Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photophysical Properties
2.3. Electrochemical Properties
2.4. Theoretical Calculation
2.5. Cation-Binding Properties
2.6. Water Sample Analysis
3. Materials and Methods
3.1. Instruments
3.2. Synthesis
3.3. Cation-Binding Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Saleem, M.; Lee, K.H. Optical sensor: A promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 2015, 5, 72150. [Google Scholar] [CrossRef]
- Álvarez, M.S.; Gutiérrez, E.; Rodríguez, A.; Sanromán, M.Á.; Deive, F.J. Environmentally Benign Sequential Extraction of Heavy Metals from Marine Sediments. Ind. Eng. Chem. Res. 2014, 53, 8615–8620. [Google Scholar] [CrossRef]
- Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; et al. Coumarin-Derived Cu2+-Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells. J. Am. Chem. Soc. 2009, 131, 2008–2012. [Google Scholar] [CrossRef]
- Seth, R.; Yang, S.; Cho, S.; Sabean, M.; Roberts, E.A. In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G. Toxicol. Vitr. 2004, 18, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ajayakumar, G.; Sreenath, K.; Gopidas, K.R. Phenothiazine attached [Ru(bpy)3]2+ derivative as highly selective “turn-on” luminescence chemodosimeter for Cu2+. Dyes Pigments 2009, 7, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.; Almodôvar, V.A.; Martins, F.; Leite, A.; Tomé, A.C.; Silva, A.M. Synthesis of Novel Diketopyrrolopyrrole-Rhodamine Conjugates and Their Ability for Sensing Cu2+ and Li+. Molecules 2020, 27, 7219. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Sharma, S.; Pandey, S.S. Synthesis and Characterization of Newly Designed and Highly Solvatochromic Double Squaraine Dye for Sensitive and Selective Recognition towards Cu2+. Molecules 2022, 27, 6578. [Google Scholar] [CrossRef]
- You, Y.; Han, Y.; Lee, Y.M.; Park, S.Y.; Nam, W.; Lippard, S.J. Phosphorescent sensor for robust quantification of copper(II) ion. J. Am. Chem. Soc. 2011, 133, 11488–11491. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, C.; Liu, J.; Zhang, M.; Liu, W.Q.; Li, W.S.; Wu, C.C.; Cheng, G.; Yang, Q.D.; Wei, G.D.; et al. Phosphorescent [3 + 2 + 1] coordinated Ir(III) cyano complexes for achieving efficient phosphors and their application in OLED devices. Chem. Sci. 2021, 12, 10165–10178. [Google Scholar] [CrossRef]
- Tao, P.; Li, W.L.; Zhang, J.; Guo, S.; Zhao, Q.; Wang, H.; Wei, B.; Liu, S.J.; Zhou, X.H.; Yu, Q.; et al. Facile synthesis of highly efficient lepidine-based phosphorescent iridium(III) complexes for yellow and white Organic Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 881–894. [Google Scholar] [CrossRef]
- Yagishita, F.; Nagamori, T.; Shimokawa, S.; Hoshi, K.; Yoshida, Y.; Imada, Y.; Kawamura, Y. Visible-light-induced oxidative coupling reaction of benzylic amines using iridium(III) complex of pincer type imidazo[1,5-a]pyridine ligand. Tetrahedron Lett. 2020, 61, 151782. [Google Scholar] [CrossRef]
- Lai, P.N.; Brysacz, C.H.; Alam, M.K.; Ayoub, N.A.; Gray, T.G.; Bao, J.; Teets, T.S. Highly Efficient Red-Emitting Bis-Cyclometalated Iridium Complexes. J. Am. Chem. Soc. 2018, 140, 10198–10207. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Lu, X.Q.; Zhou, G.J.; Wong, W.Y. Asymmetric tris-heteroleptic cyclometalated phosphorescent iridium(III) complexes: An emerging class of metallophosphors. Acc. Mater. Res. 2022, 3, 830–842. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C N bond formation. Chin. Chem. Lett. 2020, 31, 701–705. [Google Scholar] [CrossRef]
- Zheng, X.K.; Zhao, F.Q.; Yin, M.N.; Qian, C.; Bi, S.H.; Tao, P.; Miao, Y.Q.; Liu, S.J.; Zhao, Q. New trifluoromethyl modified iridium(III) complex for high-efficiency sky-blue phosphorescent organic light-emitting diode. Tetrahedron Lett. 2021, 75, 153781. [Google Scholar] [CrossRef]
