 | Inhibits the germination of amaranth and lettuce seeds at a concentration of 200 ppm | [48] |
220 | Harziane | Trichoderma harzianum XS 20090075 | Inhibiting the germination of amaranth and lettuce seeds at a concentration of 200 ppm | [48] |
Others | ||||
1 | JBIR-65 | Actinomadura sp. SpB081030SC-15 | Protects neuronal hybridoma N18-RE-105 cells with an EC50 value of 31 µM | [49] |
5 | Arthrinin D | Arthrinium sp. | Inhibits VEGF-A (vascular endothelial growth factor A)-dependent endothelial cell sprouting with an IC50 of 2.6 µM | [50] |
6 | Myrocin D | Arthrinium sp. | Inhibits VEGF-A-dependent endothelial cell sprouting with an IC50 of 3.7 µM | [50] |
35 | Aspewentin A | Aspergillus wentii na-3 | Active against Chattonella marina and Heterosigma akashiwo, with LC50 values of 0.81 and 2.88 µM, respectively | [51] |
214 | 3R-hydroxy-9R,10R-dihydroharzianone | Trichoderma harzianum X-5 | Activity against Chattonella marina with an IC50 value of 7.0 µg/mL | [52] |
215 | 11R-methoxy-5,9,13-proharzitrien-3-ol | Trichoderma harzianum X-5 | Inhibitory effect on the growth of four kinds of phytoplankton Chattonella marina, Heterosigma akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense with IC50 values of 1.2, 1.3, 3.2, and 4.3 µg/mL, respectively | [52] |
36 | Aspewentin B | Aspergillus wentii na-3 | Inhibits the growth of Artemia salina with an LC50 value of 6.36 µM | [51] |
120 | Botryotin A | Botryotinia fuckeliana MCCC 3A00494 | Anti-allergic activity with an IC50 value of 0.2 mM | [53] |
167 | Spirograterpene A | Penicillium granulatum MCCC 3A00475 | Anti-allergic effect on immunoglobulin E (IgE)-mediated rat mast RBL-2H3 cells with 18% inhibition at 20 µg/mL | [23] |
202 | Harzianone | Trichoderma longibrachiatum | 82.6% of lethality to brine shrimp (Artemia salina L.) larvae at 100 µg/mL | [40] |
225 | Harzianol L | Trichoderma sp. SCSIOW21 | Anti-inflammatory effect with 81.8% NO inhibition at 100 µM | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, P.; Xia, J.; Zhang, H.; Lin, D.; Shao, Z. A Review of Diterpenes from Marine-Derived Fungi: 2009–2021. Molecules 2022, 27, 8303. https://doi.org/10.3390/molecules27238303
Qiu P, Xia J, Zhang H, Lin D, Shao Z. A Review of Diterpenes from Marine-Derived Fungi: 2009–2021. Molecules. 2022; 27(23):8303. https://doi.org/10.3390/molecules27238303
Chicago/Turabian StyleQiu, Peng, Jinmei Xia, Haitao Zhang, Donghai Lin, and Zongze Shao. 2022. "A Review of Diterpenes from Marine-Derived Fungi: 2009–2021" Molecules 27, no. 23: 8303. https://doi.org/10.3390/molecules27238303
APA StyleQiu, P., Xia, J., Zhang, H., Lin, D., & Shao, Z. (2022). A Review of Diterpenes from Marine-Derived Fungi: 2009–2021. Molecules, 27(23), 8303. https://doi.org/10.3390/molecules27238303