Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage
Abstract
:1. Introduction
2. Overview of Electrocatalysis
3. Research Status on Graphite-Derived Materials
4. Research Status on Fullerenes in Electrocatalysis
4.1. Doped Fullerene
4.2. Fullerene-Based Composites
4.2.1. Metals and Metal Oxides
4.2.2. Molybdenum Disulfide
4.2.3. Other Graphite Derivatives
5. Application of Carbon Nanotubes in Electrocatalysis
5.1. Doping Effect
5.1.1. Nitrogen Doping
5.1.2. Polyatomic Doping
5.2. Carrier Effect
6. Application of Graphene in the Field of Electrocatalysis
6.1. Heteroatom Doping
6.1.1. Single Atom Doping
6.1.2. Polyatomic Doping
6.2. Graphene Supported Metal
6.2.1. Single Atom Catalysts
6.2.2. Metals and Metal Oxides
6.2.3. Other Metal Compounds
6.3. Graphene Quantum Dots
6.4. Other Graphene-Based Composites
7. Conclusions and Perspective
- (1)
- Deeper insights into the electrocatalytic active sites of modified graphite-derives are required, especially doped graphite-derived materials. Advanced operando characterization methods are also necessary to deeply explore the effect of doping on the electronic distribution of active sites. By combining theoretical DFT simulations and various advanced in situ characterization methods, including in situ X-ray diffraction (XRD), X-ray absorption spectra (XAS), Raman, and Fourier-transform infrared (FTIR), the role of doping can be well understood.
- (2)
- Systematic understanding of the carrier role of graphite-derived materials. Due to the large specific surface area, easily regulated structures, and abundant active sites, the fullerenes, carbon nanotubes, and graphene can act as active catalysts and catalyst support for other active materials. Furthermore, the interfacial behavior between the carrier and the active catalyst should be paid more attention.
- (3)
- Catalyst activity measurement standards should be established to facilitate the comparison of the activity of electrocatalysts. Although researchers have developed many electrocatalysts over a few decades, it is still challenging to compare their performances due to the nonstandardized measurements (see Table 1). Therefore, the reports must establish a standard to appropriately and accurately compare electrocatalysts for ORR, OER, HER, and CO2RR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craig, M.J.; Garcia-Melchor, M. Applying Active Learning to the Screening of Molecular Oxygen Evolution Catalysts. Molecules 2021, 26, 6362. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Zhang, K.; Wang, Z.; Li, C.; Zhu, K.; Yao, Y.; Hong, G. Synthesis and Modification of Boron Nitride Nanomaterials for Electrochemical Energy Storage: From Theory to Application. Adv. Funct. Mater. 2021, 31, 2106315. [Google Scholar] [CrossRef]
- Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H.Y.; Kim, B.; Joo, S.H.; Lee, K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem. Soc. Rev. 2018, 47, 8173–8202. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Peng, L.; Li, L.; Qiao, J.; Huang, H.; Shi, J. Metal-Nitrogen-Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. Adv. Mater. 2021, 33, 2100997. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.-Z.; Huang, B.-L. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022, 41, 2169–2183. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, D.; Amal, R.; Dai, L. Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Adv. Mater. 2019, 31, 1801526. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kim, J.; Choi, S.; Wang, H.; Lim, J. A Review of Carbon-Supported Nonprecious Metals as Energy-Related Electrocatalysts. Small Methods 2020, 4, 2000621. [Google Scholar] [CrossRef]
- Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717. [Google Scholar]
- Xu, X.; Wang, S.; Guo, S.; San Hui, K.; Ma, J.; Dinh, D.A.; Hui, K.N.; Wang, H.; Zhang, L.; Zhou, G. Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn−air battery. Adv. Powder Mater. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, Y.; Jung, W. Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules 2021, 26, 5476. [Google Scholar] [CrossRef]
- Wang, H.-F.; Tang, C.; Zhang, Q. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries. Adv. Funct. Mater. 2018, 28, 1803329. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Du, L.; Yang, D.; Yang, H.; Sun, S. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid-State Zinc-Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods 2021, 5, 2000868. [Google Scholar] [CrossRef]
- Kuai, C.; Xu, Z.; Xi, C.; Hu, A.; Yang, Z.; Zhang, Y.; Sun, C.-J.; Li, L.; Sokaras, D.; Dong, C.; et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 2020, 3, 743–753. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Sheng, W.; Xu, Z.; Jaroniec, M.; Qiao, S.-Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Du, L.; Xia, B.; Yoo, P.J.; You, B. Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Adv. Funct. Mater. 2020, 31, 2008190. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [Green Version]
