Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. 125Te NMR Studies and Solution Chemistry
2.2. 123Te NMR Studies
2.3. DFT Computations
2.4. Crystal Structures
3. Materials and Methods
3.1. Preparation of Solutions and Crystals
3.2. 17O, 123Te and 125Te NMR Spectroscopy
3.3. Computations
3.4. Single-Crystal X-ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, D.; Zhang, Y.; Shi, Q.; Liu, Q.; Yang, D.; Zhang, B.; Wang, Y. Tellurate Polymorphs with High-Performance Nonlinear Optical Switch Property and Wide Mid-IR Transparency. Inorg. Chem. Front. 2022, 9, 1708–1713. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Liu, Q.; Zhang, B.; Yang, D.; Wang, Y. Band Gap Modulation and Nonlinear Optical Properties of Quaternary Tellurates Li2 GeTeO6. Dalton Trans. 2022, 51, 8955–8959. [Google Scholar] [CrossRef] [PubMed]
- Nagarathinam, M.; Soares, C.; Chen, Y.; Seymour, V.R.; Mazanek, V.; Isaacs, M.A.; Sofer, Z.; Kolosov, O.; Griffin, J.M.; Tapia-Ruiz, N. Synthesis, Characterisation, and Feasibility Studies on the Use of Vanadium Tellurate(VI) as a Cathode Material for Aqueous Rechargeable Zn-Ion Batteries. RSC Adv. 2022, 12, 12211–12218. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Niu, H.; Zeng, Z.; Jiang, D.; He, X.; Liang, Y.; Huang, H.; Zhang, M.; Li, J.; He, Z.; et al. Influence of Barium Intercalated Ions on Magnetic Interaction in the Tellurate Compound BaNi2TeO6. Inorg. Chem. 2022, 61, 5731–5736. [Google Scholar] [CrossRef]
- Chiaverini, L.; Cirri, D.; Tolbatov, I.; Corsi, F.; Piano, I.; Marrone, A.; Pratesi, A.; Marzo, T.; La Mendola, D. Medicinal Hypervalent Tellurium Prodrugs Bearing Different Ligands: A Comparative Study of the Chemical Profiles of AS101 and Its Halido Replaced Analogues. Int. J. Mol. Sci. 2022, 23, 7505. [Google Scholar] [CrossRef]
- Gad, S.C.; Pham, T. Tellurium. In Encyclopedia of Toxicology; Academic Press: Amsterdam, The Netherlands, 2014; pp. 481–483. [Google Scholar]
- Grishanov, D.A.; Mikhaylov, A.A.; Medvedev, A.G.; Gun, J.; Prikhodchenko, P.V.; Xu, Z.J.; Nagasubramanian, A.; Srinivasan, M.; Lev, O. Graphene Oxide-Supported β-Tin Telluride Composite for Sodium- and Lithium-Ion Battery Anodes. Energy Technol. 2018, 6, 127–133. [Google Scholar] [CrossRef]
- Grishanov, D.A.; Mikhaylov, A.A.; Medvedev, A.G.; Gun, J.; Nagasubramanian, A.; Madhavi, S.; Lev, O.; Prikhodchenko, P.V. Synthesis of High Volumetric Capacity Graphene Oxide-Supported Tellurantimony Na- and Li-Ion Battery Anodes by Hydrogen Peroxide Sol Gel Processing. J. Colloid Interface Sci. 2018, 512, 165–171. [Google Scholar] [CrossRef]
- Mikhaylov, A.A.; Medvedev, A.G.; Churakov, A.V.; Grishanov, D.A.; Prikhodchenko, P.V.; Lev, O. Peroxide Coordination of Tellurium in Aqueous Solutions. Chem.—Eur. J. 2016, 22, 2980–2986. [Google Scholar] [CrossRef]
- Yeon, J.; Kim, S.-H.; Nguyen, S.D.; Lee, H.; Halasyamani, P.S. Two New Noncentrosymmetric (NCS) Polar Oxides: Syntheses, Characterization, and Structure–Property Relationships in BaMTe2O7 (M = Mg2+ or Zn2+). Inorg. Chem. 2012, 51, 2662–2668. [Google Scholar] [CrossRef]
