Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics
Abstract
:1. Introduction
1.1. Working Principle of Cancer Nanotheranostics
1.1.1. Metallic Nanoparticles for Cancer Theranostics
1.1.2. Types of Metallic Nanoparticles in Cancer Nanotheranostics
1.2. Application of Metallic Nanoparticles in Cancer Theranostics
2. Various Plasmonic Nanoparticles and Their Application in Cancer Theranostic
2.1. Gold Nanoparticles
2.2. Zinc Nanoparticles
2.3. Silver Nanoparticles
2.4. Iron Nanoparticles
Therapeutic Entity | Type of Fe NP | Application | References |
---|---|---|---|
Magnetic hyperthermia (MHT) | Superparamagnetic iron oxide nanoparticles | Normal cell restoration after cancer cell destruction | [48] |
OVA | Fe3O4-OVA | Tumour inhibition | [49] |
poly(lactic-co-glycolic acid) (PLGA) and chlorin E6 (Ce6) | Fe3O4-PLGA-Ce6 | Tumour cell ferroptosis | [50] |
DOX | DOX-Fe3O4 | Tumour lymph node detection and therapy | [51] |
Doxorubicin–Gelatin/Fe3O4–Alginate | DG/FA NPs | Targeted drug delivery and cancer therapy | [52] |
2.5. Chalcogenide Nanoparticles
2.5.1. Chalcogens
2.5.2. Selenium
2.5.3. Tellurium
2.5.4. Sulphur
2.5.5. Cadmium
3. Silica Nanoparticles
4. Hybrid Nanoparticles
4.1. Magnetic NPs
4.2. Silica-Coated Magnetic Nanoparticles
4.3. Vesicle-Type Magnetic Nanoparticles
4.4. Polymer-Coated Magnetic Nanoparticles
4.5. Super-Magnetic Iron Oxide Nanoparticles
5. Applications of Magnetic Nanoparticles in Theranostics
5.1. Drug and siRNA Delivery
5.2. Magnetic Hyperthermia
5.3. Magnetic Nanorobots
5.4. DNA-Functionalized NPs
6. Persistent Luminescent Nanoparticle (PLNP)-Guided PTT
Porphyrin-Loaded Nanoparticles
7. Limitations and Challenges in Cancer Nanotheranostics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madamsetty, V.S.; Mukherjee, A.; Mukherjee, S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front. Pharmacol. 2019, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huang, H.; Xu, Y.; Wang, M.; Lv, J.; Xu, L.; Shi, C.; Xu, Y.; Yang, R.; Chen, L.; et al. Emergence and Genomics of OXA-232-Producing Klebsiella Pneumoniae in a Hospital in Yancheng, China. J. Glob. Antimicrob. Resist. 2021, 26, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, P.P.; Jog, S.V.; Chogale, M.M.; Gaikwad, S.S. Theranostics for Cancer Therapy. Curr. Drug Deliv. 2013, 10, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gupta, S.; Li, C. Research Perspectives: Gold Nanoparticles in Cancer Theranostics. Quant. Imaging Med. Surg. 2013, 3, 284–291. [Google Scholar] [CrossRef]
- Khan, M.S.; Vishakante, G.D.; Siddaramaiah, H. Gold Nanoparticles: A Paradigm Shift in Biomedical Applications. Adv. Colloid Interface Sci. 2013, 199–200, 44–58. [Google Scholar] [CrossRef]
- Ahmed, N.; Fessi, H.; Elaissari, A. Theranostic Applications of Nanoparticles in Cancer. Drug Discov. Today 2012, 17, 928–934. [Google Scholar] [CrossRef]
- Kleibert, A.; Rosellen, W.; Getzlaff, M.; Bansmann, J. Structure, Morphology, and Magnetic Properties of Fe Nanoparticles Deposited onto Single-Crystalline Surfaces. Beilstein J. Nanotechnol. 2011, 2, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Park, I.-K.; Jeong, Y. Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer. Int. J. Mol. Sci. 2013, 14, 15910–15930. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, Z.; Wang, Y.; Zhou, Y.; Ma, Y.; Zuo, W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 756–759. [Google Scholar] [CrossRef]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Jie Ying, A.N.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and Strategies for the Synthesis of Diverse Nanoparticles and Their Applications: A Comprehensive Overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Olawale, F.; Ariatti, M.; Singh, M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum Tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. Nanomaterials 2021, 11, 2516. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef]
- Sharma, H.; Mishra, P.K.; Talegaonkar, S.; Vaidya, B. Metal Nanoparticles: A Theranostic Nanotool against Cancer. Drug Discov. Today 2015, 20, 1143–1151. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Gao, F.; Yuan, Q.; Zhang, C.; Yuan, H.; Liu, Y.; Chen, L.; Han, Y.; Gao, X.; et al. Catalytic Clusterbody for Enhanced Quantitative Protein Immunoblot. Anal. Chem. 2021, 93, 10807–10815. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [Google Scholar] [CrossRef]
- Link, S.; Furube, A.; Mohamed, M.B.; Asahi, T.; Masuhara, H.; El-Sayed, M.A. Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO 4 Powder Compared To Solution: The Effect of the Surrounding Medium. J. Phys. Chem. B 2002, 106, 945–955. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.S.; Day, E.S. Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1449. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy. Nanomedicine 2007, 2, 681–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.; Nam, J.; Jung, S.; Song, J.; Doh, H.; Kim, S. Gold Nanoparticle-Mediated Photothermal Therapy: Current Status and Future Perspective. Nanomedicine 2014, 9, 2003–2022. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, I.; Huang, X.; Elsayed, M. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Lett. 2006, 239, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yan, Y.; Qi, H. Photothermal Conversion and Transfer in Photothermal Therapy: From Macroscale to Nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753. [Google Scholar] [CrossRef] [PubMed]
- Hleb, E.Y.; Hafner, J.H.; Myers, J.N.; Hanna, E.Y.; Rostro, B.C.; Zhdanok, S.A.; Lapotko, D.O. LANTCET: Elimination of Solid Tumor Cells with Photothermal Bubbles Generated around Clusters of Gold Nanoparticles. Nanomedicine 2008, 3, 647–667. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Liu, Z.; Shi, P.; Dong, K.; Ju, E.; Ren, J.; Qu, X. A Multi-Stimuli Responsive Gold Nanocage–Hyaluronic Platform for Targeted Photothermal and Chemotherapy. Biomaterials 2014, 35, 9678–9688. [Google Scholar] [CrossRef]
- Gao, L.; Liu, R.; Gao, F.; Wang, Y.; Jiang, X.; Gao, X. Plasmon-Mediated Generation of Reactive Oxygen Species from Near-Infrared Light Excited Gold Nanocages for Photodynamic Therapy in Vitro. ACS Nano 2014, 8, 7260–7271. [Google Scholar] [CrossRef]
- Gao, L.; Fei, J.; Zhao, J.; Li, H.; Cui, Y.; Li, J. Hypocrellin-Loaded Gold Nanocages with High Two-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy in Vitro. ACS Nano 2012, 6, 8030–8040. [Google Scholar] [CrossRef]
- Gao, L.; Liu, M.; Ma, G.; Wang, Y.; Zhao, L.; Yuan, Q.; Gao, F.; Liu, R.; Zhai, J.; Chai, Z.; et al. Peptide-Conjugated Gold Nanoprobe: Intrinsic Nanozyme-Linked Immunsorbant Assay of Integrin Expression Level on Cell Membrane. ACS Nano 2015, 9, 10979–10990. [Google Scholar] [CrossRef]