- Peugeot, A.; Creissen, C.E.; Karapinar, D.; Tran, H.N.; Schreiber, M.; Fontecave, M. Benchmarking of oxygen evolution catalysts on porous nickel supports. Joule 2021, 5, 1281–1300. [Google Scholar] [CrossRef]
- Charles, V.; Anumah, A.O.; Adegoke, K.A.; Adesina, M.O.; Ebuka, I.P.; Gaya, N.A.; Ogwuche, S.; Yakubu, M.O. Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustain. Mater. Technol. 2021, 28, e00252. [Google Scholar] [CrossRef]
- Lu, X.; Xia, B.; Zang, S.; Lou, X. Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 4634–4650. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J. Novel electrochemical half-cell design and fabrication for performance analysis of metal-air battery air-cathodes. Int. J. Green Energy 2018, 16, 236–241. [Google Scholar] [CrossRef]
- Martinez, U.; Komini Babu, S.; Holby, E.F.; Chung, H.T.; Yin, X.; Zelenay, P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019, 31, 1806545. [Google Scholar] [CrossRef]
- Bates, J.S.; Biswas, S.; Suh, S.E.; Johnson, M.R.; Mondal, B.; Root, T.W.; Stahl, S.S. Chemical and Electrochemical O2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J. Am. Chem. Soc. 2022, 144, 922–927. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 Reduction: A Classification Problem. Chemphyschem 2017, 18, 3266–3273. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.; Qiao, S. Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, Q.; Han, B. Electroreduction of CO2 in Ionic Liquid-Based Electrolytes. Innovation 2020, 1, 100016. [Google Scholar] [CrossRef]
- Ross, M.B.; De Luna, P.; Li, Y.; Dinh, C.-T.; Kim, D.; Yang, P.; Sargent, E.H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Woldu, A.R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340. [Google Scholar] [CrossRef]
- Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921. [Google Scholar] [CrossRef]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, L.; Tu, Y.; Chen, R.; Wu, L.; Zhu, J.; Deng, D. Unveiling the Active Site of Metal-Free Nitrogen-doped Carbon for Electrocatalytic Carbon Dioxide Reduction. Cell Rep. Phys. Sci. 2020, 1, 100145. [Google Scholar] [CrossRef]
- Feng, L.; Qin, Z.; Huang, Y.; Peng, K.; Wang, F.; Yan, Y.; Chen, Y. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Sci. Total Environ. 2020, 698, 134239. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, I.A.; Zhang, L.; Wrogemann, J.M.; Driscoll, D.M.; Sushko, M.L.; Han, K.S.; Fulton, J.L.; Engelhard, M.H.; Balasubramanian, M.; Viswanathan, V.V.; et al. Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001256. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Liu, L.; Liang, J.; Liu, W. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management. J. Clean. Prod. 2022, 331, 130014. [Google Scholar] [CrossRef]
- Xu, T.; Shen, W.; Huang, W.; Lu, X. Fullerene micro/nanostructures: Controlled synthesis and energy applications. Mater. Today Nano 2020, 11, 100081. [Google Scholar] [CrossRef]
- Puente Santiago, A.R.; Fernandez-Delgado, O.; Gomez, A.; Ahsan, M.A.; Echegoyen, L. Fullerenes as Key Components for Low-Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angew. Chem. Int. Ed. 2021, 60, 122–141. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, Y.; Lu, X.; Xie, J. Fullerenes for rechargeable battery applications: Recent developments and future perspectives. J. Energy Chem. 2021, 55, 70–79. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715. [Google Scholar] [CrossRef]
- He, M.; Zhang, S.; Zhang, J. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chem. Rev. 2020, 120, 12592–12684. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Shang, Y.; Chang, S.; Dai, L.; Cao, A. Application-Driven Carbon Nanotube Functional Materials. ACS Nano 2021, 15, 7946–7974. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, N.; Zhang, J. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future. Acta Phys. Chim. Sin. 2020, 36, 1907021. [Google Scholar] [CrossRef]
- Michael, F.L.; Sameh, H.T.; Ray, H.B.; John, H.A. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar]
