Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients
Abstract
:1. Introduction
2. Continuous-Flow Chemistry
2.1. Ibuprofen
2.2. Warfarin
2.3. Atropine
2.4. Ketamine
2.5. Imatinib
2.6. Rufinamide
2.7. (−)-Oseltamivir
2.8. Linezolid
2.9. Lomustine
2.10. Rolipram
2.11. Norephedrine
3. Photochemistry
3.1. Ibuprofen
3.2. Hypericin
3.3. Neostenine
3.4. Goniofufurone
3.5. Ascaridol
3.6. Fulvestrant
3.7. (+)-Epigalcatin
3.8. Myriceric Acid A
3.9. Artemisinin
3.10. Vitamin D3
3.11. Rosuvastatin
3.12. Hydantoin
3.13. Oxazolidinone
3.14. CDK9 Inhibitor
4. Comparison of Flow and Photochemical Approach to Ibuprofen Synthesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker-Milburn, K.I.; Noel, T. Flow Photochemistry. ChemPhotoChem 2018, 2, 830. [Google Scholar]
- Elgue, S.; Aillet, T.; Loubiere, K.; Conté, A.; Dechy-Cabaret, O.; Prat, L.; Horn, C.R.; Lobet, O.; Vallon, S. Flow photochemistry: A meso-scale reactor for industrial applications. Chim. Oggi 2015, 33, 58–62. [Google Scholar]
- Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun. 2011, 47, 4583–4592. [Google Scholar] [CrossRef] [Green Version]
- Beeler, A.B. Introduction: Photochemistry in organic synthesis. Chem. Rev. 2016, 116, 9629–9630. [Google Scholar]
- Urge, L.; Alcazar, J.; Huck, L.; Dormán, G. Recent advances of microfluidics technologies in the field of medicinal chemistry. Annu. Rep. Med. Chem. 2017, 50, 87–147. [Google Scholar]
- Wegner, J.; Ceylan, S.; Kirschning, A. Flow Chemistry—A Key Enabling Technology for (Multistep) Organic synthesis. Adv. Synth. Catal. 2012, 354, 17–57. [Google Scholar]
- Hartman, R.L.; McCullen, J.P.; Jensen, K.F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 2011, 50, 7502–7519. [Google Scholar]
- Gutmann, B.; Cantillo, D.; Kappe, O.C. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem. Int. Ed. 2015, 54, 6688–6728. [Google Scholar] [CrossRef]
- Rehm, T.H. Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem 2020, 4, 235–254. [Google Scholar] [CrossRef]
- Fitzpatrick, D.E.; Battilocchio, C.; Ley, S.V. Enabling Technologies for the Future of Chemical Synthesis. ACS Cent. Sci. 2016, 2, 131–138. [Google Scholar]
- Porta, R.; Benaglia, M.; Coccia, F.; Rossi, S.; Puglisi, A. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S)-Pregabalin Precursor and (S)-Warfarin. Symmetry 2015, 3, 1395–1409. [Google Scholar]
- Sambiagio, C.; Noël, T. Flow Photochemistry: Shine Some Light. Trends Chem. 2020, 2, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Thomson, C.G.; Lee, A.-L.; Vilela, F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J. Org. Chem. 2020, 16, 1495–1549. [Google Scholar] [CrossRef] [PubMed]
- Politano, F.; Oksdath-Mansila, G. Light on the horizon: Current research and future perspective of flow-photochemistry. Org. Process Res. Dev. 2018, 22, 1045–1062. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Baxendale, R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem. 2015, 11, 1194–1219. [Google Scholar] [CrossRef] [Green Version]
- Snead, D.R.; Jamison, T.F. A three-minute synthesis and purification of Ibuprofen: Pushing the limits of continuous-flow processing. Angew. Chem. Int. Ed. Engl. 2015, 54, 983–987. [Google Scholar]
- Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical. Org. Process Res. Dev. 2020, 24, 1802–1813. [Google Scholar] [CrossRef]
- Malet-Sanz, L.; Susanne, F. Continuous Flow Synthesis. A Pharma Perspective. J. Med. Chem. 2012, 55, 4062–4098. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Organ, M.G. Flow chemistry as a drug discovery tool: A medicinal chemistry perspective. In Flow Chemistry for the Synthesis of Heterocycles; Springer International Publishing: Cham, Switzerland, 2018; pp. 319–341. [Google Scholar]
- Bogdan, A.R.; Dombrowski, A.W. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J. Med. Chem. 2019, 62, 6422–6468. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Poe, S.L.; Kubis, D.C.; Broadwater, S.J.; McQuade, D.T. The continuous-flow synthesis of Ibuprofen. Angew. Chem. Int. Ed. 2009, 48, 8547–8550. [Google Scholar] [CrossRef]
- Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the Synthesis of Pharmaceutical products. Org. Process Res. Dev. 2016, 20, 2–25. [Google Scholar]
- Suttie, J.W. Warfarin and vitamin K. Clin. Cardiol. 1990, 13, VI–16–VI–18. [Google Scholar]
- Atropine. Available online: https://go.drugbank.com/drugs/DB00572 (accessed on 18 October 2022).