- Hanley, C.; Layne, J.; Punnoose, A.; Reddy, K.M.; Coombs, I.; Coombs, A.; Feris, K.; Wingett, D. Preferential Killing of Cancer Cells and Activated Human T Cells Using ZnO Nanoparticles. Nanotechnology 2008, 19, 295103. [Google Scholar] [CrossRef]
- Sharma, S.K.; Pujari, P.K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S.V.; Jayakumar, O.D.; Tyagi, A.K. Positron Annihilation Studies in ZnO Nanoparticles. Solid State Commun. 2009, 149, 550–554. [Google Scholar] [CrossRef]
- Sironmani, A.; Daniel, K. Silver Nanoparticles – Universal Multifunctional Nanoparticles for Bio Sensing, Imaging for Diagnostics and Targeted Drug Delivery for Therapeutic Applications. In Drug Discovery and Development-Present and Future; Kapetanovi, I., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-615-7. [Google Scholar]
- Mohammadzadeh, R. Hypothesis: Silver Nanoparticles as an Adjuvant for Cancertherapy. Adv. Pharm. Bull. 2012, 2, 133. [Google Scholar] [CrossRef]
- Gregg, V.; Milligan, L.P. Inhibition of Na+, K+-ATPase of Intact Mouse Soleus Muscle by Mg++. Biochem. Biophys. Res. Commun. 1980, 95, 608–611. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green Synthesis of Silver Nanoparticles via Plant Extracts: Beginning a New Era in Cancer Theranostics. Nanomedicine 2016, 11, 3157–3177. [Google Scholar] [CrossRef]
- Rank Miranda, R.; Pereira da Fonseca, M.; Korzeniowska, B.; Skytte, L.; Lund Rasmussen, K.; Kjeldsen, F. Elucidating the Cellular Response of Silver Nanoparticles as a Potential Combinatorial Agent for Cisplatin Chemotherapy. J. Nanobiotechnol. 2020, 18, 164. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Amatya, R.; Cheong, H.; Moon, C.; Kwak, H.D.; Min, K.A.; Shin, M.C. ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy. Int. J. Nanomed. 2020, 15, 5459–5471. [Google Scholar] [CrossRef]
- Nemčeková, K.; Svitková, V.; Sochr, J.; Gemeiner, P.; Labuda, J. Gallic Acid-Coated Silver Nanoparticles as Perspective Drug Nanocarriers: Bioanalytical Study. Anal. Bioanal. Chem. 2022, 414, 5493–5505. [Google Scholar] [CrossRef]
- Cole, A.J.; Yang, V.C.; David, A.E. Cancer Theranostics: The Rise of Targeted Magnetic Nanoparticles. Trends Biotechnol. 2011, 29, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-Based Theranostic Agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sahoo, S.K. Magnetic Nanoparticles: A Novel Platform for Cancer Theranostics. Drug Discov. Today 2014, 19, 474–481. [Google Scholar] [CrossRef]
- Sun, C.; Fang, C.; Stephen, Z.; Veiseh, O.; Hansen, S.; Lee, D.; Ellenbogen, R.G.; Olson, J.; Zhang, M. Tumor-Targeted Drug Delivery and MRI Contrast Enhancement by Chlorotoxin-Conjugated Iron Oxide Nanoparticles. Nanomedicine 2008, 3, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi-Gahrouei, D.; Abdolahi, M. Detection of MUC1-Expressing Ovarian Cancer by C595 Monoclonal Antibody-Conjugated SPIONs Using MR Imaging. Sci. World J. 2013, 2013, 609151. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Gong, A.; Chen, B.; Zheng, J.; Chen, T.; Shen, Z.; Wu, A. Exploring a New SPION-Based MRI Contrast Agent with Excellent Water-Dispersibility, High Specificity to Cancer Cells and Strong MR Imaging Efficacy. Colloids Surf. B Biointerfaces 2015, 126, 44–49. [Google Scholar] [CrossRef]
- Pilapong, C.; Sitthichai, S.; Thongtem, S.; Thongtem, T. Smart Magnetic Nanoparticle-Aptamer Probe for Targeted Imaging and Treatment of Hepatocellular Carcinoma. Int. J. Pharm. 2014, 473, 469–474. [Google Scholar] [CrossRef]
- Lin, G.; Zhu, W.; Yang, L.; Wu, J.; Lin, B.; Xu, Y.; Cheng, Z.; Xia, C.; Gong, Q.; Song, B.; et al. Delivery of SiRNA by MRI-Visible Nanovehicles to Overcome Drug Resistance in MCF-7/ADR Human Breast Cancer Cells. Biomaterials 2014, 35, 9495–9507. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Li, Y.; Sharafudeen, K.; Ma, Z.; Dong, G.; Peng, M.; Qiu, J. Long Persistent and Photo-Stimulated Luminescence in Cr3+-Doped Zn–Ga–Sn–O Phosphors for Deep and Reproducible Tissue Imaging. J. Mater. Chem. C 2014, 2, 2657. [Google Scholar] [CrossRef]
- Rajan, A.; Sahu, N.K. Review on Magnetic Nanoparticle-Mediated Hyperthermia for Cancer Therapy. J. Nanopart. Res. 2020, 22, 319. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Cheng, Y.; Guo, X.; Yuan, W. Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment. Mol. Pharm. 2018, 15, 1791–1799. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, X.; Xie, L.; Chen, W.; Xu, Z.; Song, E.; Zhu, X.; Song, Y. Iron-Based Nanoparticles for MR Imaging-Guided Ferroptosis in Combination with Photodynamic Therapy to Enhance Cancer Treatment. Nanoscale 2021, 13, 4855–4870. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Lv, Y.; Zou, H.; Wei, Y.; Nie, F.; Duan, W.; Sedike, M.; Xiao, L.; Wang, M. The Construction of the Novel Magnetic Prodrug Fe3O4@DOX and Its Antagonistic Effects on Hepatocarcinoma with Low Toxicity. RSC Adv. 2020, 10, 28965–28974. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chuang, T.-J.; Ke, C.-J.; Yao, C.-H. Doxorubicin–Gelatin/Fe3O4–Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles. Polymers 2020, 12, 1747. [Google Scholar] [CrossRef]
- Fischer, W. A Second Note on the Term “Chalcogen". J. Chem. Educ. 2001, 78, 1333. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, N.; Steinhart, M.; Tomšík, E. Single-Step Preparation of Mono-Dispersed Sulfur Nanoparticles for Detention of Copper. J. Nanopart. Res. 2019, 21, 246. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Rao, R.P.; Tsuzuki, T. Green Synthesis of Sulfur Nanoparticles and Evaluation of Their Catalytic Detoxification of Hexavalent Chromium in Water. RSC Adv. 2018, 8, 36345–36352. [Google Scholar] [CrossRef] [Green Version]
- Shankar, C.; Basu, S.; Lal, B.; Shanmugam, S.; Vasudevan, K.; Mathur, P.; Ramaiah, S.; Anbarasu, A.; Veeraraghavan, B. Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella Pneumoniae: In Silico and In Vitro Evidence. Front. Cell. Infect. Microbiol. 2021, 11, 709681. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Paralikar, P. Sulfur and Sulfur Nanoparticles as Potential Antimicrobials: From Traditional Medicine to Nanomedicine. Expert Rev. Anti-Infect. Ther. 2016, 14, 969–978. [Google Scholar] [CrossRef]
- Castro, L.; Li, J.; González, F.; Muñoz, J.A.; Blázquez, M.L. Green Synthesis of Tellurium Nanoparticles by Tellurate and Tellurite Reduction Using Aeromonas Hydrophila under Different Aeration Conditions. Hydrometallurgy 2020, 196, 105415. [Google Scholar] [CrossRef]