- Lu, W.; Gao, Z.; Liu, X.; Tian, X.; Wu, Q.; Li, C.; Sun, Y.; Liu, Y.; Tao, X. Rational Design of a LiNbO3-like Nonlinear Optical Crystal, Li2ZrTeO6, with High Laser-Damage Threshold and Wide Mid-IR Transparency Window. J. Am. Chem. Soc. 2018, 140, 13089–13096. [Google Scholar] [CrossRef]
- Wang, D.; Gong, P.; Zhang, X.; Lin, Z.; Hu, Z.; Wu, Y. Centrosymmetric Rb[Te2O4(OH)5] and Noncentrosymmetric K2[Te3O8(OH)4]: Metal Tellurates with Corner and Edge-Sharing (Te4O18)12− Anion Groups. Inorg. Chem. Front. 2022, 9, 2628–2636. [Google Scholar] [CrossRef]
- Wedel, B.; Sugiyama, K.; Itagaki, K.; Müller-Buschbaum, H. Synthesis and Crystal Chemistry of New Transition Metal Tellurium Oxides in Compounds Containing Lead and Barium. MRS Online Proc. Libr. 2000, 658, 101. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Z.; Liu, F.; Du, X.; Wang, X.; Guo, F.; Li, C.; Sun, Y.; Tao, X. Optimized Growth and Anisotropic Properties of Li2ZrTeO6 Nonlinear Optical Crystals. CrystEngComm 2021, 23, 6682–6689. [Google Scholar] [CrossRef]
- Dammak, M.; Khemakhem, H.; Mhiri, T. Superprotonic Conduction and Ferroelectricity in Addition Cesium Sulfate Tellurate Cs2SO4·Te(OH)6. J. Phys. Chem. Solids 2001, 62, 2069–2074. [Google Scholar] [CrossRef]
- Vanek, L.; Mička, Z.; Fajnor, V.Š. Thermal Dehydration and Decomposition of Oxygen-Tellurium(VI) Compounds with Alkali Metals and Ammonium. J. Therm. Anal. Calorim. 1999, 55, 861–866. [Google Scholar] [CrossRef]
- Singh, H.; Sinha, A.K.; Ghosh, H.; Singh, M.N.; Rajput, P.; Prajapat, C.L.; Singh, M.R.; Ravikumar, G. Structural Investigations on Co3−xMnxTeO6; (0<x≤2); High Temperature Ferromagnetism and Enhanced Low Temperature Anti-Ferromagnetism. J. Appl. Phys. 2014, 116, 074904. [Google Scholar] [CrossRef]
- Augsburger, M.S.; Viola, M.C.; Pedregosa, J.C.; Carbonio, R.E.; Alonso, J.A. Crystal Structure and Magnetism of the Double Perovskites Sr3Fe2TeO9 and Ba3Fe2TeO9: A Neutron Diffraction Study. J. Mater. Chem. 2006, 16, 4235. [Google Scholar] [CrossRef]
- Sathiya, M.; Ramesha, K.; Rousse, G.; Foix, D.; Gonbeau, D.; Guruprakash, K.; Prakash, A.S.; Doublet, M.L.; Tarascon, J.-M. Li4NiTeO6 as a Positive Electrode for Li-Ion Batteries. Chem. Commun. 2013, 49, 11376. [Google Scholar] [CrossRef] [Green Version]
- Masese, T.; Yoshii, K.; Yamaguchi, Y.; Okumura, T.; Huang, Z.-D.; Kato, M.; Kubota, K.; Furutani, J.; Orikasa, Y.; Senoh, H.; et al. Rechargeable Potassium-Ion Batteries with Honeycomb-Layered Tellurates as High Voltage Cathodes and Fast Potassium-Ion Conductors. Nat. Commun. 2018, 9, 3823. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Mutailipu, M.; Jin, W.; Han, S.; Yang, Z.; Pan, S. Cation Substitution of Hexagonal Triple Perovskites: A Case in Trimetallic Tellurates A2A′BTe2O9. Inorg. Chem. 2021, 60, 6099–6106. [Google Scholar] [CrossRef]