- Sztejnberg, A. Albert Ladenburg (1842-1911) – The Distinguished German Chemist and Historian of Chemistry of the Second Half of the XIX Century (To the 110th Anniversary of His Death). Substantia. 2021, 5, 153–164. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Gadzikowska, M. Tropane alkaloid as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol. Rep. 2008, 60, 439–463. [Google Scholar] [PubMed]
- Dai, C.; Snead, D.R.; Zhang, P.; Jamison, T.F. Continuous-Flow Synthesis and Purification of Atropine with Sequential In-Line Separations of Structurally Similar Impurities. J. Flow. Chem. 2015, 5, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Bédard, A.C.; Longstreet, A.R.; Britton, J.; Wang, Y.; Moriguchi, H.; Hicklin, R.W.; Green, W.H.; Jamison, T.F. Minimizing E-factor in the continuous flow synthesis of Diazepam and Atropine. Bioorgan. Med. Chem. 2017, 25, 6233–6241. [Google Scholar]
- Diab, S.; Gerogiorgis, D.I. Process modeling, simulation and technoeconomic optimisation for continuous pharmaceutical manufacturing of (S)-warfarin. Comput. Aided Chem. Eng. 2018, 43, 1643–1648. [Google Scholar]
- Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018, 554, 317–322. [Google Scholar]
- Stevens, C.L. Aminoketones and Methods for Their Production. U.S. Patent 3254124, 31 May 1966. [Google Scholar]
- Chmabers, S.A.; DeSousa, J.M.; Huseman, E.D.; Townsend, S.D. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci. 2018, 10, 2307–2330. [Google Scholar]
- Kassin, V.H.; Gérardy, R.; Toupy, T.; Collin, D.; Salvadeo, E.; Toussaint, F.; van Hecke, K.; Monbaliu, J.C. Expedient preparation of active pharmaceutical ingredient ketamine under sustainable continuous flow conditions. Green Chem. 2019, 21, 2952–2966. [Google Scholar] [CrossRef]
- Morodo, R.; Bianchi, P.; Monbaliu, J.-C.M. Continuous flow organophosphorus chemistry. Eur. J. Org. Chem. 2020, 33, 5235–5278. [Google Scholar] [CrossRef]
- Peng, B.; Lloyd, P.; Schran, H. Clinical pharmacokinetics of Imatinib. Clin. Pharmacokinet. 2005, 44, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, M.D.; Baxendale, I.R.; Ley, S.V. A flow-based synthesis of Imatinib: The API of Gleevec. Chem. Commun. 2010, 46, 2450–2452. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.C.; Jamison, T.F. Modular continuos flow synthesis of Imatinib and analogues. Org. Lett. 2019, 21, 6112–6116. [Google Scholar] [PubMed]
- Bloemendal, V.R.L.J.; Janssen, M.A.; van Hest, J.C.M.; Rutjes, F.P.J.T. Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. React. Chem. Eng. 2020, 5, 1186–1197. [Google Scholar] [CrossRef]
- Rufinamide. Available online: https://medlineplus.gov/druginfo/meds/a609001.html (accessed on 21 March 2021).