- Xiao, M.; Yang, L.U.S. Binary and Ternary Metal Chalcogenide Materials and Method of Making and Using Same. U.S. Patent No. 8,765,223, 1 July 2014. [Google Scholar]
- Ahmed, A.J.A.; Alaa, H.A.A. Virulence Factors and Antibiotic Susceptibility Patterns of Multidrug Resistance Klebsiella Pneumoniae Isolated from Different Clinical Infections. Afr. J. Microbiol. Res. 2016, 10, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Ingale, A.G. Biogenic Synthesis of Nanoparticles and Potential Applications: An Eco- Friendly Approach. J. Nanomed. Nanotechnol. 2013, 04. [Google Scholar] [CrossRef]
- Medina Cruz, D.; Tien-Street, W.; Zhang, B.; Huang, X.; Vernet Crua, A.; Nieto-Argüello, A.; Cholula-Díaz, J.L.; Martínez, L.; Huttel, Y.; González, M.U.; et al. Citric Juice-Mediated Synthesis of Tellurium Nanoparticles with Antimicrobial and Anticancer Properties. Green Chem. 2019, 21, 1982–1998. [Google Scholar] [CrossRef]
- Olawale, F.; Oladimeji, O.; Ariatti, M.; Singh, M. Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. J. Nanotechnol. 2022, 2022, 6176610. [Google Scholar] [CrossRef]
- Nieves, L.M.; Mossburg, K.; Hsu, J.C.; Maidment, A.D.A.; Cormode, D.P. Silver Chalcogenide Nanoparticles: A Review of Their Biomedical Applications. Nanoscale 2021, 13, 19306–19323. [Google Scholar] [CrossRef]
- Yan, C.; Tian, Q.; Yang, S. Recent Advances in the Rational Design of Copper Chalcogenide to Enhance the Photothermal Conversion Efficiency for the Photothermal Ablation of Cancer Cells. RSC Adv. 2017, 7, 37887–37897. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Liu, K.; Liu, J.; Ren, Q.; Zhao, Z.; Wu, X.; Li, D.; Yuan, F.; Ye, K.; Li, B. Copper Chalcogenide Materials as Photothermal Agents for Cancer Treatment. Nanoscale 2020, 12, 2902–2913. [Google Scholar] [CrossRef]
- Ramamurthy, C.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green Synthesis and Characterization of Selenium Nanoparticles and Its Augmented Cytotoxicity with Doxorubicin on Cancer Cells. Bioprocess. Biosyst. Eng. 2013, 36, 1131–1139. [Google Scholar] [CrossRef]
- Maiyo, F.; Singh, M. Selenium Nanoparticles: Potential in Cancer Gene and Drug Delivery. Nanomedicine 2017, 12, 1075–1089. [Google Scholar] [CrossRef]
- Torres, S.K.; Campos, V.L.; León, C.G.; Rodríguez-Llamazares, S.M.; Rojas, S.M.; González, M.; Smith, C.; Mondaca, M.A. Biosynthesis of Selenium Nanoparticles by Pantoea Agglomerans and Their Antioxidant Activity. J. Nanopart. Res. 2012, 14, 1236. [Google Scholar] [CrossRef]
- Sholkamy, E.; Ahmad, M.; Manal Yaser, M.; Ali, A.; Mehanni, M. Anticancer Activity of Biostabilized Selenium Nanorods Synthesized by Streptomyces Bikiniensis Strain Ess_amA-1. Int. J. Nanomed. 2015, 10, 3389. [Google Scholar] [CrossRef] [Green Version]
- Bao, P.; Chen, S.-C.; Xiao, K.-Q. Dynamic Equilibrium of Endogenous Selenium Nanoparticles in Selenite-Exposed Cancer Cells: A Deep Insight into the Interaction between Endogenous SeNPs and Proteins. Mol. BioSyst. 2015, 11, 3355–3361. [Google Scholar] [CrossRef]
- Ba, L.A.; Döring, M.; Jamier, V.; Jacob, C. Tellurium: An Element with Great Biological Potency and Potential. Org. Biomol. Chem. 2010, 8, 4203. [Google Scholar] [CrossRef]
- Danhier, F.; Feron, O.; Préat, V. To Exploit the Tumor Microenvironment: Passive and Active Tumor Targeting of Nanocarriers for Anti-Cancer Drug Delivery. J. Control Release 2010, 148, 135–146. [Google Scholar] [CrossRef]
- DeLeon, E.R.; Gao, Y.; Huang, E.; Arif, M.; Arora, N.; Divietro, A.; Patel, S.; Olson, K.R. A Case of Mistaken Identity: Are Reactive Oxygen Species Actually Reactive Sulfide Species? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 310, R549–R560. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Galeone, C.; Pelucchi, C.; Levi, F.; Negri, E.; Franceschi, S.; Talamini, R.; Giacosa, A.; La Vecchia, C. Onion and Garlic Use and Human Cancer. Am. J. Clin. Nutr. 2006, 84, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Mates, J.M. Sulphur-Containing Non Enzymatic Antioxidants Therapeutic Tools against Cancer. Front. Biosci. 2012, S4, 722–748. [Google Scholar] [CrossRef] [Green Version]
- Zahran, F.; Hammadi, M.; Al-dulaimi, M.; Sebaiy, M. Potential Role of Sulfur Nanoparticles as Antitumor and Antioxidant in Mice. Pharm. Lett. 2018; 10, 7–26. [Google Scholar]
- Kim, J.-H.; Jang, H.-J.; Cho, W.-Y.; Yeon, S.-J.; Lee, C.-H. In Vitro Antioxidant Actions of Sulfur-Containing Amino Acids. Arab. J. Chem. 2020, 13, 1678–1684. [Google Scholar] [CrossRef]
- Levine, R.L.; Mosoni, L.; Berlett, B.S.; Stadtman, E.R. Methionine Residues as Endogenous Antioxidants in Proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 15036–15040. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, H.-J.; Park, J.-D.; Lee, S.-K.; Lee, S.-I.; Lim, H.-D.; Lee, Y.-M.; Yun, Y.-G.; Jeon, B.-H.; Ree, I.-S.; et al. Anti-Cancer Activity of Highly Purified Sulfur in Immortalized and Malignant Human Oral Keratinocytes. Toxicol. Vitr. 2008, 22, 87–95. [Google Scholar] [CrossRef]
- Cho, S.J.; Maysinger, D.; Jain, M.; Röder, B.; Hackbarth, S.; Winnik, F.M. Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir 2007, 23, 1974–1980. [Google Scholar] [CrossRef]
- Dailianis, S.; Piperakis, S.M.; Kaloyianni, M. Cadmium Effects on ROS Production and DNA Damage via Adrenergic Receptors Stimulation: Role of Na+/H+ Exchanger and PKC. Free Radic. Res. 2005, 39, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Lett. 2004, 4, 2163–2169. [Google Scholar] [CrossRef]
- Lai, L.; Jin, J.-C.; Xu, Z.-Q.; Mei, P.; Jiang, F.-L.; Liu, Y. Necrotic Cell Death Induced by the Protein-Mediated Intercellular Uptake of CdTe Quantum Dots. Chemosphere 2015, 135, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Kaviyarasu, K.; Kanimozhi, K.; Matinise, N.; Maria Magdalane, C.; Mola, G.T.; Kennedy, J.; Maaza, M. Antiproliferative Effects on Human Lung Cell Lines A549 Activity of Cadmium Selenide Nanoparticles Extracted from Cytotoxic Effects: Investigation of Bio-Electronic Application. Mater. Sci. Eng. C 2017, 76, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- Viana, O.S.; Ribeiro, M.S.; Fontes, A.; Santos, B.S. Quantum Dots in Photodynamic Therapy. In Redox-Active Therapeutics; Batinić-Haberle, I., Rebouças, J.S., Spasojević, I., Eds.; Oxidative Stress in Applied Basic Research and Clinical Practice; Springer International Publishing: Cham, Switzerland, 2016; pp. 525–539. ISBN 978-3-319-30703-9. [Google Scholar]
- Nakamura, M.; Ishimura, K. One-Pot Synthesis and Characterization of Three Kinds of Thiol−Organosilica Nanoparticles. Langmuir 2008, 24, 5099–5108. [Google Scholar] [CrossRef]
