An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry
Abstract
:1. Introduction
2. Description of Arrowroot, Kuzu, Sassafras, Sugarcane, Acorns, and Gelatin Byproducts Utilization
2.1. Arrowroot
2.2. Kuzu
2.3. Filé Powder
2.4. Sugarcane
2.5. Acorn
2.6. A New Approach to Gelatin
3. Health-Promoting Properties of Waste Gelatin from the Fish and Poultry Industry and Byproducts from Arrowroot, Kuzu, Sassafras Tree, Sugarcane, and Acorn
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review: Food industry by-products used as a functional food ingredients. Int. J. Waste Resour. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Rao, M.; Bast, A.; de Boer., A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- León, C.T.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food waste and byproducts: An opportunity to minimize malnutrition and hunger in developing countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Anal, A.K. Food Processing By-Products and their Utilization: Introduction. In Food Processing By-Products and their Utilization, 1st ed.; Anal, A.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Šubarić, D.; Jokić, S. Food Industry By-Products as a Sources of Phytochemical Compounds. Foods 2022, 11, 1724. [Google Scholar] [CrossRef]
- Oreopoulou, V.; Tzia, C. Utilization of by-products and treatment of waste in the food industry. In Utilization of By-Products and Treatment of Waste in the Food Industry, 1st ed.; Oreopoulou, V., Russ, W., Eds.; Springer: New York, NY, USA, 2007; Volume 11, pp. 209–232. [Google Scholar] [CrossRef]
- Liu, Z. Edible films and coatings from starches. In Innovations in Food Packaging, 1st ed.; Han, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 318–337. [Google Scholar]
- Morawska, M. Modified natural polymers obtained from Kuzu starch. Towarozn. Probl. Jakości 2018, 4, 142–149. [Google Scholar] [CrossRef]
- Tabasum, S.; Younas, M.; Zaeem, M.A.; Majeed, I.; Majeed, M.; Noreen, A.; Iqbal, M.N.; Zia, K.M. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [Google Scholar] [CrossRef]
- Cruz, B.R.; Abraão, A.S.; Lemos, A.M.; Nunes, F.M. Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill). Carbohydr. Polym. 2013, 94, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Charles, A.L.; Cato, K.; Huang, T.C.; Chang, Y.H.; Ciou, J.Y.; Chang, J.S.; Lin, H.H. Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocoll. 2016, 53, 187–191. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Cheow, C.S.; Norizah, M.S.; Kyaw, Z.Y.; Howell, N.K. Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chem. 2007, 101, 386–391. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Li, W.; Wang, X.; Peng, Q.; Wang, M. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr. Polym. 2015, 132, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Jaime, I.; Mela, D.J.; Bratchell, N. A study of texture-flavor interactions using free-choice profiling. J. Sens. Stud. 1993, 8, 177–188. [Google Scholar] [CrossRef]
- Deswina, P.; Priadi, D. Development of arrowroot (Maranta arundinacea L.) as functional food based of local resource. IOP Conf. Ser. Earth Environ. Sci. 2020, 439, 012041. [Google Scholar] [CrossRef]
- Blase, M.E.M.; Labay, P.M. Acceptability and proximate composition of two Filipino delicacies, puto seko and panganan from arrowroot (Maranta arundinaceae, L.) starch. Food Res. 2017, 1, 256–263. [Google Scholar] [CrossRef]
- Sudaryati, E.; Nasution, E.; Ardiani, F. Nutritional quality of bread from mixture of arrowroot flour (Marantha arundinacea L.) and Wheat Flour. In Proceeding of the 2nd Public Health International Conference, Medan, North Sumatra, Indonesia, 18–19 December 2017. [Google Scholar] [CrossRef]
- Amante, P.R.; Santos, E.C.Z.; da Veiga Correia, V.T.; Fante, C.A. Research Notes: Benefits and Possible Food Applications of Arrowroot (Maranta Arundinaceae, L.). J. Culin. Sci. Technol. 2020, 19, 513–521. [Google Scholar] [CrossRef]
- Brito, V.; Nascimento, R.; Narcisa-Oliveira, J.; Joffer, N.; Fattori, A.; Cereda, M.; Oliveira, C.; Costa, R.; Tiburtino-Silva, L.; Maciel, J. Arrowroot (Maranta arundinacea L.): Botany, Horticulture, and Uses. Hortic Rev. 2021, 48, 233–274. [Google Scholar] [CrossRef]
- Valencia, A.G.; Freitas Moraes, I.C.; Vinicius Lourenço, R.; Barbosa Bittante, A.M.; do Amaral Sobral, P.J. Physicochemical properties of Maranta (Maranta arundinacea L.) starch. Int. J. Food Prop. 2015, 18, 1990–2001. [Google Scholar] [CrossRef]
- Herawati, E.R.N.; Miftakhussolikhah, M.; Pusporini, A.R.; Murdiati, A. Sensorial and chemical characterization of snack bar with variation of gembolo flour (Dioscorea bulbifera) and arrowroot starch (Marantha arundinaceae L.). Food Res. 2019, 3, 564–569. [Google Scholar] [CrossRef]
- Bilba, K.; Savastano Junior, H.; Ghavami, K. Treatments of non-wood plant fibres used as reinforcement in composite materials. Mater. Res. 2013, 16, 903–923. [Google Scholar] [CrossRef]
- de Oliveira Guilherme, D.; Branco, F.P.; Madeira, N.R.; Brito, V.H.; de Oliveira, C.E.; Jadoski, C.J.; Cereda, M.P. Starch valorization from corm, tuber, rhizome, and root crops: The Arrowroot (Maranta arundinacea L.) case. In Starches for Food Application, 1st ed.; Silva Clerici, M.T.P., Schmiele, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 167–222. [Google Scholar] [CrossRef]