- Zhu, Z.; Cui, C.; Bai, Y.; Gao, J.; Jiang, Y.; Li, B.; Wang, Y.; Zhang, Q.; Qian, W.; Wei, F. Advances in Precise Structure Control and Assembly toward the Carbon Nanotube Industry. Adv. Funct. Mater. 2021, 32, 2109401. [Google Scholar] [CrossRef]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-Nanotube-Based Electrical Conductors: Fabrication, Optimization, and Applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-L.; Li, J.-C.; Zhou, H.; Liu, Y.-Q.; Han, D.-D.; Sun, H.-B. Electro-responsive actuators based on graphene. Innovation 2021, 2, 100168. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Q.; Yang, N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. Small 2019, 15, e1903780. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Xing, M.; Zhang, J. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface modifications and analytical applications of graphene oxide: A review. TrAC Trends Anal. Chem. 2021, 144, 116448. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhu, Y.; Zhang, B.; Kim, Y.A.; Endo, M.; Su, D.S. Boron-doped onion-like carbon with enriched substitutional boron: The relationship between electronic properties and catalytic performance. J. Mater. Chem. A 2015, 3, 21805–21814. [Google Scholar] [CrossRef] [Green Version]
- María Girón, R.; Marco-Martínez, J.; Bellani, S.; Insuasty, A.; Comas Rojas, H.; Tullii, G.; Antognazza, M.R.; Filippone, S.; Martín, N. Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 2016, 4, 14284–14290. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiao, M.; Song, W.; Wu, Z. Doped fullerene as a metal-free electrocatalyst for oxygen reduction reaction: A first-principles study. Carbon 2017, 114, 393–401. [Google Scholar] [CrossRef]
- Chen, X.; Chang, J.; Ke, Q. Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon 2018, 126, 53–57. [Google Scholar] [CrossRef]
- Noh, S.H.; Kwon, C.; Hwang, J.; Ohsaka, T.; Kim, B.J.; Kim, T.Y.; Yoon, Y.G.; Chen, Z.; Seo, M.H.; Han, B. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications. Nanoscale 2017, 9, 7373–7379. [Google Scholar] [CrossRef]
- Lim, D.-H.; Lee, W.-J.; Wheldon, J.; Macy, N.L.; Smyrl, W.H. Electrochemical Characterization and Durability of Sputtered Pt Catalysts on TiO2 Nanotube Arrays as a Cathode Material for PEFCs. J. Electrochem. Soc. 2010, 157, 535–541. [Google Scholar] [CrossRef]
- Baskar, A.V.; Benzigar, M.R.; Talapaneni, S.N.; Singh, G.; Karakoti, A.S.; Yi, J.; Al-Muhtaseb, A.A.H.; Ariga, K.; Ajayan, P.M.; Vinu, A. Self-Assembled Fullerene Nanostructures: Synthesis and Applications. Adv. Funct. Mater. 2021, 32, 2106924. [Google Scholar] [CrossRef]
- Basu, O.; Mukhopadhyay, S.; De, A.; Das, A.; Das, S.K. Tuning the electrochemical and catalytic ORR performance of C60 by its encapsulation in ZIF-8: A solid-state analogue of dilute fullerene solution. Mater. Chem. Front. 2021, 5, 7654–7665. [Google Scholar] [CrossRef]
- Saianand, G.; Gopalan, A.I.; Lee, J.C.; Sathish, C.I.; Gopalakrishnan, K.; Unni, G.E.; Shanbhag, D.; Dasireddy, V.; Yi, J.; Xi, S.; et al. Mixed Copper/Copper-Oxide Anchored Mesoporous Fullerene Nanohybrids as Superior Electrocatalysts toward Oxygen Reduction Reaction. Small 2020, 16, e1903937. [Google Scholar] [CrossRef] [PubMed]
- Benzigar, M.R.; Joseph, S.; Saianand, G.; Gopalan, A.-I.; Sarkar, S.; Srinivasan, S.; Park, D.-H.; Kim, S.; Talapaneni, S.N.; Ramadass, K.; et al. Highly ordered iron oxide-mesoporous fullerene nanocomposites for oxygen reduction reaction and supercapacitor applications. Microporous Mesoporous Mater. 2019, 285, 21–31. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.; Duan, J.; Liu, H.; Liu, G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X.; et al. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano 2016, 10, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chen, S. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview. Green Energy Environ. 2018, 3, 335–351. [Google Scholar] [CrossRef]
- He, T.; Gao, G.; Kou, L.; Will, G.; Du, A. Endohedral metallofullerenes (M@C60) as efficient catalysts for highly active hydrogen evolution reaction. J. Catal. 2017, 354, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, S.; Zhang, H. Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: A density functional theory study. J. Alloys Compd. 2022, 894, 162508. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Pu, Z.; Liu, X.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.; Mu, S. Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- An, C.-H.; Kang, W.; Deng, Q.-B.; Hu, N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2021, 41, 378–384. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, J.; Parija, A.; Cho, J.; Verkhoturov, S.V.; Al-Hashimi, M.; Fang, L.; Banerjee, S. An in Situ Sulfidation Approach for the Integration of MoS2 Nanosheets on Carbon Fiber Paper and the Modulation of Its Electrocatalytic Activity by Interfacing with nC60. ACS Catal. 2016, 6, 6246–6254. [Google Scholar] [CrossRef]
- Puente Santiago, A.R.; He, T.; Eraso, O.; Ahsan, M.A.; Nair, A.N.; Chava, V.S.N.; Zheng, T.; Pilla, S.; Fernandez-Delgado, O.; Du, A.; et al. Tailoring the Interfacial Interactions of van der Waals 1T-MoS2/C60 Heterostructures for High-Performance Hydrogen Evolution Reaction Electrocatalysis. J. Am. Chem. Soc. 2020, 142, 17923–17927. [Google Scholar] [CrossRef]