- Nakamura, M.; Ishimura, K. Synthesis and Characterization of Organosilica Nanoparticles Prepared from 3-Mercaptopropyltrimethoxysilane as the Single Silica Source. J. Phys. Chem. C 2007, 111, 18892–18898. [Google Scholar] [CrossRef]
- Vogel, R.; Surawski, P.P.T.; Littleton, B.N.; Miller, C.R.; Lawrie, G.A.; Battersby, B.J.; Trau, M. Fluorescent Organosilica Micro- and Nanoparticles with Controllable Size. J. Colloid Interface Sci. 2007, 310, 144–150. [Google Scholar] [CrossRef]
- Nakamura, M.; Ishimura, K. Size-Controlled, One-Pot Synthesis, Characterization, and Biological Applications of Epoxy-Organosilica Particles Possessing Positive Zeta Potential. Langmuir 2008, 24, 12228–12234. [Google Scholar] [CrossRef]
- Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.; Tan, W. Aptamer-Conjugated Nanoparticles for Selective Collection and Detection of Cancer Cells. Anal. Chem. 2006, 78, 2918–2924. [Google Scholar] [CrossRef]
- Medley, C.D.; Bamrungsap, S.; Tan, W.; Smith, J.E. Aptamer-Conjugated Nanoparticles for Cancer Cell Detection. Anal. Chem. 2011, 83, 727–734. [Google Scholar] [CrossRef]
- Cai, L.; Chen, Z.-Z.; Chen, M.-Y.; Tang, H.-W.; Pang, D.-W. MUC-1 Aptamer-Conjugated Dye-Doped Silica Nanoparticles for MCF-7 Cells Detection. Biomaterials 2013, 34, 371–381. [Google Scholar] [CrossRef]
- Kumar, R.; Roy, I.; Ohulchanskyy, T.Y.; Goswami, L.N.; Bonoiu, A.C.; Bergey, E.J.; Tramposch, K.M.; Maitra, A.; Prasad, P.N. Covalently Dye-Linked, Surface-Controlled, and Bioconjugated Organically Modified Silica Nanoparticles as Targeted Probes for Optical Imaging. ACS Nano 2008, 2, 449–456. [Google Scholar] [CrossRef]
- Couleaud, P.; Morosini, V.; Frochot, C.; Richeter, S.; Raehm, L.; Durand, J.-O. Silica-Based Nanoparticles for Photodynamic Therapy Applications. Nanoscale 2010, 2, 1083. [Google Scholar] [CrossRef]
- Simon, V.; Devaux, C.; Darmon, A.; Donnet, T.; Thiénot, E.; Germain, M.; Honnorat, J.; Duval, A.; Pottier, A.; Borghi, E.; et al. Pp IX Silica Nanoparticles Demonstrate Differential Interactions with In Vitro Tumor Cell Lines and In Vivo Mouse Models of Human Cancers. Photochem. Photobiol. 2010, 86, 213–222. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chen, J.; Lei, W.; Wang, X.; Zhang, B. Hypocrellin B Doped and PH-Responsive Silica Nanoparticles for Photodynamic Therapy. Sci. China Chem. 2010, 53, 1994–1999. [Google Scholar] [CrossRef]
- Sandler, S.E.; Fellows, B.; Mefford, O.T. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal. Chem. 2019, 91, 14159–14169. [Google Scholar] [CrossRef] [Green Version]
- Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron Oxide Nanoparticles in Modern Microbiology and Biotechnology. Crit. Rev. Microbiol. 2017, 43, 493–507. [Google Scholar] [CrossRef]
- Shevtsov, M.A.; Nikolaev, B.P.; Ryzhov, V.A.; Yakovleva, L.Y.; Dobrodumov, A.V.; Marchenko, Y.Y.; Margulis, B.A.; Pitkin, E.; Mikhrina, A.L.; Guzhova, I.V.; et al. Detection of Experimental Myocardium Infarction in Rats by MRI Using Heat Shock Protein 70 Conjugated Superparamagnetic Iron Oxide Nanoparticle. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 611–621. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J. Long Persistent Phosphors—from Fundamentals to Applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef]
- Moliner-Martínez, Y.; Ribera, A.; Coronado, E.; Campíns-Falcó, P. Preconcentration of Emerging Contaminants in Environmental Water Samples by Using Silica Supported Fe3O4 Magnetic Nanoparticles for Improving Mass Detection in Capillary Liquid Chromatography. J. Chromatogr. A 2011, 1218, 2276–2283. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, K.; Joe, C.; Joo, J.; Lee, N.; Yoo, H.-S. Patient With Unresectable Cholangiocarcinoma Treated With Radiofrequency Hyperthermia in Combination With Chemotherapy: A Case Report. Integr. Cancer 2018, 17, 558–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, J.; Kumar, R.; Harilal, S.; Mathew, G.E.; Parambi, D.G.T.; Prabhu, A.; Uddin, S.; Aleya, L.; Kim, H.; Mathew, B. Magnetic Nanoparticles for Hyperthermia in Cancer Treatment: An Emerging Tool. Environ. Sci. Pollut. Res. 2020, 27, 19214–19225. [Google Scholar] [CrossRef] [PubMed]
- Czugala, M.; Mykhaylyk, O.; Böhler, P.; Onderka, J.; Stork, B.; Wesselborg, S.; Kruse, F.E.; Plank, C.; Singer, B.B.; Fuchsluger, T.A. Efficient and Safe Gene Delivery to Human Corneal Endothelium Using Magnetic Nanoparticles. Nanomedicine 2016, 11, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients. eBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Kim, D.-H.; Rozhkova, E.A.; Ulasov, I.V.; Bader, S.D.; Rajh, T.; Lesniak, M.S.; Novosad, V. Biofunctionalized Magnetic-Vortex Microdiscs for Targeted Cancer-Cell Destruction. Nat. Mater. 2010, 9, 165–171. [Google Scholar] [CrossRef]
- Seifert, G.; Budach, V.; Keilholz, U.; Wust, P.; Eggert, A.; Ghadjar, P. Regional Hyperthermia Combined with Chemotherapy in Paediatric, Adolescent and Young Adult Patients: Current and Future Perspectives. Radiat. Oncol. 2016, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Wang, C.; Nan, K.; Freeman, W.R.; Sailor, M.J.; Cheng, L. Controlled Release of Dexamethasone From an Intravitreal Delivery System Using Porous Silicon Dioxide. Investig. Ophthalmol. Vis. Sci. 2016, 57, 557. [Google Scholar] [CrossRef] [Green Version]
- Diksha; Roy, I. Synthesis, Surface Modification, Characterization, and Biomedical In Vitro Applications of Organically Modified Silica (ORMOSIL) Nanoparticles. In Nanoparticles in Biology and Medicine; Soloviev, M., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 365–379. ISBN 978-1-61779-952-5. [Google Scholar]
- Alonso, J.; Khurshid, H.; Devkota, J.; Nemati, Z.; Khadka, N.K.; Srikanth, H.; Pan, J.; Phan, M.-H. Superparamagnetic Nanoparticles Encapsulated in Lipid Vesicles for Advanced Magnetic Hyperthermia and Biodetection. J. Appl. Phys. 2016, 119, 083904. [Google Scholar] [CrossRef]
- Albini, M.; Salvi, M.; Altamura, E.; Dinarelli, S.; Di Donato, L.; Lucibello, A.; Mavelli, F.; Molinari, F.; Morbiducci, U.; Ramundo-Orlando, A. Movement of Giant Lipid Vesicles Induced by Millimeter Wave Radiation Change When They Contain Magnetic Nanoparticles. Drug Deliv. Transl. Res. 2019, 9, 131–143. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Ye, Q.; Wu, Q.; Zhang, J.; Huang, Y. Phenotypic and Genotypic Characterization of Klebsiella Pneumoniae Isolated From Retail Foods in China. Front. Microbiol. 2018, 9, 289. [Google Scholar] [CrossRef]
