Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions
Abstract
:1. Introduction
2. Results and Decision
2.1. The Effect of the Best Conditions on the Particle Size
2.2. The Effect of the Initial Gold Concentration
2.3. The Effect of Temperature
2.4. The Effect of Flowrate
3. Materials and Methods
3.1. General Note
3.2. Chemicals
3.3. Experimental Setup in Microreactor Mode
3.4. Synthesis of GNPs in Batch Mode
3.5. Synthesis of GNPs in Microreactor Mode
3.6. Characterization of Gold Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lakshmipriya, T.; Gopinath, S.C.B. Introduction to nanoparticles and analytical devices. In Nanoparticles in Analytical and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–29. [Google Scholar]
- He, Y.Q.; Liu, S.P.; Kong, L.; Liu, Z.F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim. Acta-Part Mol. Biomol. Spectrosc. 2005, 61, 2861–2866. [Google Scholar] [CrossRef]
- Li, N.; Yu, L.; Zou, J. Critical Coagulation Concentration-Based Salt Titration for Visual Quantification in Gold Nanoparticle-Based Colorimetric Biosensors. J. Lab. Autom. 2014, 19, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep. 2018, 12, 11330. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C. Supported gold nanoparticles as catalysts for the oxidation of alcohols and alkanes. Front. Chem. 2019, 7, 702. [Google Scholar] [CrossRef] [Green Version]
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Nat. 2011, 3, 34–55. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, S.; Daneshkhah, A.; Diwate, A.; Patel, H.; Smith, J.; Reul, O.; Cheng, R.; Izadian, A.; Hajrasouliha, A.R. Model for gold nanoparticle synthesis: Effect of pH and reaction time. ACS Omega 2021, 6, 16847–16853. [Google Scholar] [CrossRef]
- Tran, M.; DePenning, R.; Turner, M.; Padalkar, S. Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Mater. Res. Express 2016, 3, 105027. [Google Scholar] [CrossRef]
- Patel, A.U.; Jani, G.K.; Ranch, K.; Patil, K.; Dharamsi, A. Effect of Reducing Agent on Particle Size of Gold Nanoparticles: Synthesis and Characterization. Int. J. Pharm. Biol. Sci. 2018, 8, 637–641. [Google Scholar]
- Hassanen, E.I.; Morsy, E.A.; Hussien, A.M.; Ibrahim, M.A.; Farroh, K.Y. The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [Green Version]
- Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World 2014, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, K.; Ghann, W.E.; Kumar, S.; Daniel, M.-C. Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich—Frens method. Gold Bull. 2012, 45, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Gandhi, K.S.; Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 2007, 46, 3128–3136. [Google Scholar] [CrossRef]
- Agunloye, E.; Panariello, L.; Gavriilidis, A.; Mazzei, L. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem. Eng. Sci. 2018, 191, 318–331. [Google Scholar] [CrossRef]
- Deraedt, C.; Salmon, L.; Gatard, S.; Ciganda, R.; Hernandez, R.; Ruiz, J.; Astruc, D. Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem. Commun. 2014, 50, 14194–14196. [Google Scholar] [CrossRef] [PubMed]
- Male, K.B.; Li, J.; Bun, C.C.; Ng, S.-C.; Luong, J.H.T. Synthesis and stability of fluorescent gold nanoparticles by sodium borohydride in the presence of mono-6-deoxy-6-pyridinium-$β$-cyclodextrin chloride. J. Phys. Chem. C 2008, 112, 443–451. [Google Scholar] [CrossRef]
- Karimi, S.; Moshaii, A.; Nikkhah, M. Controlled synthesis of colloidal monodisperse gold nanoparticles in a wide range of sizes; investigating the effect of reducing agent. Mater. Res. Express 2019, 6, 1150f2. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, J.; Liu, J.; Miao, Y. Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 2009, 44, 754–758. [Google Scholar] [CrossRef]
- Hussain, M.H.; Bakar, N.F.A.; Mustapa, A.N.; Low, K.-F.; Othman, N.H.; Adam, F. Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res. Lett. 2020, 15, 140. [Google Scholar] [CrossRef]
- Tyagi, H.; Kushwaha, A.; Kumar, A.; Aslam, M. pH-dependent synthesis of stabilized gold nanoparticles using ascorbic acid. Int. J. Nanosci. 2011, 10, 857–860. [Google Scholar] [CrossRef]
- Jeong, G.H.; Lee, Y.W.; Kim, M.; Han, S.W. High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J. Colloid Interface Sci. 2009, 329, 97–102. [Google Scholar] [CrossRef]
- Streszewski, B.; Jaworski, W.; Pacławski, K.; Csapó, E.; Dékány, I.; Fitzner, K. Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate-Kinetic studies. Colloids Surf. Physicochem. Eng. Asp. 2012, 397, 63–72. [Google Scholar] [CrossRef]
- Rahman, M.T.; Rebrov, E.V. Microreactors for gold nanoparticles synthesis: From faraday to flow. Processes 2014, 2, 466–493. [Google Scholar] [CrossRef] [Green Version]
- Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C. Synthesis and reactions of functionalised gold nanoparticles. J. Chem. Soc. Chem. Commun. 1995, 1655–1656. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Perrault, S.D.; Chan, W.C.W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.N.; Li, D.; Dass, A.; Eah, S.-K. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d< 2 nm). Nanoscale 2012, 4, 4091–4094. [Google Scholar]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Ribeiro, M.R.; Pontes, M.J.; Nogueira, B.V.; Guimarães, M.C. A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab. J. Chem. 2020, 13, 216–226. [Google Scholar] [CrossRef]