- Ahsan, M.A.; He, T.; Eid, K.; Abdullah, A.M.; Curry, M.L.; Du, A.; Puente Santiago, A.R.; Echegoyen, L.; Noveron, J.C. Tuning the Intermolecular Electron Transfer of Low-Dimensional and Metal-Free BCN/C60 Electrocatalysts via Interfacial Defects for Efficient Hydrogen and Oxygen Electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, A.; Khataee, A.; Zarei, M.; Zhang, Y. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst. Sci. Rep. 2019, 9, 13780. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Dai, Q.; Du, F.; Yan, D.; Dai, L. C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. J. Am. Chem. Soc. 2019, 141, 11658–11666. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Fu, X.; Wang, S.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770. [Google Scholar] [CrossRef]
- Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.-L.; Dai, L. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83–110. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Hou, K.; Liu, Y.; Hu, R.; Guan, L. Pre-fixing defects in carbon framework for revealing the active sites of oxygen reduction reaction at nitrogen-doped carbon nanotubes. J. Energy Chem. 2021, 63, 521–527. [Google Scholar] [CrossRef]
- Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Appl. Catal. B 2019, 250, 347–354. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, S.; Zhou, M.; Cai, R.; Zhang, J. Effect of wall number on the electro-catalytic activity of nitrogen-doped carbon nanotubes for oxygen reduction reaction. Chem. Ind. Eng. Prog. 2022, 41, 2038–2045. [Google Scholar]
- Cheng, Y.; Zhang, J.; Jiang, S.P. Are metal-free pristine carbon nanotubes electrocatalytically active? Chem. Commun. 2015, 51, 13764–13767. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Feng, Q.; Zhu, J.; Xu, J.; Li, Q.; Liu, S.; Xu, K.; Zhang, C.; Liu, T. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis. J. Mater. Chem. A 2019, 7, 3664–3672. [Google Scholar] [CrossRef]
- Yang, K.; Zaffran, J.; Yang, B. Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor. Phys. Chem. Chem. Phys. 2020, 22, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shao, M.; Yang, Q.; Tang, Y.; Wei, M.; Evans, D.G.; Duan, X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy 2017, 37, 98–107. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Chen, N.; Hu, Y.; Regier, T.; Rawach, D.; Sun, S. Self-Reconstruction of Co/Co2P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc-Air Flow Batteries. ACS Energy Lett. 2021, 6, 1153–1161. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Jiao, Y.; Zhang, X.; Dai, S.; Qiao, S. Polydopamine-Inspired, Dual Heteroatom-Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Adv. Energy Mater. 2016, 7, 1602068. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, X.; Hu, G.; Feng, L. Ru Nanoclusters Coupled on Co/N-Doped Carbon Nanotubes Efficiently Catalyzed the Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2020, 8, 9136–9144. [Google Scholar] [CrossRef]
- Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Guo, S. A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. J. Mater. Chem. A 2016, 4, 16469–16475. [Google Scholar] [CrossRef]
- Han, X.; Zhang, W.; Ma, X.; Zhong, C.; Zhao, N.; Hu, W.; Deng, Y. Identifying the Activation of Bimetallic Sites in NiCo2S4@g-C3N4-CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Adv. Mater. 2019, 31, 1808281. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, Y.; Li, F.; Tian, M.; Long, X.; Jin, J.; Ma, J. Ultrafine Co2P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: High-performance bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 15501–15510. [Google Scholar] [CrossRef]
- Feng, K.; Zheng, H.; Zhang, D.; Yuan, G.; Chang, L.-Y.; Chen, Y.; Zhong, J. Carbon nanotube supported PtO nanoparticles with hybrid chemical states for efficient hydrogen evolution. J. Energy Chem. 2021, 58, 364–369. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Wei, X.; Wang, L.; She, H.; Huang, J.; Wang, Q. Preparation of double-layered Co−Ci/NiFeOOH co-catalyst for highly meliorated PEC performance in water splitting. Adv. Powder Mater. 2022, 1, 100024. [Google Scholar] [CrossRef]
- Fang, B.; Yang, J.; Chen, C.; Zhang, C.; Chang, D.; Xu, H.; Gao, C. Carbon Nanotubes Loaded on Graphene Microfolds as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem 2017, 9, 4520–4528. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Lei, Y.; Chen, Z.; Song, Y.; Luo, S. Research Progress on Carbon Nanotubes in Noble-Metal-Free Electrocatalytic Oxygen Reduction Reaction. Chin. J. Inorg. Chem. 2018, 34, 807–822. [Google Scholar]