- Sorbera, L.; Leeson, P.; Rabasseda, X.; Castaner, J. Rufinamide. Antiepileptic, treatment of neurogenic pain. Drugs Future 2000, 25, 1145–1149. [Google Scholar] [CrossRef]
- Mudd, W.H.; Stevens, E.P. An afficient synthesis of Rufinamide, an antiepileptic drug. Tetrahedron Lett. 2010, 51, 3229–3231. [Google Scholar] [CrossRef]
- Ott, D.; Borukhova, S.; Hessel, V. Life cycle assessment of multi-step rufinamide synthesis—From isolated reactions in batch to continuous microreactor networks. Green Chem. 2016, 18, 1096–1116. [Google Scholar]
- Borukhova, S.; Noel, T.; Metten, B.; de Vos, E.; Hessel, V. Solvent- and Catalyst-Free Huisgen Cycloaddition to Rufinamide in Flow with a Greener, Less Expensive Dipolarophile. ChemSusChem 2013, 6, 2220–2225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow synthesis of Rufinamide. Org. Process Res. Dev. 2014, 18, 1567–1570. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Sach, N.W. The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. Adv. Synth. Catal. 2009, 351, 849–854. [Google Scholar] [CrossRef]
- Chatterjee, S.; Guidi, M.; Seeberger, P.; Gilmore, K. Automated radial synthesis of organic molecules. Nature 2020, 579, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Magano, J. Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. Chem. Rev. 2009, 109, 4398–4438. [Google Scholar] [CrossRef] [PubMed]
- Mukaiyama, T.; Ishikawa, H.; Koshino, H.; Hayashi, Y. One-pot synthesis of (-)-Oseltamivir and mechanistic insights into the organocatalyzed Michael reaction. Chem.-Eur. J. 2013, 19, 17789–17800. [Google Scholar] [PubMed]
- Ogasawara, S.; Hayashi, Y. Multistep Continuous-flow synthesis of (-)-Oseltamivir. Synthesis 2017, 49, 424–428. [Google Scholar]
- Clemett, D.; Markham, A. Prolonged-release mesalazine: A review of its therapeutic potential in ulcerative colitis and Crohn’s disease. Drugs 2000, 4, 815–827. [Google Scholar] [CrossRef]
- Perrault, W.R. The Synthesis of N-Aryl-5(S)-aminomethyl-2-oxazolidinone Antibacterials and Derivatives in One Step from Aryl Carbamates. Org. Process Res. Dev. 2003, 7, 533–546. [Google Scholar] [CrossRef]
- Russell, M.G.; Jamison, T.F. Seven-step continuous flow synthesis of Linezolid without intermediate purification. Angew. Chem. Int. Ed. 2019, 58, 7678–7681. [Google Scholar]
- Taylor, J.W.; Armstrong, T.; Kim, A.H.; Venere, M.; Acquaye, A.; Schrag, D.; Wen, P.Y. The Lomustine crisis: Awareness and impact of the 1500% price hike. Neuro-Oncol. 2019, 21, 1–3. [Google Scholar]
- Loftus, P. Cancer drug price rises 1400% with no generic to challenge it. Wall Str. J. 2017, 12, 26. [Google Scholar]
- Jaman, Z.; Sobreira, T.J.; Mufti, A.; Ferreira, C.R.; Cooks, R.G.; Thompson, D.H. Rapid On-Demand Synthesis of Lomustine under Continuous Flow Conditions. Org. Process Res. Dev. 2019, 23, 334–341. [Google Scholar] [CrossRef]
- MacDonald, R.L.; Olsen, R.W. GABAA receptor channels. Annu. Rev. Neurosci. 1994, 17, 569–602. [Google Scholar]
- Sommer, N.; LöSchmann, P.A.; Northoff, G.H.; Weller, M.; Steinbrecher, A.; Steinbach, J.P.; Lichtenfels, R.; Meyermann, R.; Riethmüller, A.; Fontana, A.; et al. The antidepressant Rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat. Med. 1995, 1, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Tsubogo, T.; Oyamada, H.; Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-Rolipram using heterogeneous catalyst. Nature 2015, 520, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.J.; Ishitani, H.; Saito, Y.; Laroche, B.; Kobayashi, S. Reworking organic synthesis for the modern age: Synthetic strategies based on continuous flow addition and condensation reactions with heterogeneous catalyst. J. Org. Chem. 2020, 85, 5132–5145. [Google Scholar] [CrossRef]