- Leonel, M.; Cereda, M.P. Caracterização físico-química de algumas tuberosas amiláceas. Food Sci. Technol. 2002, 22, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Villas-Boas, F.; Franco, C.M.L. Effect of bacterial β-amylase and fungal α-amylase on the digestibility and structural characteristics of potato and arrowroot starches. Food Hydrocoll. 2016, 52, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Tarique, J.; Sapuan, S.M.; Khalina, A.; Sherwani, S.F.K.; Yusuf, J.; Ilyas, R.A. Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J. Mater. Res. Technol. 2021, 13, 1191–1219. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018, 186, 64–72. [Google Scholar] [CrossRef]
- Kumalasari, I.D.; Harmayani, E.; Lestari, L.A.; Raharjo, S.; Asmara, W.; Nishi, K.; Sugahara, T. Evaluation of immunostimulatory effect of the arrowroot (Maranta arundinacea L.) in vitro and in vivo. Cytotechnology 2012, 64, 131–137. [Google Scholar] [CrossRef]
- Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J. Food Sci. Technol. 2014, 51, 3669–3679. [Google Scholar] [CrossRef] [Green Version]
- Chit, M.T. Nutritional values of the rhizome of arrowroot maranta arundinacea L. (Adalut). Univ. Res. J. 2016, 9, 1–15. [Google Scholar]
- Kim, K.; Yoon, H.K.; Kim, S.K. Physicochemical properties of arrowroot starch. J. Korean Chem. Soc. 1984, 27, 245–251. [Google Scholar]
- Erdman, M.D. Starch from arrowroot (Maranta arundinacea L.) grown at Tifton, Georgia. Cereal Chem. 1986, 63, 277–279. [Google Scholar]
- Pérez, E.; Lares, M. Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches. Plant Foods Hum. Nutr. 2005, 60, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Madineni, M.N.; Faiza, S.; Surekha, R.S.; Ravi, R.; Guha, M. Morphological, structural, and functional properties of maranta (Maranta arundinacea L) starch. Food Sci. Biotechnol. 2012, 21, 747–752. [Google Scholar] [CrossRef]
- Gordillo, C.A.S.; Valencia, G.A.; Zapata, R.A.V.; Henao, A.C.A. Physicochemical characterization of arrowroot starch (Maranta arundinacea linn) and glycerol/arrowroot starch membranes. Int. J. Food Eng. 2014, 10, 727–735. [Google Scholar] [CrossRef]
- Ferrari, T.B.; Leonel, M.; Sarmento, S.B.S. Características dos rizomas e do amido de araruta (Maranta arundinacea) em diferentes estádios de desenvolvimento da planta. Braz. J. Food Technol. 2005, 8, 93–98. [Google Scholar]
- Demiate, I.M.; Dupuy, N.; Huvenne, J.P.; Cereda, M.P.; Wosiacki, G. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydr. Polym. 2000, 42, 149–158. [Google Scholar] [CrossRef]
- Vatanasuchart, N.; Naivikul, O.; Charoenrein, S.; Sriroth, K. Molecular properties of cassava starch modified with different UV irradiations to enhance baking expansion. Carbohydr. Polym. 2005, 61, 80–87. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Sheriff, J.T.; Sajeev, M.S. Physical and functional properties of arrowroot starch extrudates. J. Food Sci. 2009, 74, 97–104. [Google Scholar] [CrossRef]
- Vilpoux, O.F.; Brito, V.H.; Cereda, M.P. Starch extracted from corms, roots, rhizomes, and tubers for food application. In Starches for Food Application, 1st ed.; Silva Clerici, M.T.P., Schmiele, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–165. [Google Scholar] [CrossRef]
- Charles, A.L.; Abdillah, A.A.; Saraswati, Y.R.; Sridhar, K.; Balderamos, C.; Masithah, E.D.; Alamsjah, M.A. Characterization of freeze-dried microencapsulation tuna fish oil with arrowroot starch and maltodextrin. Food Hydrocoll. 2021, 112, 106281. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; Velasco, J.I.; de Oliveira, R.A. Active edible films based on arrowroot starch with microparticles of blackberry pulp obtained by freeze-drying for food packaging. Polymers 2019, 11, 1382. [Google Scholar] [CrossRef]
- Park, J.J.; Olawuyi, I.F.; Lee, W.Y. Characteristics of low-fat mayonnaise using different modified arrowroot starches as fat replacer. Int. J. Biol. Macromol. 2020, 153, 215–223. [Google Scholar] [CrossRef]
- Winarti, C.; Sunarti, T.C.; Mangunwidjaja, D.; Richana, N. Preparation of arrowroot starch nanoparticles by butanol-complex precipitation, and its application as bioactive encapsulation matrix. Int. Food Res. J. 2014, 21, 2207–2213. [Google Scholar]
- Barroso, A.G.; del Mastro, N.L. Physicochemical characterization of irradiated arrowroot starch. Radiat. Phys. Chem. 2019, 158, 194–198. [Google Scholar] [CrossRef]
- EPPO. Data sheets on quarantine pests: Pueraria lobata. Eur. Mediterr. Plant Prot. Organ. Bull. 2007, 37, 230–235. [Google Scholar]
- Ingram, C.D. Substitution of Kudzu Starch for Cornstarch Results in Dairy-Based Vanilla Pudding with Similar Texture and Consumer Acceptability. Bachelor’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2021. [Google Scholar]
- Zhao, Y.; Khalid, N.; Shu, G.; Neves, M.A.; Kobayashi, I.; Nakajima, M. Formulation and characterization of oil-in-water emulsions stabilized by gelatinized kudzu starch. Int. J. Food Prop. 2017, 20, 1329–1341. [Google Scholar] [CrossRef]
- Zhao, Y.; Khalid, N.; Shu, G.; Neves, M.A.; Kobayashi, I.; Nakajima, M. Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Carbohydr. Polym. 2017, 176, 91–98. [Google Scholar] [CrossRef]
- Luo, Q.; Hao, J.D.; Yang, Y.; Yi, H. Herbalogical textual research on “Gegen”. China J. Chin. Mater. Med. 2007, 32, 1141–1144. [Google Scholar]
- Csurhes, S. Kudzu (Pueraria montana var. lobata) Infestation on the Gold Coast; Department of Primary Industries and Fisheries. Queensland Government: Australia, Brisbane, 2008.