- Li, J.-S.; Wang, X.-R.; Li, J.-Y.; Zhang, S.; Sha, J.-Q.; Liu, G.-D.; Tang, B. Pomegranate-like molybdenum phosphide@phosphorus-doped carbon nanospheres coupled with carbon nanotubes for efficient hydrogen evolution reaction. Carbon 2018, 139, 234–240. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Qiao, J.; Chen, N.; Chen, W.; Sun, S. Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 2019, 61, 86–95. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, Y.-L.; Shi, P.-C.; Huang, Y.-B.; Cao, R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B 2020, 271, 118929. [Google Scholar] [CrossRef]
- Hu, H.; Ou, J.; Xu, X.; Lin, Y.; Zhang, Y.; Zhao, H.; Chen, D.; He, M.; Huang, Y.; Deng, L. Graphene-assisted construction of electrocatalysts for carbon dioxide reduction. Chem. Eng. J. 2021, 425, 130587. [Google Scholar] [CrossRef]
- Mazanek, V.; Luxa, J.; Matejkova, S.; Kucera, J.; Sedmidubsky, D.; Pumera, M.; Sofer, Z. Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis. ACS Nano 2019, 13, 1574–1582. [Google Scholar] [CrossRef]
- Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. Adv. Mater. 2021, 33, 2003521. [Google Scholar] [CrossRef]
- Shao, Y.; Jiang, Z.; Zhang, Q.; Guan, J. Progress in Nonmetal-Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem 2019, 12, 2133–2146. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Ramakrishna, S.U.B.; Rama Devi, B.; Himabindu, V. Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis. Int. J. Green Energy 2018, 15, 558–567. [Google Scholar] [CrossRef]
- Sanchez-Padilla, N.M.; Benavides, R.; Gallardo, C.; Fernandez, S.; De-Casas, E.; Morales-Acosta, D. Influence of doping level on the electrocatalytic properties for oxygen reduction reaction of N-doped reduced graphene oxide. Int. J. Hydrogen Energy 2021, 46, 26040–26052. [Google Scholar] [CrossRef]
- Yan, P.; Liu, J.; Yuan, S.; Liu, Y.; Cen, W.; Chen, Y. The promotion effects of graphitic and pyridinic N combinational doping on graphene for ORR. Appl. Surf. Sci. 2018, 445, 398–403. [Google Scholar] [CrossRef]
- Liu, A.; Guan, W.; Wu, K.; Ren, X.; Gao, L.; Ma, T. Density functional theory study of nitrogen-doped graphene as a high-performance electrocatalyst for CO2RR. Appl. Surf. Sci. 2021, 540, 148319. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.; Chen, L.; Du, Z.; Li, X.; Ye, C.; Liu, J.; Su, B. Engineering dual defective graphenes to synergistically improve electrocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 566, 150712. [Google Scholar] [CrossRef]
- Li, S.; Ding, L.; Fan, L. Electrochemical synthesis of sulfur-doped graphene sheets for highly efficient oxygen reduction. Sci. China Chem. 2015, 58, 417–424. [Google Scholar] [CrossRef]
- Sreekanth, N.; Nazrulla, M.A.; Vineesh, T.V.; Sailaja, K.; Phani, K.L. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 2015, 51, 16061–16064. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Huang, X.; Xu, L.; Yan, D.; Huo, J.; Wang, S. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem. Commun. 2016, 52, 13008–13011. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ai, J.; Sun, M.; Han, F.; Li, Z.; Peng, Q.; Wang, Q.; Liu, J.; Liu, L. Phosphorous-Doped Graphite Layers with Outstanding Electrocatalytic Activities for the Oxygen and Hydrogen Evolution Reactions in Water Electrolysis. Adv. Funct. Mater. 2020, 30, 1910741. [Google Scholar] [CrossRef]
- Li, F.; Shu, H.; Liu, X.; Shi, Z.; Liang, P.; Chen, X. Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction. J. Phys. Chem. C 2017, 121, 14434–14442. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Wang, H.; Zhang, T.; Yuan, S. Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance. J. Mater. Sci. Technol. 2022, 99, 73–81. [Google Scholar] [CrossRef]
- Wu, M.; Liu, Y.; Zhu, Y.; Lin, J.; Liu, J.; Hu, H.; Wang, Y.; Zhao, Q.; Lv, R.; Qiu, J. Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 11331–11339. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, X.; Pan, C.; Xiang, X.; Hao, C.; Meng, Q.; Tian, Z.; Shen, P.; Jiang, S. N species tuning strategy in N, S co-doped graphene nanosheets for electrocatalytic activity and selectivity of oxygen redox reactions. Chem. Eng. J. 2022, 431, 133216. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 2012, 51, 11496–11500. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wu, H.; Zhang, L.; Zhou, X.; Bu, Y.; Zhang, W.; Chu, F.; Li, Y.; Kong, Y.; Zhang, Q.; et al. Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catal. 2018, 9, 610–619. [Google Scholar] [CrossRef]
- Razmjooei, F.; Singh, K.P.; Yang, D.-S.; Cui, W.; Jang, Y.; Yu, J.-S. Fe-Treated Heteroatom (S/N/B/P)-Doped Graphene Electrocatalysts for Water Oxidation. ACS Catal. 2017, 7, 2381–2391. [Google Scholar] [CrossRef]