- Kernan, W.N.; Viscoli, C.M.; Brass, L.M.; Broderick, J.P.; Brott, T.; Feldmann, E.; Morgenstern, L.B.; Wilterdink, J.L.; Horwitz, R.I. Phenylpropanolamine and the risk of hemorrhagic stroke. N. Engl. J. Med. 2000, 343, 1826–1832. [Google Scholar] [CrossRef]
- Rossi, S.; Porta, R.; Brenna, D.; Puglisi, A.; Benaglia, M. Stereoselective Catalytic Synthesis of Active Pharmaceutical. Angew. Chem. Int. Ed. 2017, 56, 4290–4294. [Google Scholar]
- Baumann, M.; Baxendale, I.R. Continuous Photochemistry: The flow synthesis of Ibuprofen via a Photo-Favorskii rearrangement. React. Chem. Eng. 2016, 1, 147–150. [Google Scholar]
- Karioti, A.; Bilia, A.R. Hypericins as Potential Leads for New Therapeutics. Int. J. Mol. Sci. 2010, 2, 562–594. [Google Scholar] [CrossRef] [Green Version]
- Joniova, J.; Rebic, M.; Strejckova, A.; Huntosova, V.; Stanicova, J.; Jancura, D.; Miskovsky, P.; Bano, G. Formation of large Hypericin aggregates in giant unilamellar vesicles – experiments and modeling. Biophys J. 2017, 112, 966–975. [Google Scholar]
- Do, M.H.; Kim, S.Y. Hypericin, a Naphthodianthrone derivative, prevents methylglyoxal-induced human endothelial cell dysfunction. Biomol. Ther. 2017, 25, 158–164. [Google Scholar]
- Huntosova, V.; Novotova, M.; Nichtova, Z.; Balogová, L.; Maslankova, M.; Petrovajova, D.; Stroffekova, K. Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. Toxicol. Vitro 2017, 40, 184–195. [Google Scholar] [PubMed]
- Brockmann, H. Carotinoide von P. Karrer und E. Jucker, Lehrbücher und Monographien aud dem Gebiete der exakten Wissenschaften, Chemische Reihe Band III. Verlag Birkhäuser, Basel 1948. 388 S. 28 Bilder. Preis broschiert 39.–Fr., geb. 43.– Fr. Angew. Chem. 1949, 61, 389. [Google Scholar] [CrossRef]
- Brockmann, H.; Eggers, H. Partial synthese von photo-hypericin und Hypericin aus Penicilliopsin. Chem. Ber. 1958, 91, 81–100. [Google Scholar] [CrossRef]
- Aigner, S.; Falk, H. A microwave-assisted synthesis of phenanthroperylene quinones as exemplified with hypericin. Monatsh. Chem. 2008, 139, 991–993. [Google Scholar]
- Huang, L.F.; Wang, Z.H.; Chen, S.L. Hypericin: Chemical synthesis and biosynthesis. Chin. J. Nat. Med. 2014, 12, 81–88. [Google Scholar] [CrossRef]
- Steglich, W.; Arnold, R. Synthesis of Hypericin and Related meso-Naphthodianthrones by Alkaline Dimerization of Hydroxyanthraquinones. Angew. Chem. Int. Ed. Engl. 1973, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Mazur, Y.; Bock, H.; Lavie, D. Preparation of Hypericin. US Patent 5,120,412A, 9 June 1992. [Google Scholar]
- Falk, H.; Schoppel, G. On the synthesis of hypericin by oxidative trimethylemodin anthrone and emodin anthrone dimerization: Isohypericin. Monatsh. Chem. 1992, 123, 931–938. [Google Scholar]
- Gruszecka-Kowalik, E.; Zalkow, L.H. An improved synthesis of Hypericin and related compounds. Org. Prep. Proced. Int. 2000, 32, 57–61. [Google Scholar] [CrossRef]
- Goncalves, R.S.; Rabello, B.R.; César, G.B.; Periera, P.C.S.; Ribeiro, M.A.S.; Meurer, E.C.; Hioka, N.; Nakamura, C.V.; Bruschi, M.L.; Caetano, W. An efficient multigram synthesis of Hypericin improved by a low powered LED based photoreactor. Org. Process Res. Dev. 2017, 21, 2025–2031. [Google Scholar]