- An, Y.; Mosbah, A.; Le Gal La Salle, A.; Guyomard, D.; Verbaere, A.; Piffard, Y. K2[Te4O8(OH)10]: Synthesis, Crystal Structure and Thermal Behavior. Solid State Sci. 2001, 3, 93–101. [Google Scholar] [CrossRef]
- Churakov, A.V.; Ustinova, E.A.; Prikhodchenko, P.V.; Tripol’skaya, T.A.; Howard, J.A.K. Synthesis and Crystal Structure of New Alkali Metal Hydrogen Tellurates. Russ. J. Inorg. Chem. 2007, 52, 1503–1510. [Google Scholar] [CrossRef]
- Ustinova, E.A.; Prikhodchenko, P.V.; Fedotov, M.A. Equilibrium in Water-Peroxide Solutions of Cesium Tellurate Studied by 125Te NMR Spectroscopy. Russ. J. Inorg. Chem. 2006, 51, 608–612. [Google Scholar] [CrossRef]
- Inamo, M. 125Te NMR Evidence for the Existence of Trinuclear Tellurate Ion in Aqueous Solution. Chem. Lett. 1996, 25, 17–18. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Belsky, A.; Hellenbrandt, M.; Karen, V.L.; Luksch, P. New Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in Support of Materials Research and Design. Acta Crystallogr. Sect. B. 2002, 58, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Christy, A.G.; Mills, S.J.; Kampf, A.R. A Review of the Structural Architecture of Tellurium Oxycompounds. Mineral. Mag. 2016, 80, 415–545. [Google Scholar] [CrossRef] [Green Version]
- Bühl, M.; Knight, F.R.; Křístková, A.; Malkin Ondík, I.; Malkina, O.L.; Randall, R.A.M.; Slawin, A.M.Z.; Woollins, J.D. Weak Te,Te Interactions through the Looking Glass of NMR Spin-Spin Coupling. Angew. Chem. Int. Ed. 2013, 52, 2495–2498. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, T.P. Steric Effects in Neophyltin(IV) Chemistry. J. Organomet. Chem. 1985, 287, 179–186. [Google Scholar] [CrossRef]
- Tötsch, W.; Peringer, P.; Sladky, F. The Solvolysis of Orthotelluric Acid in HF. J. Chem. Soc. Chem. Commun. 1981, 841–842. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Wadt, W.R.; Hay, P.J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Mata, I.; Alkorta, I.; Espinosa, E.; Molins, E. Relationships between Interaction Energy, Intermolecular Distance and Electron Density Properties in Hydrogen Bonded Complexes under External Electric Fields. Chem. Phys. Lett. 2011, 507, 185–189. [Google Scholar] [CrossRef]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Vener, M.V.; Churakov, A.V.; Voronin, A.P.; Parashchuk, O.D.; Artobolevskii, S.V.; Alatortsev, O.A.; Makhrov, D.E.; Medvedev, A.G.; Filarowski, A. Comparison of Proton Acceptor and Proton Donor Properties of H2O and H2O2 in Organic Crystals of Drug-like Compounds: Peroxosolvates vs. Crystallohydrates. Molecules 2022, 27, 717. [Google Scholar] [CrossRef]
- Medvedev, A.G.; Churakov, A.V.; Navasardyan, M.A.; Prikhodchenko, P.V.; Lev, O.; Vener, M.V. Fast Quantum Approach for Evaluating the Energy of Non-Covalent Interactions in Molecular Crystals: The Case Study of Intermolecular H-Bonds in Crystalline Peroxosolvates. Molecules 2022, 27, 4082. [Google Scholar] [CrossRef]