- Neves, A.C.; Ming, T.; Mroczkowska, M.; Culliton, D. The Effect of Different Starches in the Environmental and Mechanical Properties of Starch Blended Bioplastics. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 550–554. [Google Scholar] [CrossRef]
- Kinjo, J.E.; Furusawa, J.I.; Baba, J.; Takeshita, T.; Yamasaki, M.; Nohara, T. Studies on the constituents of Pueraria lobata. III. Isoflavonoids and related compounds in the roots and the voluble stems. Chem. Pharm. Bull. 1987, 35, 4846–4850. [Google Scholar] [CrossRef] [Green Version]
- Arao, T.; Kinjo, J.; Nohara, T.; Isobe, R. Oleanene-type triterpene glycosides from Puerariae Radix. II. Isolation of saponins and the application of tandem mass spectrometry to their structure determination. Chem. Pharm. Bull. 1995, 43, 1176–1179. [Google Scholar] [CrossRef] [Green Version]
- Arao, T.; Kinjo, J.; Nohara, T.; Isobe, R. Oleanene-type triterpene glycosides from Puerariae radix. IV. Six new saponins from Pueraria lobata. Chem. Pharm. Bull. 1997, 45, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, M.; Kameoka, H. Volatile flavor components of Puerariae radix (Pueraria lobata Ohwi). Agric. Biol. Chem. 1988, 52, 1053–1055. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Wu, C.I.; Sheu, S.J. Determination of 12 pueraria components by high-performance liquid chromatography-mass spectrometry. J. Sep. Sci. 2005, 28, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Feng, W.S.; Shi, R.B.; Liu, B. A new chemical component of Pueraria lobata (Willd.) Ohwi. Acta Pharm. Sin. B 2007, 42, 964–967. [Google Scholar]
- Nakamoto, H.; Miyamura, S.; Inada, K.; Nakamura, N. The study of the aqueous extract of Puerariae radix. I. The preparation and the components of the active extract. Yakugaku Zasshi 1975, 95, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Yang, F.; Shi, X.; Zhu, X.; Su, W.; Wang, P. Improvement in solubility and bioavailability of puerarin by mechanochemical preparation. Drug Dev. Ind. Pharm. 2013, 39, 826–835. [Google Scholar] [CrossRef]
- Mocan, A.; Carradori, S.; Locatelli, M.; Secci, D.; Cesa, S.; Mollica, A.; Riga, S.; Angeli, A.; Supuran, C.T.; Celia, C.; et al. Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food Chem. Toxicol. 2018, 112, 441–447. [Google Scholar] [CrossRef]
- Zhen, L.; Fu-Rao, L.; Hui, W. Analysis of the nutritional components of kudzu vine root. Mod. Food Sci. Technol. 2011, 27, 1010–1019. [Google Scholar]
- Zhao, Y.; Zhu, X.; Fang, Y. Structure, properties and applications of kudzu starch. Food Hydrocoll. 2021, 119, 106817. [Google Scholar] [CrossRef]
- Reddy, C.K.; Luan, F.; Xu, B. Morphology, crystallinity, pasting, thermal and quality characteristics of starches from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth). Int. J. Biol. Macromol. 2017, 105, 354–362. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Zhang, X.; Li, Y.; Fang, W.; Yu, X.; Dang, L. Fractionation of kudzu amylose and amylopectin and their microstructure and physicochemical properties. Starch-Starke 2017, 69, 1500305. [Google Scholar] [CrossRef]
- Yoo, S.H.; Perera, C.; Shen, J.; Ye, L.; Suh, D.S.; Jane, J.L. Molecular structure of selected tuber and root starches and effect of amylopectin structure on their physical properties. J. Agric. Food Chem. 2009, 57, 1556–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hung, P.; Maeda, T.; Morita, N. Waxy and high-amylose wheat starches and flours—Characteristics, functionality and application. Trends Food Sci. Technol. 2006, 17, 448–456. [Google Scholar] [CrossRef]
- Van Hung, P.; Morita, N. Chemical compositions, fine structure and physicochemical properties of kudzu (Pueraria lobata) starches from different regions. Food Chem. 2007, 105, 749–755. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; You, Z.; Li, D.; Zhou, M.; Zhu, Y.; Wang, C. Analysis of puerarin and chemical compositions changes in kudzu root during growth period. J. Chem. 2014, 2014, 582176. [Google Scholar] [CrossRef]
- Forseth, I.N.; Innis, A.F. Kudzu (Pueraria montana): History, physiology, and ecology combine to make a major ecosystem threat. CRC Crit. Rev. Plant Sci. 2004, 23, 401–413. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Kaufman, P.B.; Warber, S.; Bolling, S.; Chang, S.C.; Duke, J.A. Quantification of major isoflavonoids and L-canavanine in several organs of kudzu vine (Pueraria montana) and in starch samples derived from kudzu roots. Plant Sci. 2003, 164, 883–888. [Google Scholar] [CrossRef]
- Abegunde, O.K.; Mu, T.H.; Chen, J.W.; Deng, F.M. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 2013, 33, 169–177. [Google Scholar] [CrossRef]
- Geng, Z.; Zongdao, C.; Yimin, W. Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (Pueraria hirsute Matsum.) starches. Int. J. Food Sci. 2007, 42, 1449–1455. [Google Scholar] [CrossRef]
- Jóźwiak, B.; Orczykowska, M.; Dziubiński, M. Rheological properties of kuzu starch pastes with galactomannans. JFST 2018, 55, 1575–1581. [Google Scholar] [CrossRef]
- Imamoglu, H.; Coggins, P.C.; Rowe, D.E. Influence of storage time and starches on texture attributes of conventional milk yogurt using response surface methodology. Int. Food Res. J. 2017, 24, 1721. [Google Scholar]
- Liang, J.; Maeda, T.; Tao, X.L.; Wu, Y.H.; Tang, H.J. Physicochemical properties of Pueraria root starches and their effect on the improvement of buckwheat noodle quality. Cereal Chem. 2017, 94, 554–559. [Google Scholar] [CrossRef]