- Frankowski, K.I.; Setola, V.; Evans, J.M.; Neuenswander, B.; Roth, B.L.; Aubé, J. Synthesis and receptor profiling of Stemona alkaloid analogues reveal a potent class of sigma ligands. PNAS 2011, 108, 6727–6732. [Google Scholar] [CrossRef] [Green Version]
- Hook, B.D.A.; Dohle, W.; Hirst, P.R.; Pickworth, M.; Berry, M.B.; Booker-Milburn, K.I. A practical flow reactor for continuous organic photochemistry. J. Org. Chem. 2005, 70, 7558–7564. [Google Scholar] [CrossRef] [PubMed]
- Lainchbury, M.D.; Medley, M.I.; Taylor, P.M.; Hirst, P.; Dohle, W.; Booker-Milburn, K.I. A Protecting Group Free Synthesis of (±)-Neostenine via the [5+2] Photocycloaddition of Maleimides. J. Org. Chem. 2008, 73, 6497–6505. [Google Scholar] [CrossRef] [PubMed]
- Cambié, D.; Bottecchia, C.; Straathof, N.J.; Hessel, V.; Noel, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016, 116, 10276–10341. [Google Scholar] [PubMed] [Green Version]
- Tuchinda, P.; Munyoo, B.; Pohmakotr, M.; Thinapong, P.; Sophasan, S.; Santisuk, T.; Reutrakul, V. Cytotoxic Styryl-Lactones from the Leaves and Twigs of Polyalthia crassa. J. Nat. Prod. 2006, 12, 1728–1733. [Google Scholar]
- Popsavin, V.; Sreco, B.; Benedecovic, G.; Francuz, J.; Popsavin, M.; Kojic, V.; Bogdanovic, G. Design, synthesis and antiproliferative activity of styryl lactones related to (+)-goniofufurone. Eur. J. Med. Chem. 2010, 45, 2876–2883. [Google Scholar] [CrossRef]
- Michael, R.; Ng, S.; Booker-Milburn, K.I. Short flow-photochemistry enabled synthesis of the cytotoxic lactone (+)-Goniofufurone. Org. Lett. 2016, 18, 968–971. [Google Scholar]
- Dembitsky, V.; Shkrob, I.; Hanus, L.O. Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2008, 2, 209–215. [Google Scholar]
- Pare, P.W.; Zajicek, J.; Ferracini, V.L.; Melo, I.S. Antifungal terpenoids from Chenopodium ambrosioides. Biochem. Syst. Ecol. 1993, 21, 649–653. [Google Scholar]
- Efferth, T.; Olbrich, A.; Sauerbrey, A.; Ross, D.D.; Gebhart, E.; Neugebauer, M. Activity of Ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res. 2002, 22C, 4221–4224. [Google Scholar]
- Wootton, R.C.R.; Fortt, R.; de Mello, A.J. A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Singlet Oxygen. Org. Process Res. Dev. 2002, 6, 187–189. [Google Scholar] [CrossRef]
- Knowles, J.P.; Elliott, L.D.; Booker-Milburn, K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem. 2012, 8, 2025–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundred, N.; Howell, A. Fulvestrant (Faslodex[trademark]): Current status in the therapy of breast cancer. Expert Rev. Anticancer Ther. 2002, 2, 151. [Google Scholar] [CrossRef] [PubMed]
- Rosso, C.; Williams, J.D.; Filippini, G.; Prato, M.; Kappe, C.O. Visible-light mediated Iodoperfluoroalkylation of alkenes in flow and its application to the synthesis of a key Fulvestrant intermediate. Org. Lett. 2019, 21, 5341–5345. [Google Scholar] [CrossRef]
- Brazier, E.J.; Hogan, P.J.; Leung, C.W.; O´Kearney-McMullan, A.; Norton, A.K.; Powell, L.; Robinson, G.E.; Williams, E.G. Fulvestrant: From the Laboratory to Commercial-Scale Manufacture. Org. Process. Res. Dev. 2010, 14, 544. [Google Scholar] [CrossRef]
- Qian, L.Y.; Yang, L.; Tian, X. Podophylloxin: Current perspectives. Curr. Bioact. Compd. 2007, 3, 37–66. [Google Scholar] [CrossRef]
- Lisiecki, K.; Czarnocki, Z. Flow photochemistry as a tool for the total synthesis of (+)-Epigalcatin. Org. Lett. 2018, 20, 605–607. [Google Scholar]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar]
