Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of T610FBTT810, DT6FBT, and DT48FBT
2.2. Theoretical Calculations
2.3. Electrochemistry
2.4. Optical Property
2.5. Spectroelectrochemistry
2.6. Electrochromic Performance
2.7. Flexible Electrochromic Device
2.8. Morphology
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, NY, USA, 2007. [Google Scholar]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef] [PubMed]
- Gunbas, G.; Toppare, L. Electrochromic conjugated polyheterocycles and derivatives–highlights from the last decade towards realization of long lived aspirations. Chem. Commun. 2012, 48, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, R.J.; Rosseinsky, D.R.; Monk, P.M.S. Electrochromic Materials and Devices; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2015. [Google Scholar]
- Lv, X.J.; Li, W.J.; Ouyang, M.; Zhang, Y.J.; Wright, D.S.; Zhang, C. Polymeric electrochromic materials with donor–acceptor structures. J. Mater. Chem. C 2017, 5, 12–28. [Google Scholar] [CrossRef]
- Lin, K.W.; Chen, S.; Lu, B.Y.; Xu, J.K. Hybrid π-conjugated polymers from dibenzo pentacyclic centers: Precursor design, electrosynthesis and electrochromics. Sci. China Chem. 2017, 60, 38–53. [Google Scholar] [CrossRef]
- Chua, M.H.; Zhu, Q.; Tang, T.; Shah, K.W.; Xu, J.W. Diversity of electron acceptor groups in donor–acceptor type electrochromic conjugated polymers. Sol. Energ. Mat. Sol. Cells 2019, 197, 32–75. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.Q.; Ma, J.; Lee, P.S.; Lu, X.H. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef]
- Balan, A.; Baran, D.; Toppare, L. Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polym. Chem. 2011, 2, 1029–1043. [Google Scholar] [CrossRef]
- Ming, S.L.; Li, Z.Y.; Zhen, S.J.; Liu, P.P.; Jiang, F.X.; Nie, G.M.; Xu, J.K. High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, Y.; Tsao, C.; Saeki, A.; Li, J.; Chen, C.; Wang, H.; Chen, H.; Meng, D.; Wu, K.; et al. Enhancing photovoltaic performance by tuning the domain sizes of a small-molecule acceptor by side-chain-engineered polymer donors. J. Mater. Chem. A 2019, 7, 3072–3082. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheng, H.-W.; Su, Y.-W.; Lin, B.-H.; Lu, Y.-J.; Chen, C.-H.; Chen, H.-C.; Yang, Y.; Wei, K.-H. Molecular engineering of side chain architecture of conjugated polymers enhances performance of photovoltaics by tuning ternary blend structures. Nano Energy 2018, 43, 138–148. [Google Scholar] [CrossRef]
- Cansu-Ergun, E.G. Chemical insight into benzimidazole containing donor-acceptor-donor type π-conjugated polymers: Benzimidazole as an acceptor. Polym. Rev. 2018, 1, 42–62. [Google Scholar] [CrossRef]
- Pati, P.B. Benzazole (B, N, O, S, Se and Te) based D-A-D type oligomers: Switch from electropolymerization to structural aspect. Org. Electron. 2016, 38, 97–106. [Google Scholar] [CrossRef]
- Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397–415. [Google Scholar] [CrossRef]
- Durmus, A.; Gunbas, G.E.; Camurlu, P.; Toppare, L. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun. 2007, 31, 3246–3248. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.L.; Zhen, S.J.; Lin, K.W.; Zhao, L.; Xu, J.K.; Lu, B.Y. Thiadiazolo [3,4-c]pyridine as an acceptor toward fast-switching green donor−acceptor-type electrochromic polymer with low bandgap. ACS. Appl. Mater. Interfaces 2015, 7, 11089–11098. [Google Scholar] [CrossRef]
- Gunbas, G.E.; Durmus, A.; Toppare, L. Could green be greener? Novel donor–acceptor-type electrochromic polymers: Towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater. 2008, 20, 691–695. [Google Scholar] [CrossRef]