- Zhao, Y.; Khalid, N.; Shu, G.; Neves, M.A.; Kobayashi, I.; Nakajima, M. Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocoll. 2019, 86, 70–77. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Yuan, Y.; Gui, Y.; Zou, F.; Lu, L.; Cui, B. Structural and functional modification of kudzu starch using α-amylase and transglucosidase. Int. J. Biol. Macromol. 2021, 169, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cui, B.; Janaswamy, S.; Guo, L. Structural and functional modifications of kudzu starch modified by branching enzyme. Int. J. Food Prop. 2019, 22, 952–966. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, X.; Wang, Q.; Zhang, H.; Li, M.; Song, B.; Zhao, Z. Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 2018, 117, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Li, T.; Zhao, H.; Chen, H.; Yu, X.; Liu, B. Effect of debranching and temperature-cycled crystallization on the physicochemical properties of kudzu (Pueraria lobata) resistant starch. Int. J. Biol. Macromol. 2019, 129, 1148–1154. [Google Scholar] [CrossRef]
- Guo, L.; Wang, S.L.; Zhu, C.C.; Hu, J.; Zhang, J.J.; Du, X.F. The impacts of the entanglement concentration on the hydrodynamic properties of kudzu and lotus rhizome starch aqueous solutions. J. Food Nutr. Res. 2016, 4, 750–759. [Google Scholar] [CrossRef]
- Shi, Y.C.; Seib, P.A. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res. 1992, 227, 131–145. [Google Scholar] [CrossRef]
- Guo, L.; Du, X. Retrogradation kinetics and glass transition temperatures of Pueraria lobata starch, and its mixtures with sugars and salt. Starch-Starke 2014, 66, 887–894. [Google Scholar] [CrossRef]
- Lv, Y.; Li, M.; Pan, J.; Zhang, S.; Jiang, Y.; Liu, J.; Zhu, Y.; Zhang, H. Interactions between tea products and wheat starch during retrogradation. Food Biosci. 2020, 34, 100523. [Google Scholar] [CrossRef]
- Qian, J.; Du, X. Rheological properties of Kudzu starch paste. J. Chin. Cereals Oils Assoc. 2016, 31, 31–38. [Google Scholar]
- Jóźwiak, B.; Orczykowska, M.; Dziubiński, M. Rheological behavior of kuzu starch pastes. Starke 2016, 68, 119–130. [Google Scholar] [CrossRef]
- Guo, L.; Hu, J.; Zhou, X.; Li, X.; Du, X. In vitro digestibility of kudzu starch by using α-amylase and glucoamylase. Starch-Starke 2016, 68, 140–150. [Google Scholar] [CrossRef]
- Tahir, R.; Ellis, P.R.; Butterworth, P.J. The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic α-amylase. Carbohydr. Polym. 2010, 81, 57–62. [Google Scholar] [CrossRef]
- Zhu, X.; Du, X.; Chen, X.; Hu, J.; Zhou, X.; Guo, L. Determining the effects of annealing time on the glass transition temperature of Pueraria lobata (Willd.) Ohwi Starch. Int. J. Food Sci. 2018, 53, 43–49. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, W.; Yang, W.; Chen, S.; Liu, D.; Tian, J.; Ye, X. The influence of xanthan gum on rheological properties and in vitro digestibility of kudzu (Pueraria lobata) starch. Starch-Starke 2020, 72, 1900139. [Google Scholar] [CrossRef]
- Zhu, F. Structures, properties, and applications of lotus starches. Food Hydrocoll. 2017, 63, 332–348. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Wang, S.; Gao, P.; Dai, L. A comprehensive review on Pueraria: Insights on its chemistry and medicinal value. Biomed. Pharmacother. 2020, 131, 110734. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, C.; Li, H.; Hu, X.; Jin, Z.; Tian, Y.; Xu, X. Long-term annealing of C-type kudzu starch: Effect on crystalline type and other physicochemical properties. Starch-Starke 2015, 67, 577–584. [Google Scholar] [CrossRef]
- Chen, B.; Dang, L.; Zhang, X.; Fang, W.; Hou, M.; Liu, T.; Wang, Z. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. Food Chem. 2017, 219, 93–101. [Google Scholar] [CrossRef]
- Zhao, Y.; Khalid, N.; Nakajima, M. Fabrication and characterization of dodecenyl succinic anhydride modified kudzu starch. Starch-Stärke. 2022, 74, 2100188. [Google Scholar] [CrossRef]
- Conceição, R.S.; Perez, C.J.; Branco, A.; Botura, M.B.; Ifa, D.R. Identification of Sassafras albidum alkaloids by high-performance thin-layer chromatography tandem mass spectrometry and mapping by desorption electrospray ionization mass spectrometry imaging. J. Mass Spectrom. 2021, 56, e4674. [Google Scholar] [CrossRef] [PubMed]
- Parekh, T. “They want to live in the Tremé, but they want it for their ways of living”: Gentrification and neighborhood practice in Tremé, New Orleans. Urban Geogr. 2015, 36, 201–220. [Google Scholar] [CrossRef]
- Rose, N. Through the Seasons with Sassafras. Arnoldia 2017, 74, 32-32. [Google Scholar]
- Robert, M. The Real Story of Gumbo, Okra, and Filé’, Serious Eats. Available online: https://www.seriouseats.com/history-new-orleans-gumbo-okra-file-powder (accessed on 23 November 2021).
- Fowler, K.D. Journey to Enlichenment: Lichens in the Atlantic World Food Chain. In Proceeding of the Atlantic World Foodways Conference, The University of North Carolina, Greensboro, NC, USA, 30 January–2 February 2014; Available online: https://awrn.uncg.edu/wp-content/uploads/2019/08/Fowler-Lichen-Recipes-2.pdf (accessed on 23 November 2022).
- Griggs, M.M. Sassafras (Sassafras albidum (Nutt.) Nees). Silv. N. Am. 1990, 2, 773–777. [Google Scholar]
- Segelman, A.B.; Segelman, F.P.; Karliner, J.; Sofia, R.D. Sassafras and herb tea: Potential health hazards. JAMA 1976, 236, 477-477. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics. 2000–2020. FAOSTAT Analytical Brief Series No. 41. Rome, Italy. 2022. Available online: https://www.fao.org/3/cb9180en/cb9180en.pdf (accessed on 23 November 2022).