- Sakurawi, K.; Yasuda, F.; Tozyo, T.; Nakamura, M.; Sato, T.; Kikuchi, J.; Terui, Y.; Ikenishi, Y.; Iwata, T.; Takahashi, K.; et al. Endothelin receptor antagonist triterpenoid, Myriceric acid A, Isolated from Myrica cerifera, nad structure activity relationship of its derivatives. Chem. Pharm. Bull. 1996, 44, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Sumino, Y.; Takagi, M.; Fukuyama, T.; Ryu, I. The Barton reaction using a microreactor and Black light. Continuous flow synthesis of a key steroid intermediate for an Endothelin receptor antagonist. Tetrahedron Lett. 2006, 47, 6197–6200. [Google Scholar]
- Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Microflow photo-radical reaction using a compact light source: Application to the Barton reaction leading to a key intermediate for myriceric acid A. Tetrahedron 2009, 65, 1593–1598. [Google Scholar]
- Aweeka, F.T.; German, P.I. Clinical pharmacology of Artemisinin-based combination therapies. Clin. Pharmacokinet. 2008, 47, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.; Smeilus, T.; Kaiser, M.; Seo, E.-J.; Efferth, T.; Giannis, A. Total synthesis and biological investigation of (-)-Artemisinin: The antimalarial activity of Artemisinin is not stereospecific. Angew. Chem. Int. Ed. 2018, 57, 8293–8296. [Google Scholar]
- Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 2012, 51, 1706–1709. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E.; Cyranoski, D. Anti-parasite drugs sweep Nobel prize in medicine 2015. Nature 2015, 526, 174–175. [Google Scholar] [PubMed]
- Peplow, M. Sanofi Launches Malaria Drug Production. Available online: https://www.chemistryworld.com/news/sanofi-launches-malaria-drug-production/6068.article (accessed on 4 April 2021).
- WebMD. Available online: https://www.webmd.com/drugs/2/drug-6152/cholecalciferol-vitamin-d3-oral/details (accessed on 4 April 2021).
- Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Continuous-flow synthesis of vitamin D3. Chem. Commun. 2009, 46, 8722–8724. [Google Scholar] [CrossRef]
- Dauben, W.G.; Phillips, R.B. Wavelenght-Controlled production of previtamin D3. J. Am. Chem. Soc. 1982, 104, 355–356. [Google Scholar]
- Davidson, M.H.; Robinson, J.G. Lipid/lowering effects of statins> a comparative review. Expert Opin. Pharmacother. 2006, 13, 1701–1704. [Google Scholar] [CrossRef]
- Šterk, D.; Jukič, M.; Časar, Z. Application of Flow Photo-chemical Bromination in the synthesis of 5-Bromomethylpyrimidine precursors of Rosuvastatin: Improvement of productivity and product purity. Org. Process Res. Dev. 2013, 1, 145–151. [Google Scholar]
- Machado, L.; Spengler, G.; Evaristo, M.; Handzlik, J.; Molnár, J.; Viveiros, M.; Kiec-Konowicz, K.; Amaral, L. Biological activity of twenty-three Hydantoin derivatives on Intrinsic efflux pump system of Salmonella enterica serovar Enteritidis NCTC 13349. In Vivo 2011, 5, 25, 769–772. [Google Scholar]
- Vukelic, S.; Koksch, B.; Seeberger, P.H.; Gilmore, K. A sustainable, semi-continuous flow synthesis of Hydantoins. Chem.-Eur. J. 2016, 22, 13451–13454. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Jones, R.N. Oxazolidinone antibiotics. Lancet 2001, 358, 1975–1982. [Google Scholar] [PubMed]
- Gravestock, M.B. Recent developments in the discovery of novel oxazolidinone antibacterials. Curr. Opin. Drug Discov. Devel. 2005, 8, 469–477. [Google Scholar] [PubMed]
- Davies, S.G.; Fletcher, A.M.; Frost, A.B.; Roberts, P.M.; Thompson, J.E. Trading N and O. Part 2: Exploiting aziridinium intermediates for the synthesis of β-hydroxy-α-amino acids. Tetrahedron 2014, 70, 5849–5862. [Google Scholar]