- Zhang, J.; Misra, R.D.K. Magnetic Drug-Targeting Carrier Encapsulated with Thermosensitive Smart Polymer: Core–Shell Nanoparticle Carrier and Drug Release Response. Acta Biomater. 2007, 3, 838–850. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for PH Sensitive Targeted Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 16573–16583. [Google Scholar] [CrossRef]
- Kandasamy, G.; Maity, D. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for in Vitro and in Vivo Cancer Nanotheranostics. Int. J. Pharm. 2015, 496, 191–218. [Google Scholar] [CrossRef]
- Lyer, S.; Singh, R.; Tietze, R.; Alexiou, C. Magnetic Nanoparticles for Magnetic Drug Targeting. Biomed. Eng./Biomed. Tech. 2015, 60, 465–475. [Google Scholar] [CrossRef]
- Talluri, S.; Malla, R.R. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers. Curr. Drug Metab. 2020, 20, 942–945. [Google Scholar] [CrossRef]
- Chan, J.M.S.; Cheung, M.S.H.; Gibbs, R.G.J.; Bhakoo, K.K. MRI Detection of Endothelial Cell Inflammation Using Targeted Superparamagnetic Particles of Iron Oxide (SPIO). Clin. Transl. Med. 2017, 6, e1. [Google Scholar] [CrossRef] [Green Version]
- Beqa, L.; Fan, Z.; Singh, A.K.; Senapati, D.; Ray, P.C. Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2011, 3, 3316–3324. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte–Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano 2018, 12, 5241–5252. [Google Scholar] [CrossRef]
- Mottaghitalab, F.; Farokhi, M.; Fatahi, Y.; Atyabi, F.; Dinarvand, R. New Insights into Designing Hybrid Nanoparticles for Lung Cancer: Diagnosis and Treatment. J. Control Release 2019, 295, 250–267. [Google Scholar] [CrossRef]
- Wong, J.; Prout, J.; Seifalian, A. Magnetic Nanoparticles: New Perspectives in Drug Delivery. Curr. Pharm. Des. 2017, 23, 2908–2917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, Y.; Eldi, P.; Guo, X.; Hayball, J.; Garg, S.; Albrecht, H. Targeting Prostate Cancer Cells with Hybrid Elastin-like Polypeptide/Liposome Nanoparticles. Int. J. Nanomed. 2018, 13, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Alshaker, H.; Böhler, T.; Srivats, S.; Chao, Y.; Cooper, C.; Pchejetski, D. Core Shell Lipid-Polymer Hybrid Nanoparticles with Combined Docetaxel and Molecular Targeted Therapy for the Treatment of Metastatic Prostate Cancer. Sci. Rep. 2017, 7, 5901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhao, J.; Gu, X.; Wen, Y. Targeted Treatment of CD22-Positive Non-Hodgkin’s Lymphoma with Sialic Acid–Modified Chitosan-PLGA Hybrid Nanoparticles. J. Nanopart. Res. 2019, 21, 154. [Google Scholar] [CrossRef]
- Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of Genistein-PEGylated Silica Hybrid Nanomaterials with Enhanced Antioxidant and Antiproliferative Properties on HT29 Human Colon Cancer Cells. Am. J. Transl. Res. 2018, 10, 2306–2323. [Google Scholar]
- Xiong, F.; Huang, S.; Gu, N. Magnetic Nanoparticles: Recent Developments in Drug Delivery System. Drug Dev. Ind. Pharm. 2018, 44, 697–706. [Google Scholar] [CrossRef]
- Manshadi, M.K.D.; Saadat, M.; Mohammadi, M.; Shamsi, M.; Dejam, M.; Kamali, R.; Sanati-Nezhad, A. Delivery of Magnetic Micro/Nanoparticles and Magnetic-Based Drug/Cargo into Arterial Flow for Targeted Therapy. Drug Deliv. 2018, 25, 1963–1973. [Google Scholar] [CrossRef] [Green Version]
- Hervault, A.; Thanh, N.T.K. Magnetic Nanoparticle-Based Therapeutic Agents for Thermo-Chemotherapy Treatment of Cancer. Nanoscale 2014, 6, 11553–11573. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Dual Target-Specific Drug Delivery and MRI in Cancer Theranostics. Mater. Sci. Eng. C 2017, 70, 763–771. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Q.; Peng, J.; Su, J.; Lu, X.; Zhao, Y.; Qian, Z. Doxorubicin-Conjugated Heparin-Coated Superparamagnetic Iron Oxide Nanoparticles for Combined Anticancer Drug Delivery and Magnetic Resonance Imaging. J. Biomed. Nanotechnol. 2016, 12, 1963–1974. [Google Scholar] [CrossRef]
- Liyanage, P.Y.; Hettiarachchi, S.D.; Zhou, Y.; Ouhtit, A.; Seven, E.S.; Oztan, C.Y.; Celik, E.; Leblanc, R.M. Nanoparticle-Mediated Targeted Drug Delivery for Breast Cancer Treatment. Biochim. Biophys. Acta BBA-Rev. Cancer 2019, 1871, 419–433. [Google Scholar] [CrossRef]
- Lohiya, G.; Katti, D.S. Carboxylated Chitosan-Mediated Improved Efficacy of Mesoporous Silica Nanoparticle-Based Targeted Drug Delivery System for Breast Cancer Therapy. Carbohydr. Polym. 2022, 277, 118822. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Salem, S.S.; Khalil, A.M.A.; El-Wakil, D.A.; Fouda, H.M.; Hashem, A.H. Potential of Biosynthesized Zinc Oxide Nanoparticles to Control Fusarium Wilt Disease in Eggplant (Solanum melongena) and Promote Plant Growth. BioMetals 2022, 35, 601–616. [Google Scholar] [CrossRef]
- Reczyńska, K.; Marszałek, M.; Zarzycki, A.; Reczyński, W.; Kornaus, K.; Pamuła, E.; Chrzanowski, W. Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Nanomaterials 2020, 10, 1076. [Google Scholar] [CrossRef]
- Dianzani, C.; Zara, G.P.; Maina, G.; Pettazzoni, P.; Pizzimenti, S.; Rossi, F.; Gigliotti, C.L.; Ciamporcero, E.S.; Daga, M.; Barrera, G. Drug Delivery Nanoparticles in Skin Cancers. BioMed Res. Int. 2014, 2014, 895986. [Google Scholar] [CrossRef]
- Moise, S.; Byrne, J.M.; El Haj, A.J.; Telling, N.D. The Potential of Magnetic Hyperthermia for Triggering the Differentiation of Cancer Cells. Nanoscale 2018, 10, 20519–20525. [Google Scholar] [CrossRef] [Green Version]
- Salunkhe, A.B.; Khot, V.M.; Pawar, S.H. Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review. Curr. Top. Med. Chem. 2014, 14, 572–594. [Google Scholar] [CrossRef]
- Minbashi, M.; Kordbacheh, A.A.; Ghobadi, A.; Tuchin, V.V. Optimization of Power Used in Liver Cancer Microwave Therapy by Injection of Magnetic Nanoparticles (MNPs). Comput. Biol. Med. 2020, 120, 103741. [Google Scholar] [CrossRef]
- Bucci, O.M.; Bellizzi, G.; Costanzo, S.; Crocco, L.; Di Massa, G.; Scapaticci, R. Experimental Characterization of Spurious Signals in Magnetic Nanoparticles Enhanced Microwave Imaging of Cancer. Sensors 2021, 21, 2820. [Google Scholar] [CrossRef]
- Sadhukha, T.; Wiedmann, T.S.; Panyam, J. Inhalable Magnetic Nanoparticles for Targeted Hyperthermia in Lung Cancer Therapy. Biomaterials 2013, 34, 5163–5171. [Google Scholar] [CrossRef] [Green Version]
- Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A.; et al. Efficient Treatment of Breast Cancer Xenografts with Multifunctionalized Iron Oxide Nanoparticles Combining Magnetic Hyperthermia and Anti-Cancer Drug Delivery. Breast Cancer Res. 2015, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Sarkar, S.; Hashemi, M.; Saber, R. Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia Using Dendrimer Functionalized Iron-Oxide Nanoparticles. Nanomaterials 2020, 10, 2310. [Google Scholar] [CrossRef] [PubMed]