- Dal-Bianco, M.; Carneiro, M.S.; Hotta, C.T.; Chapola, R.G.; Hoffmann, H.P.; Garcia, A.A.F.; Souza, G.M. Sugarcane improvement: How far can we go? Curr. Opin. Biotechnol. 2012, 23, 265–270. [Google Scholar] [CrossRef]
- Solomon, S.; Singh, G.B. Sugarcane diversification: Recent developments and future prospects. In Sugarcane: Agro-Industrial Alternatives; Singh, G.B., Solomon, S., Eds.; Oxford IBH Publishing Co.: New Delhi, India, 2005; pp. 523–541. [Google Scholar]
- Solomon, S. Sugarcane by-products based industries in India. Sugar Tech. 2011, 13, 408–416. [Google Scholar] [CrossRef]
- Paturau, J.M. By-Products of the Cane Sugar Industry; Elsevier Publishing Company: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Sangnark, A.; Noomhorm, A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem. 2003, 80, 221–229. [Google Scholar] [CrossRef]
- Harmsen, P.F.; Huijgen, W.; Bermudez, L.; Bakker, R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. In Wageningen UR Food & Biobased Research; Wageningen University & Research: Wageningen, The Netherlands, 2010. [Google Scholar]
- Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuel Bioprod Biorefin. 2016, 10, 634–647. [Google Scholar] [CrossRef]
- Alokika, A.; Anil, K.; Vinod, K.; Bijender, S. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int. J. Biol. Macromol. 2021, 169, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.E.; Xiao, S.Z.; Sun, Y.H.; Zheng, X.X.; Ou-Yang, Y.; Guan, C. The study of anti-metabolic syndrome effect of puerarin in vitro. Life Sci. 2005, 77, 3183–3196. [Google Scholar] [CrossRef] [PubMed]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. 3D Extrusion Printability of Sugarcane Bagasse Blended with Banana Peel for Prospective Food Packaging Applications. Sugar Tech. 2022, 24, 764–778. [Google Scholar] [CrossRef]
- Clarke, M.A.; Edye, L.A. Chemistry and Processing of Sugarbeet and Sugarcane. Proc. Symp. on the Chemistry and Processing of Sugarbeet, held Denver, Colorado, USA, 6 April 1987 and Symp. on the Chemistry and Processing of Sugarcane, Held New Orleans, Louisiana, USA, 3–4 September 1987; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Gil-López, D.L.; Lois-Correa, J.A.; Sánchez-Pardo, M.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Rodríguez-Salazar, A.E.; Orta-Guzmán, V.N. Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments. Ind. Crops Prod. 2019, 135, 159–169. [Google Scholar] [CrossRef]
- Zhuang, X.; Jiang, X.; Han, M.; Kang, Z.L.; Zhao, L.; Xu, X.L.; Zhou, G.H. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels. Food Hydrocoll. 2016, 57, 253–261. [Google Scholar] [CrossRef]
- Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X.L.; Zhou, G.H. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 2018, 74, 219–226. [Google Scholar] [CrossRef]
- Sangnark, A.; Noomhorm, A. Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties. LWT 2004, 37, 697–704. [Google Scholar] [CrossRef]
- Sánchez-Burgos, J.A.; Ramírez-Mares, M.V.; Larrosa, M.M.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Medina-Torres, L.; Rocha-Guzmán, N.E. Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind. Crops. Prod. 2013, 42, 57–62. [Google Scholar] [CrossRef]
- Shahbaz, S.E.; Abdulrahman, S.S.; Abdulrahman, H.A. Use of Leaf Anatomy for Identification of Quercus, L. Species Native to Kurdistan-Iraq. Sci. J. Univ. Zakho. 2015, 3, 222–232. [Google Scholar] [CrossRef]
- Pritchard, H.W.; Daws, M.I.; Fletcher, B.J.; Gaméné, C.S.; Msanga, H.P.; Omondi, W. Ecological correlates of seed desiccation tolerance in tropical African dryland trees. Am. J. Bot. 2004, 91, 863–870. [Google Scholar] [CrossRef]
- Rakić, S.; Petrović, S.; Kukić, J.; Jadranin, M.; Tešević, V.; Povrenović, D.; Šiler-Marinković, S. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem. 2007, 104, 830–834. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Borges, A.; Carvalho, A.P.; Monteiro, M.J.; Pintado, M.M.E. Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore). J. Food Meas. Charact. 2016, 10, 584–588. [Google Scholar] [CrossRef]
- Aziz, A.; Khan, N.M.; Ali, F.; Khan, Z.U.; Ahmad, S.; Jan, A.K.; Rehman, N.; Muhammad, N. Effect of protein and oil volume concentrations on emulsifying properties of acorn protein isolate. Food Chem. 2020, 324, 126894. [Google Scholar] [CrossRef] [PubMed]
- Deforce, K.; Bastiaens, J.; Van Calster, H.; Vanhoutte, S. Iron Age acorns from Boezinge (Belgium): The role of acorn consumption in prehistory. Archaol. Korresp. 2009, 12, 381. [Google Scholar]
- Lopes, I.M.; Bernardo-Gil, M.G. Characterisation of acorn oils extracted by hexane and by supercritical carbon dioxide. Eur. J. Lipid Sci. Technol. 2005, 107, 12–19. [Google Scholar] [CrossRef]
- Ullah, S.F.; Khan, N.M.; Ali, F.; Ahmad, S.; Khan, Z.U.; Rehman, N.; Jan, A.K.; Muhammad, N. Effects of Maillard reaction on physicochemical and functional properties of walnut protein isolate. Food Sci. Biotechnol. 2019, 28, 1391–1399. [Google Scholar] [CrossRef]
- Resendiz-Vazquez, J.A.; Ulloa, J.A.; Urías-Silvas, J.E.; Bautista-Rosales, P.U.; Ramírez-Ramírez, J.C.; Rosas-Ulloa, P.; González-Torres, L. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason Sonochem. 2017, 37, 436–444. [Google Scholar] [CrossRef]
- Galván, J.V.; Valledor, L.; Cerrillo, R.M.N.; Pelegrín, E.G.; Jorrín-Novo, J.V. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf] Samp.) through acorn protein profile analysis. J. Proteom. 2011, 74, 1244–1255. [Google Scholar] [CrossRef]
- Hou, P.Z.; Regenstein, J.M. Optimization of extraction conditions for pollock skin gelatin. J. Food Sci. 2004, 69, C393–C398. [Google Scholar] [CrossRef]
- Zhou, P.; Regenstein, J.M. Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin extraction. J. Food Sci. 2005, 70, c392–c396. [Google Scholar] [CrossRef]
- Zhou, P.; Mulvaney, S.J.; Regenstein, J.M. Properties of Alaska pollock skin gelatin: A comparison with tilapia and pork skin gelatins. J. Food Sci. 2006, 71, C313–C321. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles. LWT 2012, 47, 437–442. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 21 October 2022).