- Slama, S.; Besbes, R. Stereoselective synthesis of erythro-β-chloroamines and their conversion into functionalized trans-oxazolidin-2-ones. Tetrahedron 2014, 70, 4732–4737. [Google Scholar] [CrossRef]
- Crich, D.; Banerjee, A. Expedient Synthesis of threo-β-Hydroxy-α-amino Acid Derivatives: Phenylalanine, Tyrosine, Histidine, and Tryptophan. J. Org. Chem. 2006, 71, 7106–7109. [Google Scholar]
- Chen, Y.; de Frutos, O.; Mateos, C.; Rincon, J.A.; Cantillo, D.; Kappe, C.O. Continuous flow photochemical benzylic bromination of a key intermediate in the synthesis of a 2-Oxazolidinone. ChemPhotoChem 2018, 2, 906–912. [Google Scholar] [CrossRef]
- Bacon, C.W.; D´Orso, I. CDK9: A signaling hub for transcriptional control. Transcription 2019, 2, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Cassandri, M.; Fioravanti, R.; Pomella, S.; Valente, S.; Rotili, D.; del Baldo, G.; de Angelis, B.; Rota, R.; Mai, A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front. Pharmacol. 2020, 11, 1230. [Google Scholar] [CrossRef]
- Herbrik, F.; Sanz, M.; Puglisi, A.; Rossi, S.; Benaglia, M. Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chem. Eur. J. 2022, 28, e202200164. [Google Scholar] [CrossRef]
Substance | Set-Up | Flow Rate | Residence Time [min] | Productivity [mg/h] | Reactor | Source |
---|---|---|---|---|---|---|
Ibuprofen | Flow | 151–260 µL/min | 10 | 540 | 3× PFA microflow reactor in fully continuous process with off line purification | [21] |
Flow | 109–500 µL/min | 3 | 8 g/h | 3× PFA microflow reactor | [16] | |
Warfarin | Flow | 1 µL/min | 10 | NA | Flow PEEK microreactor | [11] |
Flow | 4 µL/min | 10 | NA | 4 PEEEK microreactors in parallel | [22] | |
Atropine | Flow | 8–350 μL/min | 15.2 | 48 | 2 flow reactors with three sequential in-line separations | [27] |
Flow | 87.5 µL/min209 µL/min | 3.5 24 | 996 | 2 flow reactors with in-line separation | [28] | |
Ketamine | Batch | - | - | - | Batch reactor | [31] |
Flow | 0.25 mL/min0.43 mL/min | 5 2 | NA | 2 flow reactors and 1 packed K10 bed | [33] | |
Imatinib | Flow | 0.1–0.4 mL/min | 30 | 64 | Multistep flow process with packed beds, in-line purification and inline solvent switch | [36] |
Flow | 5–143 µL/min | 48 | 327 | Three-step one-flow synthesis without solvent switch | [37] | |
Rufinamide | Batch | - | - | - | Batch reactor | [40,41] |
Flow | 2–41 µL/min | 6 | 217 | 2 PFA microreactors and one copper microreactor | [44] | |
Flow | 1.2 or 1.8 mL/min | 5.5 or 20 | 237 (convergent)22 (linear) | Automated synthesis, novel radial system | [46] | |
Oseltamivir | Batch | - | - | - | Batch reactor | [48] |
Flow | 0.1–0.4 mL/min | 310 | 4 | 4 flow reactors and Zinc/Celite packed bed with low stability | [49] | |
Linezolid | Batch | - | - | - | Batch reactor | [51] |
Flow | 55–186 µL/min | 27 | 816 | 6 flow reactors and Pd packed bed | [52] | |
Lomustine | Flow | 12–50 µL/min | 9 | 110 | Two flow steps and in-line extraction | [55] |
Rolipram | Flow | 50–210 µL/min | NA | 42 | Flow process with various immobilized heterogeneous catalysts | [58] |
Norephedrine | Flow | 1 mL/min | 180 | NA | 3D-printed flow reactor | [61] |
Substance | Set-Up | Light Source | Wavelenght [nm] | Power [W] | Productivity | Reactor | Source |
---|---|---|---|---|---|---|---|
Ibuprofen | Flow (0.5 mL/min) | Medium pressure Hg lamp | 220–600 | 80 | 520 mg/h | Commercially available system with various light filters | [62] |
Hypericin | Batch | Sun | Full spectrum | - | - | Batch reactor | [71] |
Batch (overnight) | Halogen lamp | 588 | 500 | - | Batch reactor | [72] | |