- Buldashov, I.A.; Medvedev, A.G.; Mikhaylov, A.A.; Churakov, A.V.; Lev, O.; Prikhodchenko, P.V. Non-Covalent Interactions of the Hydroperoxo Group in Crystalline Adducts of Organic Hydroperoxides and Their Potassium Salts. CrystEngComm 2022, 24, 6101–6108. [Google Scholar] [CrossRef]
- Churakov, A.V.; Grishanov, D.A.; Medvedev, A.G.; Mikhaylov, A.A.; Tripol’skaya, T.A.; Vener, M.V.; Navasardyan, M.A.; Lev, O.; Prikhodchenko, P.V. Cyclic Dipeptide Peroxosolvates: First Direct Evidence for Hydrogen Bonding between Hydrogen Peroxide and a Peptide Backbone. CrystEngComm 2019, 21, 4961–4968. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Programs for Scaling and Absorption Correction of Area Detector Data; Version 2016/2; Bruker AXS: Karlsruhe, Germany, 2016. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
Solution | [Cs], M | [Te], M | pH |
---|---|---|---|
Solution 1 | 0 | 1 | 2.5 |
Solution 2 | 0.1 | 1 | 5.2 |
Solution 3 | 0.5 | 0.5 | 9.2 |
Solution 4 | 1.5 | 1 | 11.5 |
Solution 5 | 2.5 | 1 | 14.3 |
Solution 6 | 3.5 | 1 | 14.8 |
Solution 7 | 4.7 | 1 | 15.2 |
Parameter | I | II |
---|---|---|
Formula | Cs2Te4O18H10 | Cs2Te2O10H6 |
CCDC | 2215219 | 2215218 |
fw | 1074.30 | 687.07 |
Color, habit | Colorless, prism | Colorless, prism |
Cryst size, mm | 0.10 × 0.05 × 0.05 | 0.10 × 0.10 × 0.05 |
Cryst syst | Monoclinic | Triclinic |
Space group | P21/c | P |
a, Å | 5.7174(3) | 6.2963(3) |
b, Å | 8.4698(4) | 6.3962(3) |
c, Å | 16.6536(9) | 7.3552(4) |
α, deg | 90 | 67.507(2) |
β, deg | 97.436(2) | 77.178(2) |
γ, deg | 90 | 65.661(1) |
V, Å3 | 799.67(2) | 248.63(2) |
Z | 2 | 1 |
ρcalc, g/cm3 | 4.462 | 4.589 |
μ, mm−1 | 11.803 | 13.116 |
F(000) | 944 | 300 |
θ range, deg | 2.47 to 30.46 | 3.01 to 30.48 |
Total no. of reflns | 7894 | 4145 |
Unique reflns, Rint | 1833, 0.0422 | 1504, 0.015 |
Reflns. with I > 2σ(I) | 1632 | 1429 |
No. of variables | 124 | 76 |
R1 (I > 2σ(I)) | 0.0377 | 0.0161 |
wR2 (all data) | 0.0849 | 0.0371 |
GoF on F2 | 1.130 | 1.117 |
Largest diffPeak/hole, e/Å3 | 1.881/−2.050 | 0.800/−1.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvedev, A.G.; Savelyev, O.Y.; Krut’ko, D.P.; Mikhaylov, A.A.; Lev, O.; Prikhodchenko, P.V. Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy. Molecules 2022, 27, 8654. https://doi.org/10.3390/molecules27248654
Medvedev AG, Savelyev OY, Krut’ko DP, Mikhaylov AA, Lev O, Prikhodchenko PV. Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy. Molecules. 2022; 27(24):8654. https://doi.org/10.3390/molecules27248654
Chicago/Turabian StyleMedvedev, Alexander G., Oleg Yu. Savelyev, Dmitry P. Krut’ko, Alexey A. Mikhaylov, Ovadia Lev, and Petr V. Prikhodchenko. 2022. "Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy" Molecules 27, no. 24: 8654. https://doi.org/10.3390/molecules27248654
APA StyleMedvedev, A. G., Savelyev, O. Y., Krut’ko, D. P., Mikhaylov, A. A., Lev, O., & Prikhodchenko, P. V. (2022). Speciation of Tellurium(VI) in Aqueous Solutions: Identification of Trinuclear Tellurates by 17O, 123Te, and 125Te NMR Spectroscopy. Molecules, 27(24), 8654. https://doi.org/10.3390/molecules27248654