- Meky, N.; Fujii, M.; Ibrahim, M.G.; Tawfik, A. Biological hydrogen gas production from gelatinaceous wastewater via stand-Alone circular dark/photo baffled fermenter. Energy Procedia 2019, 157, 670–675. [Google Scholar] [CrossRef]
- Salminen, E.; Rintala, J. Anaerobic digestion of organic solid poultry slaughterhouse waste–a review. Bioresour. Technol. 2002, 83, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Yemenicioğlu, A.; Farris, S.; Turkyilmaz, M.; Gulec, S. A review of current and future food applications of natural hydrocolloids. Int. J. Food Sci. 2019, 55, 1389–1406. [Google Scholar] [CrossRef]
- Benjakul, S.; Kittiphattanabawon, P. Gelatin. In Encyclopedia of Food Chemistry, Reprint; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 121–127. [Google Scholar]
- Alfaro, A.D.T.; Balbinot, E.; Weber, C.I.; Tonial, I.B.; Machado-Lunkes, A. Fish gelatin: Characteristics, functional properties, applications and future potentials. Food Eng. Rev. 2015, 7, 33–44. [Google Scholar] [CrossRef]
- Abedinia, A.; Nafchi, A.M.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. [Google Scholar] [CrossRef]
- Boran, G.; Regenstein, J.M. Fish gelatin. Adv. Food Nutr. Res. 2010, 60, 119–143. [Google Scholar] [CrossRef]
- Wasswa, J.; Tang, J.; Gu, X. Utilization of fish processing by-products in the gelatin industry. Food Rev. Int. 2007, 23, 159–174. [Google Scholar] [CrossRef]
- Gudmundsson, M. Rheological properties of fish gelatins. J. Food Sci. 2002, 67, 2172–2176. [Google Scholar] [CrossRef]
- Rafieian, F.; Keramat, J.; Kadivar, M. Optimization of gelatin extraction from chicken deboner residue using RSM method. JFST 2013, 50, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudmundsson, M.; Hafsteinsson, H. Gelatin from cod skins as affected by chemical treatments. J. Food Sci. 1997, 62, 37–39. [Google Scholar] [CrossRef]
- Cho, S.M.; Kwak, K.S.; Park, D.C.; Gu, Y.S.; Ji, C.I.; Jang, D.H.; Lee, Y.B.; Kim, S. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocoll. 2004, 18, 573–579. [Google Scholar] [CrossRef]
- Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Chemical compositions and functional properties of gelatin from pre-cooked tuna fin. Int. J. Food Sci. 2008, 43, 685–693. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll. 2004, 18, 581–592. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Herring, J.L.; Oh, J.H. Characterization of edible film fabricated with channel catfish (Ictalurus punctatus) gelatin extract using selected pretreatment methods. J. Food Sci. 2007, 72, C498–C503. [Google Scholar] [CrossRef]
- Arnesen, J.A.; Gildberg, A. Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour. Technol. 2007, 98, 53–57. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Skin gelatin from bigeye snapper and brownstripe red snapper: Chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocoll. 2006, 20, 1216–1222. [Google Scholar] [CrossRef]
- Nalinanon, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H. Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocoll. 2008, 22, 615–622. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Comparative study on characteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark as affected by extraction conditions. Food Hydrocoll. 2010, 24, 164–171. [Google Scholar] [CrossRef]
- Jamilah, B.; Harvinder, K.G. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 2002, 77, 81–84. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Jiang, M.; Oh, J.H.; Herring, J.; Zhou, P. 2-Step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin. J. Food Sci. 2007, 72, C188–C195. [Google Scholar] [CrossRef] [PubMed]
- Aewsiri, T.; Benjakul, S.; Visessanguan, W. Functional properties of gelatin from cuttlefish (Sepia pharaonis) skin as affected by bleaching using hydrogen peroxide. Food Chem. 2009, 115, 243–249. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Rawdkuen, S.; Chaijan, M.; Benjakul, S.; Osako, K.; Tanaka, M. Chemical compositions and characterisation of skin gelatin from farmed giant catfish (Pangasianodon gigas). LWT 2010, 43, 161–165. [Google Scholar] [CrossRef]
- Giménez, B.; Gómez-Estaca, J.; Alemán, A.; Gómez-Guillén, M.C.; Montero, M.P. Physico-chemical and film forming properties of giant squid (Dosidicus gigas) gelatin. Food Hydrocoll. 2009, 23, 585–592. [Google Scholar] [CrossRef]
- Kasankala, L.M.; Xue, Y.; Weilong, Y.; Hong, S.D.; He, Q. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresour. Technol. 2007, 98, 3338–3343. [Google Scholar] [CrossRef]
- Osborne, K.; Voight, M.N.; Hall, D.E. Utilization of lumpfish carcasses for production of gelatin. In Advances in Fisheries Technology and Biotechnology for Increased Profitability, 1st ed.; Voight, M.N., Botta, J.K., Eds.; Technomic Publishing Co.: Lancaster, UK, 1990; pp. 143–153. [Google Scholar] [CrossRef] [Green Version]
- Montero, P.; Gómez-Guillén, M.C. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. J. Food Sci. 2000, 65, 434–438. [Google Scholar] [CrossRef]
- Boran, G.; Regenstein, J.M. Optimization of gelatin extraction from silver carp skin. J. Food Sci. 2009, 74, E432–E441. [Google Scholar] [CrossRef]
- Cho, S.M.; Gu, Y.S.; Kim, S.B. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocoll. 2005, 19, 221–229. [Google Scholar] [CrossRef]
- Thammarutwasik, P.; Hongpattarakere, T.; Chantachum, S.; Kijroongrojana, K.; Itharat, A.; Reanmongkol, W.; Tewtrakul, S.; Ooraikul, B. Prebiotics-A Review. SJST 2009, 31, 1511–1521. [Google Scholar]