- Tao, P.; Lv, Z.; Zheng, X.K.; Jiang, H.J.; Liu, S.J.; Wang, H.; Wong, W.Y.; Zhao, Q. Isomer engineering of lepidine-based iridophosphors for far-red hypoxia imaging and photodynamic therapy. Inorg. Chem. 2022, 61, 17703–17712. [Google Scholar] [CrossRef]
- Lee, L.C.C.; Lo, K.K.W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, C.; Pu, S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem. J. 2020, 158, 105166. [Google Scholar] [CrossRef]
- Raichure, P.C.; Kachwal, V.; Laskar, I.R. ‘Aggregation-Induced Emission’ Active Mono-Cyclometalated Iridium(III) Complex Mediated Efficient Vapor-Phase Detection of Dichloromethane. Molecules 2021, 27, 202. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, C.; Wang, C.; Zhao, Y.; Song, Q. Novel Long-Lifetime Iridium Complex as Lab-on-a-Molecule for Hg2+ and pH-Activatable Probes. ACS Sustain. Chem. Eng. 2017, 5, 4443–4448. [Google Scholar] [CrossRef]
- Deng, P.P.; Pei, Y.Y.; Liu, M.L.; Song, W.Z.; Wang, M.; Wang, F.; Wu, C.X.; Xu, L. A rapid “on-off-on” mitochondria-targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish. RSC Adv. 2021, 11, 7610–7620. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Wang, L. Effects of fluorine substituent on properties of cyclometalated iridium(III) complexes with a 2,2′-bipyridine ancillary ligand. Tetrahedron 2019, 75, 130686. [Google Scholar] [CrossRef]
- Wang, Y.; Herron, N.; Grushin, V.V.; LeCloux, D.; Petrov, V. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds. Appl. Phys. Lett. 2001, 79, 449–451. [Google Scholar] [CrossRef]
- Yang, X.H.; Li, M.; Peng, H.; Zhang, Q.; Wu, S.X.; Xiao, W.Q.; Chen, X.L.; Niu, Z.G.; Chen, G.Y.; Li, G.N. Highly Luminescent Mono- and Dinuclear Cationic Iridium(III) Complexes Containing Phenanthroline-Based Ancillary Ligand. Eur. J. Inorg. Chem. 2019, 2019, 847–855. [Google Scholar] [CrossRef]
- Pal, A.J.; Österbacka, R.; Källman, K.M.; Stubb, H. Transient electroluminescence: Mobility and response time in quinquethiophene Langmuir–Blodgett films. Appl. Phys. Lett. 1997, 71, 228–230. [Google Scholar] [CrossRef]
- Pal, A.K.; Cordes, D.B.; Slawin, A.M.Z.; Momblona, C.; Ortí, E.; Samuel, I.D.W.; Bolink, H.J. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorg. Chem. 2016, 55, 10361–10376. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.B.; Ge, Z.R.; Tong, X.; Guo, L.Y.; Huo, J.L.; Li, D.C.; Li, H.Y.; Li, Y.Y. Phosphorescent iridium(III) complexes bearing l-alanine ligands: Synthesis, crystal structures, photophysical properties, DFT calculations, and use as chemosensors for Cu2+ ion. Dyes Pigm. 2021, 186, 109016. [Google Scholar] [CrossRef]
- Datta, B.K.; Thiyagarajan, D.; Ramesh, A.; Das, G. A sole multi-analyte receptor responds with three distinct fluorescence signals: Traffic signal like sensing of Al3+, Zn2+ and F−. Dalton Trans. 2015, 44, 13093–13099. [Google Scholar] [CrossRef]
- Yang, Y.T.; Li, Y.B.; Zhi, X.M.; Xu, Y.J.; Li, M.N. A red-emitting luminescent probe for sequentially detecting Cu2+ and cysteine/histidine in aqueous solution and its imaging application in living zebrafish. Dyes Pigm. 2020, 183, 108690. [Google Scholar] [CrossRef]
- Wang, M.; Leung, K.H.; Lin, S.; Chan, D.S.; Kwong, D.W.; Leung, C.H.; Ma, D.L. A colorimetric chemosensor for Cu2+ ion detection based on an iridium(III) complex. Sci. Rep. 2014, 4, 6794. [Google Scholar] [CrossRef]
- King, K.A.; Spellane, P.J.; Watts, R.J. Excited-state properties of a triply ortho-metalated iridium(III) complex. J. Am. Chem. Soc. 1985, 107, 1431–1432. [Google Scholar] [CrossRef]