- Yang, R.; Xie, J.; Liu, Q.; Huang, Y.; Lv, J.; Ghausi, M.A.; Wang, X.; Peng, Z.; Wu, M.; Wang, Y. A trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables dual-model rechargeable Zn–CO2/Zn–O2 batteries. J. Mater. Chem. A 2019, 7, 2575–2580. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, L. Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting. Angew. Chem. Int. Ed. 2016, 55, 13296–13300. [Google Scholar] [CrossRef]
- Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.; Dou, S. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Adv. Mater. 2017, 29, 1701784. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.; Kumar, D. Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy 2021, 46, 21401–21418. [Google Scholar] [CrossRef]
- Ren, S.; Yu, Q.; Yu, X.; Rong, P.; Jiang, L.; Jiang, J. Graphene-supported metal single-atom catalysts: A concise review. Sci. China Mater. 2020, 63, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xiao, J.; Chen, X.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S.; Meng, X.; Wang, Y.; et al. Reaction Mechanisms of Well-Defined Metal-N4 Sites in Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2018, 57, 16339–16342. [Google Scholar] [CrossRef] [PubMed]
- Guan, E.; Ciston, J.; Bare, S.R.; Runnebaum, R.C.; Katz, A.; Kulkarni, A.; Kronawitter, C.X.; Gates, B.C. Supported Metal Pair-Site Catalysts. ACS Catal. 2020, 10, 9065–9085. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Huang, B.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593. [Google Scholar] [CrossRef]
- Ren, M.; Guo, X.; Huang, S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom. Chem. Eng. J. 2022, 433, 134270. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A.S.; et al. Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Adv. Energy Mater. 2018, 8, 1703487. [Google Scholar] [CrossRef]
- Li, X.; Chai, G.; Xu, X.; Liu, J.; Zhong, Z.; Cao, A.; Tao, Z.; You, W.; Kang, L. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon 2020, 167, 658–667. [Google Scholar] [CrossRef]
- Huang, P.; Cheng, M.; Zhang, H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 2019, 61, 428–434. [Google Scholar] [CrossRef]
- Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903. [Google Scholar] [CrossRef]
- Qiu, H.; Du, P.; Hu, K.; Gao, J.; Li, H.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn-Air Batteries. Adv. Mater. 2019, 31, 1900843. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [Green Version]
- Pang, L.; Miao, Y.; Bhange, S.N.; Barras, A.; Addad, A.; Roussel, P.; Amin, M.A.; Kurungot, S.; Szunerits, S.; Boukherroub, R. Enhanced electrocatalytic activity of PtRu/nitrogen and sulphur co-doped crumbled graphene in acid and alkaline media. J. Colloid Interface Sci. 2021, 590, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Barman, B.K.; Sarkar, B.; Nanda, K.K. Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chem. Commun. 2019, 55, 13928–13931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, C.; Liu, W.; Hung, S.; Bin Yang, H.; Gao, J.; Cai, W.; Chen, H.; Li, J.; Liu, B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 2020, 11, 4246. [Google Scholar] [CrossRef]
- Huang, J.; Guo, X.; Yue, G.; Hu, Q.; Wang, L. Boosting CH3OH Production in Electrocatalytic CO2 Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene. ACS Appl. Mater. Interfaces 2018, 10, 44403–44414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, P.; Lu, W.; Wang, C.; Li, Y.; Ding, C.; Gu, J.; Zheng, X.; Cao, F. Co Nanoparticles/Co, N, S Tri-doped Graphene Templated from In-Situ-Formed Co, S Co-doped g-C3N4 as an Active Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 28566–28576. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.H.; Banjac, K.; Cometto, F.P.; Dattila, F.; Garcia-Muelas, R.; Raaijman, S.J.; Ye, C.; Koper, M.T.M.; Lopez, N.; Lingenfelder, M. Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under Operando CO2 Electroreduction. Nano Lett. 2021, 21, 2059–2065. [Google Scholar] [CrossRef]
- Bonnefont, A.; Ryabova, A.S.; Schott, T.; Kéranguéven, G.; Istomin, S.Y.; Antipov, E.V.; Savinova, E.R. Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Curr. Opin. Electrochem. 2019, 14, 23–31. [Google Scholar] [CrossRef]
- Gu, X.K.; Carneiro, J.S.A.; Samira, S.; Das, A.; Ariyasingha, N.M.; Nikolla, E. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides. J. Am. Chem. Soc. 2018, 140, 8128–8137. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, L.; Li, M.; Yuan, D.; Liu, X.; Qian, J.; Dou, Y.; Qiu, J.; Zhang, S. Interface Engineering of CoS/CoO@N-Doped Graphene Nanocomposite for High-Performance Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2020, 13, 35–49. [Google Scholar]
- Wu, F.; Niu, Y.; Huang, X.; Mei, Y.; Wu, X.; Zhong, C.; Hu, W. Manganese/Cobalt Bimetal Nanoparticles Encapsulated in Nitrogen-Rich Graphene Sheets for Efficient Oxygen Reduction Reaction Electrocatalysis. ACS Sustain. Chem. Eng. 2018, 6, 10545–10551. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Z.; Zuo, Z.; Pan, W.; Zhang, J. The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide. Appl. Catal. B 2018, 239, 441–449. [Google Scholar] [CrossRef]