- Gu, H.; Ming, S.L.; Lin, K.W.; Chen, S.; Liu, X.M.; Lu, B.Y.; Xu, J.K. Isoindigo as an electrondeficient unit for highperformance polymeric electrochromics. Electrochim. Acta 2018, 260, 772–782. [Google Scholar] [CrossRef]
- Rybakiewicz, R.; Ganczarczyk, R.; Charyton, M.; Skorka, L.; Ledwon, P.; Nowakowski, R.; Zagorska, M.; Pron, A. Low band gap donor-acceptor-donor compounds containing carbazole and naphthalene diimide units: Synthesis, electropolymerization and spectroelectrochemical behavior. Electrochim. Acta 2020, 358, 136922. [Google Scholar] [CrossRef]
- Yan, S.M.; Fu, H.C.; Dong, Y.J.; Li, W.J.; Dai, Y.Y.; Zhang, C. Synthesis, electrochemistry and electrochromic properties of donor-acceptor conjugated polymers based on swivel-cruciform monomers with different central cores. Electrochim. Acta 2020, 354, 136672. [Google Scholar] [CrossRef]
- Thomas, C.A.; Zong, K.; Abboud, K.A.; Steel, P.J.; Reynolds, J.R. Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc. 2004, 126, 16440–16450. [Google Scholar] [CrossRef]
- Thompson, B.C.; Kim, Y.G.; McCarley, T.D.; Reynolds, J.R. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. J. Am. Chem. Soc. 2006, 128, 12714–12725. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Zhen, S.; Liu, X.; Lin, K.; Liu, H.; Zhao, Y.; Lu, B.; Xu, J. Chalcogenodiazolo [3,4-c]pyridine based donor–acceptor–donor polymers for green and nearinfrared electrochromics. Polym. Chem. 2015, 6, 8248–8258. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, Y.; Zhao, J.; Wang, M. Three donor-acceptor polymeric electrochromic materials employing 2,3-bis(4-(decyloxy)phenyl)pyrido [4,3-b]pyrazine as acceptor unit and thiophene derivatives as donor units. Electrochim. Acta 2014, 146, 231–241. [Google Scholar] [CrossRef]
- Jian, N.; Gu, H.; Zhang, S.; Liu, H.; Qu, K.; Chen, S.; Liu, X.; He, Y.; Niu, G.; Tai, S.; et al. Synthesis and electrochromic performances of donor-acceptor-type polymers from chalcogenodiazolo [3,4-c]pyridine and alkyl ProDOTs. Electrochim. Acta 2018, 266, 263–275. [Google Scholar] [CrossRef]
- Seshadri, V.; Sotzing, G.A. Polymerization of two unsymmetrical isomeric monomers based on thieno [3,4-b]thiophene containing cyanovinylene spacers. Chem. Mater. 2004, 16, 5644–5649. [Google Scholar] [CrossRef]
- Eroglu, D.; Ergun, E.G.C.; Önal, A.M. Cross-exchange of donor units in donor-acceptor-donor type conjugated molecules: Effect of symmetrical and unsymmetrical linkage on the electrochemical and optical properties. Tetrahedron 2020, 76, 131–164. [Google Scholar] [CrossRef]
- Nikolou, M.; Dyer, A.L.; Steckler, T.T.; Donoghue, E.P.; Wu, Z.; Heston, N.C.; Rinzler, A.G.; Tanner, D.B.; Reynolds, J.R. Dual n- and p-type dopable electrochromic devices employing transparent carbon nanotube electrodes. Chem. Mater. 2009, 21, 5539–5547. [Google Scholar] [CrossRef]
- Liu, J.L.; Li, L.; Xu, R.T.; Zhang, K.L.; Ouyang, M.; Li, W.J.; Lv, X.; Zhang, C. Design, synthesis, and properties of donor−acceptor−donor′ asymmetric structured electrochromic polymers based on fluorenone as acceptor units. ACS Appl. Polym. Mater. 2019, 1, 1081–1087. [Google Scholar] [CrossRef]
- Sendur, M.; Balan, A.; Baran, D.; Karabay, B.; Toppare, L. Combination of donor characters in a donor–acceptor–donor (DAD) type polymer containing benzothiadiazole as the acceptor unit. Org. Electron. 2010, 11, 1877–1885. [Google Scholar] [CrossRef]
- Zhang, C.; Ming, S.; Wu, H.; Wang, X.; Huang, H.; Xue, W.; Xu, X.; Tang, Z.; Ma, W.; Bo, Z. High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. J. Mater. Chem. A 2020, 8, 22907–22917. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, G.; Zhong, C.; Jia, X.; Luo, P.; Xu, R.; Gao, K.; Jiang, X.; Liu, F.; Russell, T.P.; et al. Toward high efficiency polymer solar cells: Influence of local chemical environment and morphology. Adv. Energy. Mater. 2016, 7, 1601081. [Google Scholar] [CrossRef]