- Attaluri, A.; Kandala, S.K.; Wabler, M.; Zhou, H.; Cornejo, C.; Armour, M.; Hedayati, M.; Zhang, Y.; DeWeese, T.L.; Herman, C.; et al. Magnetic Nanoparticle Hyperthermia Enhances Radiation Therapy: A Study in Mouse Models of Human Prostate Cancer. Int. J. Hyperth. 2015, 31, 359–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz de Escalona, M.; Sáez-Fernández, E.; Prados, J.C.; Melguizo, C.; Arias, J.L. Magnetic Solid Lipid Nanoparticles in Hyperthermia against Colon Cancer. Int. J. Pharm. 2016, 504, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, W.; Wang, M.; Liao, Z. Magnetic Nanoparticles for Cancer Theranostics: Advances and Prospects. J. Control. Release 2021, 335, 437–448. [Google Scholar] [CrossRef]
- Nikitin, M.P.; Shipunova, V.O.; Deyev, S.M.; Nikitin, P.I. Biocomputing Based on Particle Disassembly. Nat. Nanotechnol. 2014, 9, 716–722. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Q.; Ding, B.; Nie, G. Anticancer Activities of Tumor-Killing Nanorobots. Trends Biotechnol. 2019, 37, 573–577. [Google Scholar] [CrossRef]
- Wavhale, R.D.; Dhobale, K.D.; Rahane, C.S.; Chate, G.P.; Tawade, B.V.; Patil, Y.N.; Gawade, S.S.; Banerjee, S.S. Water-Powered Self-Propelled Magnetic Nanobot for Rapid and Highly Efficient Capture of Circulating Tumor Cells. Commun. Chem. 2021, 4, 159. [Google Scholar] [CrossRef]
- Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W.-E. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020, 12, 665. [Google Scholar] [CrossRef]
- Jin, R.; Wu, G.; Li, Z.; Mirkin, C.A.; Schatz, G.C. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 2003, 125, 1643–1654. [Google Scholar] [CrossRef]
- Jones, M.R.; Seeman, N.C.; Mirkin, C.A. Programmable Materials and the Nature of the DNA Bond. Science 2015, 347, 1260901. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, F.; Yager, K.G.; van der Lelie, D.; Gang, O. A General Strategy for the DNA-Mediated Self-Assembly of Functional Nanoparticles into Heterogeneous Systems. Nat. Nanotechnol. 2013, 8, 865–872. [Google Scholar] [CrossRef]
- Cutler, J.I.; Zhang, K.; Zheng, D.; Auyeung, E.; Prigodich, A.E.; Mirkin, C.A. Polyvalent Nucleic Acid Nanostructures. J. Am. Chem. Soc. 2011, 133, 9254–9257. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Ray, A.; Andreou, C.; Zhou, Y.; Rakshit, T.; Wlodarczyk, M.; Maeda, M.; Toledo-Crow, R.; Berisha, N.; Yang, J.; et al. DNA-Enabled Rational Design of Fluorescence-Raman Bimodal Nanoprobes for Cancer Imaging and Therapy. Nat. Commun. 2019, 10, 1926. [Google Scholar] [CrossRef] [Green Version]
- Kahn, J.S.; Freage, L.; Enkin, N.; Garcia, M.A.A.; Willner, I. Stimuli-Responsive DNA-Functionalized Metal-Organic Frameworks (MOFs). Adv. Mater. 2017, 29, 1602782. [Google Scholar] [CrossRef]
- Li, L.-L.; Wu, P.; Hwang, K.; Lu, Y. An Exceptionally Simple Strategy for DNA-Functionalized Up-Conversion Nanoparticles as Biocompatible Agents for Nanoassembly, DNA Delivery, and Imaging. J. Am. Chem. Soc. 2013, 135, 2411–2414. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A Comparative Pathogenomic Platform with an Interactive Web Interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Fullhart, P.; Mirkin, C.A. Reversible and Chemically Programmable Micelle Assembly with DNA Block-Copolymer Amphiphiles. Nano Lett. 2004, 4, 1055–1058. [Google Scholar] [CrossRef]
- Kuzyk, A.; Jungmann, R.; Acuna, G.P.; Liu, N. DNA Origami Route for Nanophotonics. ACS Photonics 2018, 5, 1151–1163. [Google Scholar] [CrossRef] [Green Version]
- Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene Regulation with Polyvalent SiRNA−Nanoparticle Conjugates. J. Am. Chem. Soc. 2009, 131, 2072–2073. [Google Scholar] [CrossRef] [PubMed]
- Chou, L.Y.T.; Zagorovsky, K.; Chan, W.C.W. DNA Assembly of Nanoparticle Superstructures for Controlled Biological Delivery and Elimination. Nat. Nanotechnol. 2014, 9, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.A.; Day, E.S.; Ko, C.H.; Hurley, L.A.; Luciano, J.P.; Kouri, F.M.; Merkel, T.J.; Luthi, A.J.; Patel, P.C.; Cutler, J.I.; et al. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sita, T.L.; Kouri, F.M.; Hurley, L.A.; Merkel, T.J.; Chalastanis, A.; May, J.L.; Ghelfi, S.T.; Cole, L.E.; Cayton, T.C.; Barnaby, S.N.; et al. Dual Bioluminescence and Near-Infrared Fluorescence Monitoring to Evaluate Spherical Nucleic Acid Nanoconjugate Activity in Vivo. Proc. Natl. Acad. Sci. USA 2017, 114, 4129–4134. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-W.; Liu, C.-W.; Chang, H.-T. DNA Functionalized Gold Nanoparticles for Bioanalysis. Anal. Methods 2009, 1, 14. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, H.; Wang, J.; Zhang, Y.; Zhao, W.; Zhou, J. DNA-Gated N-CDs@SiO2 Nanoparticles-Based Biosensor for MUC1 Detection. ChemistrySelect 2022, 7, e202104309. [Google Scholar] [CrossRef]
- Blumenfeld, C.M.; Schulz, M.D.; Aboian, M.S.; Wilson, M.W.; Moore, T.; Hetts, S.W.; Grubbs, R.H. Drug Capture Materials Based on Genomic DNA-Functionalized Magnetic Nanoparticles. Nat. Commun. 2018, 9, 2870. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Shi, H.; He, X.; Yu, Y.; He, D.; Tang, J.; Lei, Y.; Wang, K. Cu–Au Alloy Nanostructures Coated with Aptamers: A Simple, Stable and Highly Effective Platform for in Vivo Cancer Theranostics. Nanoscale 2016, 8, 2260–2267. [Google Scholar] [CrossRef]
- Di, Z.; Liu, B.; Zhao, J.; Gu, Z.; Zhao, Y.; Li, L. An Orthogonally Regulatable DNA Nanodevice for Spatiotemporally Controlled Biorecognition and Tumor Treatment. Sci. Adv. 2020, 6, eaba9381. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef]
- Xu, J.; Tanabe, S. Persistent Luminescence Instead of Phosphorescence: History, Mechanism, and Perspective. J. Lumin. 2019, 205, 581–620. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Z.; Yuan, Q. Recent Advances in Autofluorescence-Free Biosensing and Bioimaging Based on Persistent Luminescence Nanoparticles. Chin. Chem. Lett. 2019, 30, 1547–1556. [Google Scholar] [CrossRef]
- Liu, F.; Liang, Y.; Chen, Y.; Pan, Z. Divalent Nickel-Activated Gallate-Based Persistent Phosphors in the Short-Wave Infrared. Adv. Opt. Mater. 2016, 4, 562–566. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. Nano-Micro Lett. 2020, 12, 70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Chen, H.; Zhao, P.; Pan, H.; Wu, X.; Gong, X.; Wang, H.; Chang, J. Persistent Luminescent Nanocarrier as an Accurate Tracker in Vivo for Near Infrared-Remote Selectively Triggered Photothermal Therapy. ACS Appl. Mater. Interfaces 2016, 8, 21603–21611. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Zhang, R.; Fan, K.; Ding, W.; Xu, L.; Zhang, L. Persistent Luminescence-Polypyrrole Nanocomposite for Dual-Modal Imaging and Photothermal Therapy of Mammary Cancer. Talanta 2021, 221, 121435. [Google Scholar] [CrossRef]