- Maiti, K.; Kim, K.; Noh, K.-J.; Han, J.W. Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chem. Eng. J. 2021, 423, 130233. [Google Scholar] [CrossRef]
- Lai, C.; Gong, M.; Zhou, Y.; Fang, J.; Huang, L.; Deng, Z.; Liu, X.; Zhao, T.; Lin, R.; Wang, K.; et al. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl. Catal. B 2020, 274, 119086. [Google Scholar] [CrossRef]
- Hegazy, M.B.Z.; Berber, M.R.; Yamauchi, Y.; Pakdel, A.; Cao, R.; Apfel, U.P. Synergistic Electrocatalytic Hydrogen Evolution in Ni/NiS Nanoparticles Wrapped in Multi-Heteroatom-Doped Reduced Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 34043–34052. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, P.; Gayathri, S.; Han, J.H. A Complementary Co-Ni Phosphide/Bimetallic Alloy-Interspersed N-Doped Graphene Electrocatalyst for Overall Alkaline Water Splitting. ACS Appl. Mater. Interfaces 2021, 14, 1921–1935. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, L.; Li, K.; Yin, C.; Tang, H.; Wang, Y.; Wu, Z. RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study. ACS Sustain. Chem. Eng. 2019, 7, 8136–8144. [Google Scholar] [CrossRef]
- Guo, D.; Zeng, Z.; Wan, Z.; Li, Y.; Xi, B.; Wang, C. A CoN-based OER Electrocatalyst Capable in Neutral Medium: Atomic Layer Deposition as Rational Strategy for Fabrication. Adv. Funct. Mater. 2021, 31, 2101324. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Y.; Zhang, H.; Duan, Z.; Ren, T.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Synergistic coupling of P-doped Pd4S nanoparticles with P/S-co-doped reduced graphene oxide for enhanced alkaline oxygen reduction. Chem. Eng. J. 2022, 429, 132194. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31, 1808283. [Google Scholar] [CrossRef]
- Yu, J.; Song, H.; Li, X.; Tang, L.; Tang, Z.; Yang, B.; Lu, S. Computational Studies on Carbon Dots Electrocatalysis: A Review. Adv. Funct. Mater. 2021, 31, 2107196. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, B.; Shi, R.; Zhang, S.; Liu, Y.; Wang, B.; Zhang, K.; Waterhouse, G.I.N.; Zhang, T.; Lu, S. Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Adv. Energy Mater. 2021, 12, 2103426. [Google Scholar] [CrossRef]
- Ali, M.; Riaz, R.; Anjum, A.S.; Sun, K.C.; Li, H.; Jeong, S.H.; Ko, M.J. Graphene quantum dots induced porous orientation of holey graphene nanosheets for improved electrocatalytic activity. Carbon 2021, 171, 493–506. [Google Scholar] [CrossRef]
- Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J.Y.T.; Cullen, D.A.; Zheng, D.; et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Van Tam, T.; Kang, S.G.; Babu, K.F.; Oh, E.-S.; Lee, S.G.; Choi, W.M. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 10537–10543. [Google Scholar] [CrossRef]
- Guo, Q.; Feng, J.; Chen, D.; Song, N.; Dong, H.; Yu, L.; Dong, L. Theoretical Insights into Enhanced Electrocatalytic Activity of Oxygen Reduction Reactions on N/S-Codoped Graphene Quantum Dots. J. Phys. Chem. C 2021, 125, 9747–9755. [Google Scholar] [CrossRef]
- Zheng, D.; Yu, L.; Liu, W.; Dai, X.; Niu, X.; Fu, W.; Shi, W.; Wu, F.; Cao, X. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep. Phys. Sci. 2021, 2, 100443. [Google Scholar] [CrossRef]
- Yan, Y.; Zhai, D.; Liu, Y.; Gong, J.; Chen, J.; Zan, P.; Zeng, Z.; Li, S.; Huang, W.; Chen, P. van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano 2020, 14, 1185–1195. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, Z.; Zeng, Z.; Wang, W.; Kong, L.; Liu, J.; Chen, P. Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon 2021, 184, 554–561. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, D.; Li, J.; Liu, J.; Long, X.; Su, K.; Guo, J.; Tong, H.; Liu, Z.; Qian, D. Highly electrocatalytic performance of bimetallic Co–Fe sulfide nanoparticles encapsulated in N-doped carbon nanotubes on reduced graphene oxide for oxygen evolution. J. Alloys Compd. 2021, 881, 160667. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Quan, X.; Chen, S.; Zhao, H.; Yu, H. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: The enhanced performance by sulfur doping. Electrochim. Acta 2016, 204, 169–175. [Google Scholar] [CrossRef]
- Sun, J.; Lowe, S.E.; Zhang, L.; Wang, Y.; Pang, K.; Wang, Y.; Zhong, Y.; Liu, P.; Zhao, K.; Tang, Z.; et al. Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angew. Chem. Int. Ed. 2018, 57, 16511–16515. [Google Scholar] [CrossRef]
- Li, S.; Yu, Z.; Yang, Y.; Liu, Y.; Zou, H.; Yang, H.; Jin, J.; Ma, J. Nitrogen-doped truncated carbon nanotubes inserted into nitrogen-doped graphene nanosheets with a sandwich structure: A highly efficient metal-free catalyst for the HER. J. Mater. Chem. A 2017, 5, 6405–6410. [Google Scholar] [CrossRef]