- Mathew, J. Arrowroot. In Underutilized and Underexploited Horticultural Crops, 1st ed.; Peter, K.V., Ed.; New India Publishing Agency: New Delhi, India, 2007; Volume 26, pp. 31–59. [Google Scholar]
- Priyan, V.V.; Shahnaz, T.; Kunnumakkara, A.B.; Rana, V.; Saravanan, M.; Narayanasamy, S. Antioxidant, anti-inflammatory and biosorption properties of starch nanocrystals in vitro study: Cytotoxic and phytotoxic evaluation. J. Clust. Sci. 2021, 32, 1419–1430. [Google Scholar] [CrossRef]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Araujo, T.; Souza, N.; Rodrigues, L.; Lisboa, H.; Pasquali, M.A.D.B.; Trindade, G.; Rocha, A.P. Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. J. Agric. Res. 2019, 1, 100012. [Google Scholar] [CrossRef]
- Wu, C.S.; Liao, H.T. Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility. Mater. Sci. Eng. C 2017, 70, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Dompak, N.; Saad, M. A Study of Alternative Food Sources in Jambi Province. AGRISE 2016, 16, 21–24. [Google Scholar]
- Pratiwi, M.; Faridah, D.; Lioe, H.N. Chromatographic profiling to determine the extent of structural changes in arrowroot starch (Marantha arundinacea L.) modification. Int. Food Res. J. 2018, 25, 2519–2523. [Google Scholar]
- Brand-Miller, J.; McMillan-Price, J.; Steinbeck, K.; Caterson, I. Dietary glycemic index: Health implications. J. Am. Coll. Nutr. 2013, 28, 446S–449S. [Google Scholar] [CrossRef]
- Rahman, M.; Chowdhury, M.; Uddin, A.; Islam, M.T.; Uddin, M.E.; Sumi, C.D. Evaluation of antidiarrheal activity of methanolic extract of Maranta arundinacea Linn. leaves. Adv. Pharmacol. Sci. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, A.; Suganthi, A. Biochemical and phytochemical analysis of Maranta arundinacea (L.) Rhizome. Int. J. Pharm. Pharm. 2017, 2, 26–30. [Google Scholar]
- Shintu, P.V.; Radhakrishnan, V.V.; Mohanan, K.V. Pharmacognostic standardisation of Maranta arundinacea L.—An important ethnomedicine. J. Pharmacogn. Phytochem. 2015, 4, 242. [Google Scholar]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol. 2011, 134, 584–607. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; De Keukeleire, D.; De Cooman, L. Chemical constituents of Pueraria plants: Identification and methods of analysis. In Pueraria, 1st ed.; Taylor & Francis Group: London, England, 2002; pp. 116–132. [Google Scholar]
- Xu, L.; Zheng, N.; He, Q.; Li, R.; Zhang, K.; Liang, T. Puerarin, isolated from Pueraria lobata (Willd.), protects against hepatotoxicity via specific inhibition of the TGF-β1/Smad signaling pathway, thereby leading to anti-fibrotic effect. Phytomedicine 2013, 20, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Son, E.; Yoon, J.M.; An, B.J.; Lee, Y.M.; Cha, J.; Chi, G.Y.; Kim, D.S. Comparison among activities and isoflavonoids from Pueraria thunbergiana aerial parts and root. Molecules 2019, 24, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Deng, X.; Zhang, D.; Xie, F.; Wang, D.; Wang, J.; Tavallaie, M.S.; Jiang, F.; Fu, L. Anti-diabetic potential of Pueraria lobata root extract through promoting insulin signaling by PTP1B inhibition. Bioorg. Chem. 2019, 87, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Anukulthanakorn, K.; Parhar, I.S.; Jaroenporn, S.; Kitahashi, T.; Watanbe, G.; Malaivijitnond, S. Neurotherapeutic effects of Pueraria mirifica extract in early-and late-stage cognitive impaired rats. Phytother. Res. 2016, 30, 929–939. [Google Scholar] [CrossRef]
- Lee, C.M.; Yoon, M.S.; Kim, Y.C. Effects of Pueraria lobata root ethanol extract on adipogenesis and lipogenesis during 3T3-L1 differentiation into adipocytes. Toxicol. Res. 2015, 31, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.W.; Lee, C.; Kim, I.H.; Kim, Y.T. Anti-inflammatory effects of total isoflavones from Pueraria lobata on cerebral ischemia in rats. Molecules 2013, 18, 10404–10412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.Y.; Jo, M.S.; Lee, D.; Baek, S.E.; Baek, J.; Yu, J.S.; Jo, J.; Yun, H.; Kang, K.S.; Yoo, J.E.; et al. Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorg. Chem. 2019, 83, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Jun, M.; Fu, H.Y.; Hong, J.; Wan, X.; Yang, C.S.; Ho, C.T. Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). J. Food Sci. 2003, 68, 2117–2122. [Google Scholar] [CrossRef]
- Kaler, K.M.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of Sassafras albidum. Nat. Prod. Commun. 2008, 3, 829–832. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.K. Sassafras albidum (Nutt.) Nees sassafras. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions. Agriculture 2004, 1, 681–683. [Google Scholar]
- Hutson, D.; Cupp, M.J. Sassafras. In Toxicology and Clinical Pharmacology of Herbal Products, 1st ed.; Cupp, M.J., Ed.; Forensic Science and Medicine; Humana Press: Totowa, NJ, USA, 2000; pp. 245–252. [Google Scholar] [CrossRef]
- USDA; NRCS; National Plant Data Center. SASSAFRAS Sassafras albidum (Nutt.) Nees. Available online: https://adminplants.sc.egov.usda.gov/java/profile?symbol=SAAL5 (accessed on 23 October 2022).
- Joseph, E. Holloway; ‘African Crops and Slave Cuisine’, Rice Diversity. Available online: http://ricediversity.org/outreach/educatorscorner/documents/African-Crops-and-Slave-Cuisine.doc (accessed on 23 November 2021).