- Montaseri, H.; Kruger, C.A.; Abrahamse, H. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. Int. J. Mol. Sci. 2020, 21, 3358. [Google Scholar] [CrossRef]
- Silva, L.B.; Castro, K.A.D.F.; Botteon, C.E.A.; Oliveira, C.L.P.; da Silva, R.S.; Marcato, P.D. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front. Bioeng. Biotechnol. 2021, 9, 679128. [Google Scholar] [CrossRef]
- Qindeel, M.; Sargazi, S.; Hosseinikhah, S.M.; Rahdar, A.; Barani, M.; Thakur, V.K.; Pandey, S.; Mirsafaei, R. Porphyrin-Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021, 6, 14082–14099. [Google Scholar] [CrossRef]
- Xue, X.; Lindstrom, A.; Li, Y. Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjug. Chem. 2019, 30, 1585–1603. [Google Scholar] [CrossRef]
- Montané, X.; Matulewicz, K.; Balik, K.; Modrakowska, P.; Łuczak, M.; Pérez Pacheco, Y.; Reig-Vano, B.; Montornés, J.M.; Bajek, A.; Tylkowski, B. Present Trends in the Encapsulation of Anticancer Drugs. Phys. Sci. Rev. 2021, 20200080. [Google Scholar] [CrossRef]
- Kirar, S.; Chaudhari, D.; Thakur, N.S.; Jain, S.; Bhaumik, J.; Laha, J.K.; Banerjee, U.C. Light-Assisted Anticancer Photodynamic Therapy Using Porphyrin-Doped Nanoencapsulates. J. Photochem. Photobiol. B Biol. 2021, 220, 112209. [Google Scholar] [CrossRef] [PubMed]
- Fakayode, O.J.; Kruger, C.A.; Songca, S.P.; Abrahamse, H.; Oluwafemi, O.S. Photodynamic Therapy Evaluation of Methoxypolyethyleneglycol-Thiol-SPIONs-Gold-Meso-Tetrakis(4-Hydroxyphenyl)Porphyrin Conjugate against Breast Cancer Cells. Mater. Sci. Eng. C 2018, 92, 737–744. [Google Scholar] [CrossRef]
- Bera, K.; Maiti, S.; Maity, M.; Mandal, C.; Maiti, N.C. Porphyrin–Gold Nanomaterial for Efficient Drug Delivery to Cancerous Cells. ACS Omega 2018, 3, 4602–4619. [Google Scholar] [CrossRef] [Green Version]
- Melancon, M.P.; Stafford, R.J.; Li, C. Challenges to Effective Cancer Nanotheranostics. J. Control. Release 2012, 164, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Dilnawaz, F.; Sahoo, S.K. Challenges of Moving Theranostic Nanomedicine into the Clinic. Nanomedicine 2020, 15, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Terentyuk, G.; Maslyyakova, G.; Suleymanova, L.; Kogan, B.; Khlebtsov, B.; Akchurin, G.; Makisimova, I.; Shantrokha, A.; Tuchin, V. Tracking Gold Nanoparticles in the Body. J. Biomed. Opt. 2009, 14, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Nowak-Jary, J.; Machnicka, B. Pharmacokinetics of Magnetic Iron Oxide Nanoparticles for Medical Applications. J. Nanobiotechnol. 2022, 20, 305. [Google Scholar] [CrossRef]
- Kundu, P.; Singh, D.; Singh, A.; Sahoo, S.K. Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anti-Cancer Agents Med. Chem. 2020, 20, 1288–1299. [Google Scholar] [CrossRef]
- Ferreira, M.; Sousa, J.; Pais, A.; Vitorino, C. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. Materials 2020, 13, 266. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Khandker, S.S.; Shakil, S.; Hossen, S. Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Curr. Drug Metab. 2020, 21, 579–598. [Google Scholar] [CrossRef]
- Hadadian, Y.; Uliana, J.H.; Carneiro, A.A.O.; Pavan, T.Z. A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia. IEEE Trans. Biomed. Eng. 2021, 68, 68–77. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.-M.; Song, G.; Li, Z.; Zhang, X.-B. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy. ACS Appl. Polym. Mater. 2020, 2, 4258–4272. [Google Scholar] [CrossRef]
- Zhong, X.; Dai, X.; Wang, Y.; Wang, H.; Qian, H.; Wang, X. Copper-based Nanomaterials for Cancer Theranostics. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1797. [Google Scholar] [CrossRef]
Type of NP | Method of Synthesis | References |
---|---|---|
FeNPs | Co-precipitation, hydrothermal synthesis, microemulsion | [1,10,11,12] |
AuNPs | Block co-polymer method | [1,11,12] |
ZnNPs | Precipitation, solid-state pyrolysis, wet chemical synthesis | [1,11,12] |
AgNPs | Chemical, physical, and biological synthesis | [1,11,12] |
CdNPs | Microwave irradiation Photochemical synthesis | [1,10,11,12] |
Therapeutic Entity | Type of Au NP | Application |
---|---|---|
LIN | LIN-AuNPs | Breast cancer |
K | K-AuNPs | Breast cancer |
PI | PI-AuNPs | Colon and breast cancer |
DOX | DOX-PEC-AuNP | Hepatocarcinoma cells |
5-FU | AuNP-PEG-5Fu-FA | Cholangiocarcinoma cells |
DTX | DTX-HA-cl-AuNP | Anticancer therapy |
Type of ZnO NP | Application |
---|---|
ZnO-peptide | Colon cancer |
Dox-ZnO | Hepatocarcinoma |
RGD (Arg-Gly-Asp)-targeted ZnO | Breast cancer |
ZnO NPs and Al-ZnO NPs | Lung cancer |
DOX-ZnO/PEG nanocomposites | Cervical cancer |
PMMA-AA/ZnO NPs and PMMA-PEG/ZnO w | Gastric cancer |
HA/ZnO nanocomposites | Acute promyelocytic leukaemia |
Therapeutic Entity | Type of Ag NP | Application | References |
---|---|---|---|
Doxorubicin (DOX) | Tat-FeAgNP-Dox | Anti-tumour | [34] |
Olax Scanden | Anticancer | [35] | |
cisplatin (CDDP) | AgNPs/CDDP | Synergistic cellular response | [36] |
PEGylated bovine serum albumin AND Indocyanine green | PEG-BSA-AgNP/ICG | Photothermal cancer therapy | [37] |
Gallic acid (GA) | GA-AgNPs | Cancer treatment and therapy | [38] |
Entity | Type of Nanoparticle | Type of Cancer | References |
---|---|---|---|
Tellurium chalcogenide nanoparticles | TeNPs | Melanoma | [62,63] |
Silver chalcogenides | Ag2X | Anticancer | [64] |
Copper chalcogenide hybrid nanostructures | Au@Cu2−xS | Anticancer | [65] |
Non-stoichiometric copper chalcogenides | Cu2−xSe NPs | Anticancer | [65,66] |
Selenium chalcogenide nanoparticles | SeNPs | Breast cancer | [65,67] |
Entity | Type of NP | Type of Cancer | References |
---|---|---|---|
Gold nanoparticles (GNPOPs)-single wall carbon nanotubes (SWCNts) | Breast cancer | [123] | |
RBC-B16 hybrid membrane camouflaged doxorubicin (DOX)-loaded hollow copper sulphide nanoparticles | DCuS@[RBC-B16] NPs | Melanoma | [124] |
Dendrimer-entrapped gold nanoparticles | Au DENPs-FA | Lung cancer | [125] |
Polymer lipid hybrid nanoparticles (PLNs) plus doxorubicin (Dox) | Dox-PLNs | Breast cancer | [126] |
Hybrid elastin like polypeptide/liposome nanoparticles | Prostate cancer | [127] | |
Core-shell lipid-polymer hybrid nanoparticles | CSLPHNPs | Prostate cancer | [128] |
Sialic acid-modified chitosan-PLGA hybrid nanoparticles | SC-PLGA NPs | Lymphoma | [129] |
Genistein-PEGylated silica hybrid nanomaterials | Gen-PEG-SiHNMs | Colon cancer | [130] |
Nanoparticle | Type of Cancer | Drug Delivery System | References |
---|---|---|---|