Flow (125 mL/min) | LED | 504 | NA | 4.85 g/h | Photoflow reactor | [75] | |
Neostenine | Batch | Medium pressure Hg lamp | >300 | 125 | - | Batch reactor | [77,78] |
Flow (8 mL/min) | Hg lamp | 280–300 | 400 | 144 mg/h | FEP tubing wrapped around pyrex immersion well | [79] | |
Goniofufurone | Batch (24 h) | Medium-pressureHg lamp | 365 | 400 | - | Batch reactor | [82] |
Flow (1 mL/min) | Medium-pressure Hg lamp | 365 | 400 | 460 mg/h | FEP flow tubing | [82] | |
Ascaridol | Batch (4 h) | Tungsten lamp | 550 | 500 | - | Batch reactor | [86] |
Flow (1 µL/min) | Tungsten lamp | 550 | 20 | 1.5 mg/ 175 mg/h | Microchip flow reactor, | [86] | |
Fulvestrant | Flow (1 mL/min) | LED | 405 | NA | 7.6 g/h | 1 photo and 1 flow reactor with PtO2 | [89] |
Epigalcatin | Batch (1 h) | Mediumpressure Hg lamp | 365 | NA | - | Batch reactor | [92] |
Flow (0.7 mL/min) | Medium pressure Hg lamp | 365 | NA | 417 mg/h | Flow photoreactor | [92] | |
Myriceric acid A | Flow (2 mL/min) | High-pressure Hg lamp | 365 | 300 | NA | Single-channel microreactor | [95] |
Flow (1 mL/min) | Black light | 352 | 15 | 155 mg/h | 2 flow microreactors in series | [95] | |
Flow (1 mL/min) | LED | 365 | 1.7 | 132 mg/h | Automated photo microreactor system | [96] | |
Artemisinin | Flow (2.5 mL/min) | Medium-pressure Hg lamp | >300 | 450 | 424 mg/h | Photoflow reactor with TPP photosensitizer | [99] |
Vitamin D3 | Flow (66 μL/min) | High-pressure Hg lamp | 360 | 400 | NA | 1 photo and 1 flow thermal microreactor | [103] |
Rosuvastatin | Flow (3.6 mL/min) | Medium pressure Hg lamp | >300 | 150 | 28 g/h | FEP capilar coiled around the quartz well | [106] |
Hydantoin | Flow (1 mL/min) | LED | 420 | 12 | 3–7.3 g/h | Two-step continuous-flow sequence | [108] |
Oxazolidone | Batch (45 min) | Krypton lamp | NA | 250 | - | Batch reactor | [113] |
Flow (0.2 mL/min) | LED | 365 | 60 | NA | Commercially available photoflow reactor | [114] | |
Flow (0.8 mL/min) | LED | 395 | 60 | 29 g/h | Commercial system with glass chip surrounded by two LED panels | [114] | |
CDK9 inhibitor | Flow (5.13 μL/min) | LED | 395 | 12 | NA | PFA tubing wrapped around a LED light source sealed inside a Pyrex glass tube | [117] |
Approach | Advantages | Disadvantages | Yield [%] | Total Cost (USD/kg) * |
---|---|---|---|---|
Flow approach | -Fast (total tR = 3 minutes) -High-throughput (8.09 g/h) | -Reaction system prone to clogging | 83 | 2822 |
-Handles dangerous and corrosive reagents | -Double pumping system required | |||
-Available and inexpensive reagents | ||||
Photochemistry approach (micro-flow) | -Photo-reactor compatible with existing flow-system | -Low productivity(520 mg/h) | 76 | 5917 |
-Allows a real time analysis when linked to photo-spectrometer | -Heat generated by the lamp | |||
-Commercially available system with various light filters |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horáková, P.; Kočí, K. Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients. Molecules 2022, 27, 8536. https://doi.org/10.3390/molecules27238536
Horáková P, Kočí K. Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients. Molecules. 2022; 27(23):8536. https://doi.org/10.3390/molecules27238536
Chicago/Turabian StyleHoráková, Pavlína, and Kamila Kočí. 2022. "Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients" Molecules 27, no. 23: 8536. https://doi.org/10.3390/molecules27238536
APA StyleHoráková, P., & Kočí, K. (2022). Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients. Molecules, 27(23), 8536. https://doi.org/10.3390/molecules27238536