- Shipar, M.A.H. Computational studies on glyceraldehyde and glycine Maillard reaction-III. J. Mol. Struc.-Theochem 2004, 712, 39–47. [Google Scholar] [CrossRef]
- Seo, H.J.; Song, M.; Jin, S.H.; Choi, J.H.; Yun, S.J.; Kim, Y.I. Blue phosphorescent iridium(III) complexes containing carbazole-functionalized phenylpyridine for organic light-emitting diodes: Energy transfer from carbazolyl moieties to iridium(III) cores. RSC Adv. 2011, 1, 755–757. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, Z.B.; Guo, H.Q.; Mu, D.; Li, H.Y.; Lu, A.D. Synthesis, structures, photophysical properties, and theoretical study of four cationic iridium(III) complexes with electron-withdrawing groups on the neutral ligands. Inorg. Chem. Acta 2019, 496, 119060. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.E.; Adachi, C.; Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001, 123, 4304–4312. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
Complex | λabs (nm) a | λem (nm) b | PLQY | kr (105 s−1) | knr (105 s−1) | τ (μs) | EOX (V) c | EHOMO (eV) d | Ered (V) c | ELUMO (eV) d |
---|---|---|---|---|---|---|---|---|---|---|
Ir1 | 262, 404, 454 | 509 | 0.48 | 2.9 | 3.2 | 1.64 | 0.59 | −5.19 | −1.07 | −3.70 |
Ir2 | 258, 380, 423 | 493 | 0.55 | 3.3 | 2.7 | 1.67 | 0.73 | −5.33 | −1.08 | −3.52 |
Ir3 | 250, 311, 378 | 464, 490 | 0.69 | 4.7 | 2.1 | 1.46 | 0.91 | −5.51 | −1.07 | −3.53 |
Complex | Orbital | Energy (eV) (Calculated) | Eg (eV) (Calculated) | Composition % | |||
---|---|---|---|---|---|---|---|
Ir | Cyclometalated ligands | Ancillary ligands | |||||
phenyl group | pyridyl group | ||||||
Ir1 | HOMO | −5.22 | 3.65 | 52.28 | 35.88 | 6.24 | 2.60 |
LUMO | −1.52 | 4.79 | 26.68 | 66.42 | 2.12 | ||
Ir2 | HOMO | −5.37 | 3.80 | 50.50 | 36.23 | 7.57 | 5.71 |
LUMO | −1.58 | 4.76 | 25.91 | 67.20 | 2.13 | ||
Ir3 | HOMO | −5.64 | 3.96 | 50.82 | 38.30 | 4.62 | 6.26 |
LUMO | −1.69 | 4.49 | 26.85 | 66.01 | 2.65 | ||
LUMO+1 | −1.68 | 5.05 | 27.71 | 65.26 | 1.99 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 2.4 | 83.3 |
Lake water | 4.0 | 3.3 | 121 |
Lake water | 6.0 | 5.6 | 107 |
Tap water | 2.0 | 2.4 | 83.3 |
Tap water | 4.0 | 3.6 | 111 |
Tap water | 6.0 | 5.5 | 109 |
Drinking water | 2.0 | 2.3 | 87.0 |
Drinking water | 4.0 | 3.5 | 114 |
Drinking water | 6.0 | 5.7 | 105 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 2.0 | 100 |
Lake water | 4.0 | 3.9 | 102 |
Lake water | 6.0 | 5.7 | 105 |
Tap water | 2.0 | 2.0 | 100 |
Tap water | 4.0 | 4.0 | 100 |
Tap water | 6.0 | 5.5 | 109 |
Drinking water | 2.0 | 1.8 | 111 |
Drinking water | 4.0 | 4.4 | 90.9 |
Drinking water | 6.0 | 6.1 | 98.3 |
Sample | [Cu2+] (μmol/L) | Found [Cu2+] (μmol/L) | Recovery (%) |
---|---|---|---|
Lake water | 2.0 | 1.9 | 105 |
Lake water | 4.0 | 4.0 | 100 |
Lake water | 6.0 | 6.1 | 98.3 |
Tap water | 2.0 | 2.1 | 95.2 |
Tap water | 4.0 | 4.2 | 95.2 |
Tap water | 6.0 | 5.9 | 101 |
Drinking water | 2.0 | 2.1 | 95.2 |
Drinking water | 4.0 | 4.1 | 97.5 |
Drinking water | 6.0 | 6.1 | 98.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.; Huang, Y.; Li, W.; Zhao, S.; Li, H.; Lu, A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules 2022, 27, 8506. https://doi.org/10.3390/molecules27238506
Chu X, Huang Y, Li W, Zhao S, Li H, Lu A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules. 2022; 27(23):8506. https://doi.org/10.3390/molecules27238506
Chicago/Turabian StyleChu, Xi, Yichuan Huang, Wenhao Li, Shisheng Zhao, Hongyan Li, and Aidang Lu. 2022. "Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions" Molecules 27, no. 23: 8506. https://doi.org/10.3390/molecules27238506
APA StyleChu, X., Huang, Y., Li, W., Zhao, S., Li, H., & Lu, A. (2022). Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. Molecules, 27(23), 8506. https://doi.org/10.3390/molecules27238506