- Çakal, D.; Ercan, Y.E.; Önal, A.M.; Cihaner, A. Effect of fluorine substituted benzothiadiazole on electro-optical properties of donor-acceptor-donor type monomers and their polymers. Dyes Pigments 2020, 182, 108622. [Google Scholar] [CrossRef]
- Çakal, D.; Boztaş, Y.; Akdag, A.; Önal, A.M. Investigation of fluorine atom effect on benzothiadiazole acceptor unit in donor acceptor donor systems. J. Electrochem. Soc. 2019, 166, 141–147. [Google Scholar] [CrossRef]
- Çakal, D.; Akdag, A.; Cihaner, A.; Önal, A.M. Effect of the donor units on the properties of fluorinated acceptor based systems. Dyes Pigments 2021, 185, 108955. [Google Scholar] [CrossRef]
- Ochieng, M.A.; Ponder, J.F., Jr.; Reynolds, J.R. Effects of linear and branched side chains on the redox and optoelectronic properties of 3,4-dialkoxythiophene polymers. Polym. Chem. 2020, 11, 2173–2181. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Facchetti, A.; Marks, T.J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291–10318. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.S.; Bo, Z.S. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chem. Commun. 2021, 57, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Liang, H.; Zheng, Y.; Hu, R.; Chen, H.; Wu, Z.; Zhang, X.; Xie, H.; Wang, Y.; Jiang, Q.; et al. Unraveling the main chain effects of fused thiophene conjugated polymers in electrochromism. Soft Sci. 2021, 1, 12. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; et al. Low-cost fabrication of high-performance fluorinated polythiophene-based Vis–NIR electrochromic devices toward deformable display and camouflage. Chem. Mater. 2022, 34, 9923–9933. [Google Scholar] [CrossRef]
- Chen, W.; Xue, G. Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate-ethylether. Prog. Polym. Sci. 2005, 30, 783–811. [Google Scholar] [CrossRef]
- Li, W.J.; Yuan, F.Y.; Xu, N.; Mei, S.W.; Chen, Z.X.; Zhang, C. Triphenylamine-triazine polymer materials obtained by electrochemical polymerization: Electrochemistry stability, anions trapping behavior and electrochromic-supercapacitor application. Electrochim. Acta 2021, 384, 138344. [Google Scholar] [CrossRef]
Sample | Wavelength (nm) | ΔT | Response Time (s) | CE (cm2 C−1) | |
---|---|---|---|---|---|
Oxidation | Reduction | ||||
PDT6FBT | 380 | 23% | 1.5 | 0.3 | 97 |
550 | 25% | 1.7 | 0.3 | 86 | |
750 | 24% | 0.7 | 0.7 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.; Wu, C.; Zhang, G.; Wu, Z.; Tang, S.; Lin, Y.; Li, X.; Jiang, Y.; Lin, H.; Wang, Y.; et al. Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering. Molecules 2022, 27, 8424. https://doi.org/10.3390/molecules27238424
Lin K, Wu C, Zhang G, Wu Z, Tang S, Lin Y, Li X, Jiang Y, Lin H, Wang Y, et al. Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering. Molecules. 2022; 27(23):8424. https://doi.org/10.3390/molecules27238424
Chicago/Turabian StyleLin, Kaiwen, Changjun Wu, Guangyao Zhang, Zhixin Wu, Shiting Tang, Yingxin Lin, Xinye Li, Yuying Jiang, Hengjia Lin, Yuehui Wang, and et al. 2022. "Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering" Molecules 27, no. 23: 8424. https://doi.org/10.3390/molecules27238424
APA StyleLin, K., Wu, C., Zhang, G., Wu, Z., Tang, S., Lin, Y., Li, X., Jiang, Y., Lin, H., Wang, Y., Ming, S., & Lu, B. (2022). Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering. Molecules, 27(23), 8424. https://doi.org/10.3390/molecules27238424