- Tong, X.; Cherif, M.; Zhang, G.; Zhan, X.; Ma, J.; Almesrati, A.; Vidal, F.; Song, Y.; Claverie, J.P.; Sun, S. N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction. ACS Appl. Mater. Interfaces 2021, 13, 30512–30523. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Duan, X.; Ji, J.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Zhu, Y.; Peng, W.; Wang, S. Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. J. Colloid Interface Sci. 2021, 583, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, H.; Liang, H.; Ji, H.; Song, L.; Gao, C.; Xu, H. A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Adv. Mater. 2016, 28, 4606–4613. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, M.; Flahaut, E.; Peljo, P.; Sainio, J.; Davodi, F.; Lobiak, E.V.; Mustonen, K.; Kauppinen, E.I. Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catal. 2020, 10, 4647–4658. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Wang, J.; Lei, W.; Xuan, C.; Xiao, W.; Zhao, T.; Huang, T.; Chen, L.; Zhu, Y.; Wang, D. Restricting Growth of Ni3Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn-Air Battery. ACS Appl. Mater. Interfaces 2018, 10, 38093–38100. [Google Scholar] [CrossRef]
Catalysts | Strategies | Catalytic Performance/vs. RHE | Ref. |
---|---|---|---|
Cu/Cu2O-MFC60 | Loaded Defect | ORR 0.86 V@Eonset, −5.183 mA cm−2@diffusion-limiting current density | [61] |
Fe-MFC60 | Doped Loaded | ORR 0.85 V@Eonset, 0.78 V@E1/2 | [62] |
ANG | co-doped | ORR 0.99 V@Eonset, 0.85 V@E1/2, 4.5 mA cm−2 Current density at 0.8 V | [114] |
CPS@GN,S,P | Doped Loaded | ORR 0.8 V@E1/2, 29 mV dec−1@ Tafel slope | [142] |
N,P-CGHNs | Doped Loaded | ORR 0.94 V@Eonset, 0.82 V@E1/2 | [165] |
10% F/BCN | Doped Loaded | ORR 0.92 V@Eonset, 0.79 V@E1/2, 12 h at 0.75 V@ Stability OER 390 mV@η10, 79 mV dec−1@ Tafel slope HER 0.042 V@Eonset, 87 mV dec−1@ Tafel slope | [71] |
Co/Co2P@NCNTs | Doped Loaded | ORR 0.90 V@E1/2 OER 480 mV@η50, 1.58 V@Ej=10 | [83] |
np-graphene | co-doped Defect | ORR 96% current retention after a long-term 50 h test OER 1.45 V@Eonset, 270 mV@η10, 59 mV dec−1@ Tafel slope | [129] |
S-Ni3FeN/NSG | co-doped | ORR 0.878 V@E1/2, 40 mV dec−1@ Tafel slope OER 260 mV@η10, 76 mV dec−1@ Tafel slope | [143] |
Ni3Fe/N-S-CNTs | co-doped Loaded | ORR 0.877 V@E1/2, 353 mV@η10, 43.2 mV dec−1@ Tafel slope OER 215 mV@η10, 44.1 mV dec−1@ Tafel slope | [167] |
N,S-CNT | co-doped | OER 1.59 V@Ej=10, 56 mV dec−1@ Tafel slope HER −0.4 V at 5 mA cm−2, 133 mV dec−1@ Tafel slope | [84] |
Co2P@N,P-PCN/CNTs | co-doped Loaded | OER 280 mV@η10, 72 mV dec−1@ Tafel slope HER 154 mV@η10, 52 mV dec−1@ Tafel slope | [88] |
Ir-NSG | co-doped Loaded | OER 307 mV@η10, 74.2 mV dec−1@ Tafel slope HER 22 mV@η10, 21.2 mV dec−1@ Tafel slope | [133] |
Ru@Co/N-CNTs | co-doped Loaded | HER in 1 M KOH 48 mV@η10, 33 mV dec−1@ Tafel slope, 0.25 s−1 at -0.05 V @ TOF HER in 0.5 M H2SO4 92 mV@η10, 45 mV dec−1@ Tafel slope | [85] |
R-PtOx/CNT | Doped Loaded | HER 19.4 mV@η10, 34.6 mV dec−1@ Tafel slope | [89] |
Ni/NiS/P,N,S-rGO | co-doped Defect | HER 155 mV@η10, 135 mV dec−1@ Tafel slope | [144] |
GQD/MoS2 | van der Waals heterojunction | HER 160 mV@η10, 56.9 mV dec−1@ Tafel slope | [158] |
NCNTs | Rich-doped | CO2RR > 94.5%@FE, 20.2 mA cm−2at -(0.6–0.9 V) | [77] |
Ni/NCTs-50 | Doped Loaded | CO2RR 9366 h−1@TOF, 98%@FE, 34.3 mA cm−2 at −1.0 V | [95] |
Fe/NG-750 | Doped Loaded | CO2RR ≈ 80%@FE | [125] |
PO-5 nm -Co/SL-NG | Doped Loaded | CO2RR(versus SCE) 380 mVη10, 71.4%@FE at −0.90 V | [134] |
SnO2@N-rGO | Doped Loaded | CO2RR 21.3 mA cm−2at −0.8 V, 89%@FE | [141] |
15 wt% Ni-N-C | GQD loaded high single-atom | CO2RR 122 mA cm−2 @CO partial current | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Wu, M.; Li, S.; Jiang, Z.; Hong, H.; Cloutier, S.G.; Yang, H.; Omanovic, S.; Sun, S.; Zhang, G. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. Molecules 2022, 27, 8644. https://doi.org/10.3390/molecules27248644
He S, Wu M, Li S, Jiang Z, Hong H, Cloutier SG, Yang H, Omanovic S, Sun S, Zhang G. Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. Molecules. 2022; 27(24):8644. https://doi.org/10.3390/molecules27248644
Chicago/Turabian StyleHe, Shuaijie, Mingjie Wu, Song Li, Zhiyi Jiang, Hanlie Hong, Sylvain G. Cloutier, Huaming Yang, Sasha Omanovic, Shuhui Sun, and Gaixia Zhang. 2022. "Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage" Molecules 27, no. 24: 8644. https://doi.org/10.3390/molecules27248644
APA StyleHe, S., Wu, M., Li, S., Jiang, Z., Hong, H., Cloutier, S. G., Yang, H., Omanovic, S., Sun, S., & Zhang, G. (2022). Research Progress on Graphite-Derived Materials for Electrocatalysis in Energy Conversion and Storage. Molecules, 27(24), 8644. https://doi.org/10.3390/molecules27248644