Magnetic iron oxide nanoparticles | Breast cancer | siRNA and miRNA co-delivery system | [136] |
Doxorubicin-loaded, aptamer-mesoporous silica nanoparticles (MSNs) | Breast cancer | Conjugation of aptamers (targeting agents) and endo/lysosomal escape | [137] |
SLNs (solid lipid-based nanoparticles) | Lung cancer | Site-specific drug delivery | [138] |
Super-magnetic iron oxide nanoparticles (SPIONs) | Lung cancer | Composite inhalable drug delivery systems | [139] |
Liposome, mesoporous silica nanoparticles | T-cell lymphoma | Interleukin 2-diptheria toxin fusion protein (Deniliekin, Diffitox) | [140] |
Entity | Type of NPs | Type of Cancer | References |
---|---|---|---|
Super magnetic iron oxide nanoparticles | SPIONs | Lung cancer | [145] |
Super magnetic iron oxide nanoparticles | MF66 | Breast cancer | [146] |
Iron oxide NPs with fourth-generation polyamidoamine | G4@IOPs | Breast cancer | [147] |
Magnetic iron oxide nanoparticles | MIONPs | Prostate cancer | [148] |
Magnetic, solid, lipid nanoparticles composed of iron cores with glyceryl trimyristate solid matrix | SLN | Colon cancer | [149] |
Doxorubicin with SPIONs | DOX@FASPIONs | Breast cancer | [150] |
Entity | Type of NP | Type of Cancer | References |
---|---|---|---|
Magnesium-based magneto-fluorescent nanorobots | MFNs | Breast cancer | [153] |
Nickel nanorobots | Ni-Ag | Cervical cancer | [154] |
Therapeutic Entity | Type of DNA NP | Application | References |
---|---|---|---|
Gold | DNA-Au NPs | Colorectal cancer | [171] |
DNA-gated nitrogen-doped carbon quantum dots-loaded hollow mesoporous silica nanoparticles | DNA-gated N-CDs@SiO2 NPs | Breast cancer | [172] |
Tris amine (HN3) | IONP-HN3-DNA | Anticancer | [173] |
Cu-Au alloy nanostructures coated in Cy5-labeled DNA molecules | Au@Au/Ag NPs | Imaging and PTT of lung cancer | [174] |
Gold nanorods | AuNPs with silver and silica shell | Targeted imaging and PTT of ovarian cancer and GBM | [160] |
Lanthanum-doped up-conversion nanoparticles with silica shell | Targeted photodynamic therapy for breast cancer | [175] |
Therapeutic Entity | Type of PLNP | Application | References |
---|---|---|---|
ZIF8 | PLNPs@ZIF-8 | Acid-activated tumour imaging and drug release | [181] |
PLNP- and ICG-co-loaded mesoporous silica nanoparticles | (PLP+ICG)MISO2 | Anticancer | [182] |
Persistent luminescence-polypyrrole nanocomposites | LPLNP@SPP | Mammary cancer | [183] |
Type of NP | Recent Advancement | References |
---|---|---|
Au NPs | DNA grafting | [158,159,160] |
Au NPs, Ag NPs | Polymer coating | [116,117,118] |
Fe NPs | Functional silica coating | [105,106,107,108] |
Au NPs | Encapsulation of photosensitizers | [16,17,18,19,20] |
Au NPs, Ag NPs | Coating with tumour-specific ligands or antibodies | [21,22,32,33] |
Fe NPs | Encapsulation of anticancer drugs | [188] |
Fe NPs | Aptamer coating | [45,46] |
Therapeutic Entity | Type of Porphyrin NP | Application | References |
---|---|---|---|
meso-tetrakis (4-sulphonatophenyl) porphyrin/QCS-SH/gold nanoparticles | TPPS/QCS-SH/AuNPs | Anticancer therapy | [184] |
Gelatin | A4por-GNPs | Anticancer therapy | [189] |
methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl) porphyrin | Breast cancer | [190] | |
Doxorubicin and meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) armoured on gold nanoparticles | DOX@TPPS-AuNPs | Breast cancer | [191] |
Nanoparticle | Circulation Time | References |
---|---|---|
Gold NPs | More than 24 h after accumulation | [194] |
Silver NPs | 90 days; in pregnant female mice, 1 to 4 days | [195] |
Zinc oxide NPs | 24 h after administration | [8] |
Iron NPs | 24 -36 h after administration | [196] |
Title | Publication Year | Remarks | Accession Date | References |
---|---|---|---|---|
Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis | 2020 | In this study, multimodal therapeutic nanoprobes were used in cancer therapy and diagnosis. | 24 November 2022 | [197] |
The Role of Magnetic Nanoparticles in Cancer Nanotheranostics | 2020 | This study described the role of magnetic nanoparticles as nanotheranostic agents for drug delivery in cancer therapy. | 24 November 2022 | [198] |
Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems | 2019 | The study focused on skin cancer treatment using hybrid nanoparticles. | 24 November 2022 | [199] |
Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy | 2020 | In this study, gold nanoparticles were used as potential nanothernostic agents to treat breast cancer. | 24 November 2022 | [200] |
A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia | 2021 | This study described how magnetic nanoparticles can be used as potential theranostic agents for drug delivery in various temperature ranges. | 24 November 2022 | [201] |
Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy | 2020 | This study focused on conjugated polymer-based nanomaterials that could be employed as useful photothermal agents for the treatment of numerous diseases. | 24 November 2022 | [202] |
Copper-based nanomaterials for cancer theranostics | 2022 | The study focused on a copper-based nanomaterial, which can be used as a potential theranostic agent for drug delivery and can also be conjugated with PTT for image-related diagnosis and further treatment. | 24 November 2022 | [203] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabaan, A.A.; Bukhamsin, R.; AlSaihati, H.; Alshamrani, S.A.; AlSihati, J.; Al-Afghani, H.M.; Alsubki, R.A.; Abuzaid, A.A.; Al-Abdulhadi, S.; Aldawood, Y.; et al. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022, 27, 8659. https://doi.org/10.3390/molecules27248659
Rabaan AA, Bukhamsin R, AlSaihati H, Alshamrani SA, AlSihati J, Al-Afghani HM, Alsubki RA, Abuzaid AA, Al-Abdulhadi S, Aldawood Y, et al. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules. 2022; 27(24):8659. https://doi.org/10.3390/molecules27248659
Chicago/Turabian StyleRabaan, Ali A., Rehab Bukhamsin, Hajir AlSaihati, Saleh A. Alshamrani, Jehad AlSihati, Hani M. Al-Afghani, Roua A. Alsubki, Abdulmonem A. Abuzaid, Saleh Al-Abdulhadi, Yahya Aldawood, and et al. 2022. "Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics" Molecules 27, no. 24: 8659. https://doi.org/10.3390/molecules27248659
APA StyleRabaan, A. A., Bukhamsin, R., AlSaihati, H., Alshamrani, S. A., AlSihati, J., Al-Afghani, H. M., Alsubki, R. A., Abuzaid, A. A., Al-Abdulhadi, S., Aldawood, Y., Alsaleh, A. A., Alhashem, Y. N., Almatouq, J. A., Emran, T. B., Al-Ahmed, S. H., Nainu, F., & Mohapatra, R. K. (2022). Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules, 27(24), 8659. https://doi.org/10.3390/molecules27248659