- Marre, S.; Jensen, K.F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev. 2010, 39, 1183–1202. [Google Scholar] [CrossRef]
- Jamal, F.; Jean-Sébastien, G.; Maël, P.; Edmond, P.; Christian, R. Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions. Microsyst. Technol. 2012, 18, 151–158. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J. Reaction kinetics and scale-up of catalytic processes. J. Mol. Catal. Chem. 2000, 163, 157–162. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Mason, B.P.; Sylvester, K.T.; McQuade, D.T. Improving Solid-Supported Catalyst Productivity by Using Simplified Packed-Bed Microreactors. Angew. Chem. Int. Ed. 2007, 46, 1698–1701. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-M.; Park, S.-T.; Lee, D.-J. Nanogold synthesis by inert gas condensation for immuno-chemistry probes. J. Alloys Compd. 2005, 390, 297–300. [Google Scholar] [CrossRef]
- Tian, Z.; Ge, X.; Wang, Y.; Xu, J. Nanoparticles and nanocomposites with microfluidic technology. In Polymer-Based Multifunctional Nanocomposites and Their Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–33. [Google Scholar]
- Wagner, J.; Kirner, T.; Mayer, G.; Albert, J.; Köhler, J.M. Generation of metal nanoparticles in a microchannel reactor. Chem. Eng. J. 2004, 101, 251–260. [Google Scholar] [CrossRef]
- Wagner, J.; Köhler, J.M. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005, 5, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.M.; Wagner, J.; Albert, J. Formation of isolated and clustered Au nanoparticles in the presence of polyelectrolyte molecules using a flow-through Si chip reactor. J. Mater. Chem. 2005, 15, 1924–1930. [Google Scholar] [CrossRef]
- Wagner, J.; Tshikhudo, T.R.; Köhler, J.M. Microfluidic generation of metal nanoparticles by borohydride reduction. Chem. Eng. J. 2008, 135, 104–109. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Tsukuda, T. Microfluidic synthesis and catalytic application of pvp-stabilized, ∼1 nm gold clusters. Langmuir 2008, 24, 11327–11330. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Fitzner, K.; Hessel, V.; Löb, P.; Maskos, M.; Metzke, D.; Pacławski, K.; Wojnicki, M. Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chem. Eng. J. 2011, 171, 279–290. [Google Scholar] [CrossRef]
- Ishizaka, T.; Ishigaki, A.; Kawanami, H.; Suzuki, A.; Suzuki, T.M. Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution. J. Colloid Interface Sci. 2012, 367, 135–138. [Google Scholar] [CrossRef]
- Ftouni, J.; Penhoat, M.; Addad, A.; Payen, E.; Rolando, C.; Girardon, J.S. Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device. Nanoscale 2012, 4, 4450–4454. [Google Scholar] [CrossRef]
- Sugie, A.; Song, H.; Horie, T.; Ohmura, N.; Kanie, K.; Muramatsu, A.; Mori, A. Synthesis of thiol-capped gold nanoparticle with a flow system using organosilane as a reducing agent. Tetrahedron Lett. 2012, 53, 4457–4459. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials synthesis through microfluidic methods: An updated overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Duraiswamy, S. Controlling bubbles using bubbles–Microfluidic synthesis of ultra-small gold nanocrystals with gas-evolving reducing agents. Lab. Chip 2012, 12, 1807–1812. [Google Scholar] [CrossRef]
- Cabeza, V.S.; Kuhn, S.; Kulkarni, A.A.; Jensen, K.F. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 2012, 28, 7007–7013. [Google Scholar] [CrossRef]
- Ahmad, T.; Wani, I.A.; Ahmed, J.; Al-Hartomy, O.A. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions. Appl. Nanosci. 2014, 4, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tanabe, Y.; Yagyu, H. Analysis of Synthesis Mechanism of Gold Nanoparticles Using Glass Microfluidics. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 702. [Google Scholar]
- Wuithschick, M.; Birnbaum, A.; Witte, S.; Sztucki, M.; Vainio, U.; Pinna, N.; Rademann, K.; Emmerling, F.; Kraehnert, R.; Polte, J. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano 2015, 9, 7052–7071. [Google Scholar] [CrossRef]
- Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S. Predicting the surface plasmon resonance wavelength of gold--silver alloy nanoparticles. J. Phys. Chem. C 2013, 117, 19142–19145. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljarrah, M.T.; Alboull, A.M.; Alharahsheh, M.S.; Ashraf, A.; Khandakar, A. Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions. Molecules 2022, 27, 8651. https://doi.org/10.3390/molecules27248651
Aljarrah MT, Alboull AM, Alharahsheh MS, Ashraf A, Khandakar A. Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions. Molecules. 2022; 27(24):8651. https://doi.org/10.3390/molecules27248651
Chicago/Turabian StyleAljarrah, Mohannad T., Ala’a M. Alboull, Mohammad S. Alharahsheh, Azad Ashraf, and Amith Khandakar. 2022. "Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions" Molecules 27, no. 24: 8651. https://doi.org/10.3390/molecules27248651
APA StyleAljarrah, M. T., Alboull, A. M., Alharahsheh, M. S., Ashraf, A., & Khandakar, A. (2022). Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions. Molecules, 27(24), 8651. https://doi.org/10.3390/molecules27248651