- Rosamond, W.D. Dietary fiber and prevention of cardiovascular disease. J. Am. Coll. Cardiol. 2002, 39, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Faridy, J.C.M.; Stephanie, C.G.M.; Gabriela, M.M.O.; Cristian, J.M. Biological activities of chickpea in human health (Cicer arietinum L.): A review. Plant Foods Hum. Nutr. 2020, 75, 142–153. [Google Scholar] [CrossRef]
- Le, B.; Yang, S.H. Microbial chitinases: Properties, current state and biotechnological applications. World J. Microbiol. Biotechnol. 2019, 35, 144. [Google Scholar] [CrossRef]
- Özcan, T. Total protein and amino acid compositions in the acorns of Turkish Quercus, L. taxa. Genet. Resour. Crop Evol. 2006, 53, 419–429. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Nieto, R.; Rivera, M.; García, M.A.; Aguilera, J.F. Amino acid availability and energy value of acorn in the Iberian pig. Livest. Prod. Sci. 2002, 77, 227–239. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, Y.T.; Byun, H.G.; Nam, K.S.; Joo, D.S.; Shahidi, F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 2001, 49, 1984–1989. [Google Scholar] [CrossRef]
- Li-Chan, E.C.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem. 2012, 60, 973–978. [Google Scholar] [CrossRef]
- Nikoo, M.; Benjakul, S.; Ehsani, A.; Li, J.; Wu, F.; Yang, N.; Xu, B.; Jin, Z.; Xu, X. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. JFF 2014, 7, 609–620. [Google Scholar] [CrossRef]
- Khantaphant, S.; Benjakul, S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Stanton, C.; Hill, C.; Ross, R.P. New developments and applications of bacteriocins and peptides in foods. Annu. Rev. Food. Sci. Technol. 2011, 2, 299–329. [Google Scholar] [CrossRef]
- Ngo, D.H.; Ryu, B.; Vo, T.S.; Himaya, S.W.A.; Wijesekara, I.; Kim, S.K. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 2011, 49, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems. Food Chem. 2012, 135, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT 2013, 51, 177–182. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, X.H. In vitro responses of hFOB1. 19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis. J. Funct. Foods 2013, 5, 279–288. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Kim, S.K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 2005, 53, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Himaya, S.W.A.; Ngo, D.H.; Ryu, B.; Kim, S.K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 2012, 132, 1872–1882. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Byun, H.G.; Kim, S.K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005, 77, 2166–2178. [Google Scholar] [CrossRef]
- Ngo, D.H.; Qian, Z.J.; Ryu, B.; Park, J.W.; Kim, S.K. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods 2010, 2, 107–117. [Google Scholar] [CrossRef]
- Himaya, S.W.A.; Ryu, B.; Ngo, D.H.; Kim, S.K. Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage. J. Agric. Food Chem. 2012, 60, 9112–9119. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.C.; Montero, P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Int. Food Res. J. 2011, 44, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lv, S.; Li, B. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem. 2012, 131, 225–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, X.; Zhuang, Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 2012, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Y.; Zhuang, Y. Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. J. Funct. Foods 2013, 5, 154–162. [Google Scholar] [CrossRef]
Compound | Moisture (%) | Fat (%) | Protein (%) | Carbohydrates (%) | Ash (%) | Soluble Fiber (%) | Insoluble Fiber (%) | Reference |
---|---|---|---|---|---|---|---|---|
Starch | 11.90 | 0.84 | 0.14 | rest | 0.58 | 5.00 | 8.70 | [31] |
15.24 | 0.01 | 0.40 | 83.91 | 0.33 | N/E | N/E | [30] | |
10.2 | N/E | 0.6 | 84.2 | N/E | N/E | N/E | [32] | |
7.06 | 1.43 | 3.75 | 80.77 | 3.60 | 3.96 | [33] |
Polysaccharide | Amylose (%) | Amylopectin (%) | Reference |
---|---|---|---|
Starch | 21.9 | 62.3 | [32] |
22 | N/E | [34] | |
19.0–19.9 | N/E | [35] | |
15.21 | 84.79 | [36] | |
24.8 | N/E | [37] | |
>40 | N/E | [38] | |
20 | 80 | [18] |
Ingredient | Starch as Dry Basis (%) w/w | Amylose (%) | Amylopectin (%) | Reference |
---|---|---|---|---|
root | 51.6 | N/E | N/E | [65] |
15–35 | 19–24 | 20.5 | [50] | |
N/E | 22.2–23.34 | N/E | [66] |
Source | Yield (Wet Basis) | Bloom/gel Strength | Reference |
---|---|---|---|
Atlantic salmon skin | 4–11.3% | 80–108 g | [154] |
Atlantic cod skin | 44.8% c | 71 g | [154] |
Bigeye snapper skin | 6.5% | 105.7 g | [155] |
Bigeye snapper skin | 40.3% a | 138.6 g | [156] |
Brownbanded bamboo shark | 19.06–22.81% | 56.53–217.26 g | [157] |
Blacktip shark | 21.17–24.76% | 10.43–207.83 g | [157] |
Black tilapia skin | 5.39% | 181 g | [158] |
Bigeye snapper skin | 6.5% | 105.7 g | [155] |
Channel catfish | 19.2% b | 252 g | [159] |
Cod skin | 17% | 180 g | [149] |
Cuttlefish skin | 36.82% c (dorsal skin) and 59.69% c (ventral skin) | 126 g (dorsal skin) and 137 g (ventral skin) | [160] |
Giant catfish skin | 20.1% | 153 g | [161] |
Giant squid inner and outer tunics | 12% | 147 g | [162] |
Grass carp | 11.3% a | N/E | [163] |
Lumpfish skin | 14.3% | N/E | [164] |
Megrim skin | 10% | 360 g | [165] |
Nile perch bone | 2.4% | 134–160 g | [152] |
Nile perch skin | 16% | 134–229 g | [152] |
Pollock skin | 18% b | 460 g | [136] |
Red tilapia skin | 7.81% | 128 g | [158] |
Shark cartilage | 17.34% | 111.9 kPa | [150] |
Shortfin scad skin | 7.25% | 177 g | [14] |
Sin croaker skin | 14.3% | 125 g | [14] |
Silver carp skin | 11% a | 600 g | [166] |
Tilapia skin | N/E | 263 g | [149] |
Tuna fin | 1.25% | 126 g | [151] |
Yellowfin tuna skin | 89.7% | 426 kPa | [167] |
Compound | Reference | |||||
---|---|---|---|---|---|---|
[178] | [179] | |||||
Methanol | Water | Ether | Chloroform | Methanol | Water | |
alkaloids | P | P | N | N | P | N |
steroids | P | N | P | P | N | N |
phenolic compounds | P | P | N | N | P | P |
flavones | N/E | N/E | N | N | P | N |
flavonoids | P | N | N | N | N | N |
flavonones | N/E | N/E | N | N | P | N |
glycosides | P | P | P | P | P | P |
saponins | P | P | P | P | P | N |
terpenoids | P | P | P | P | P | N |
tannins | P | N | N | N | P | N |
Amino Acid (AA) | Protein Content (g AA/ kg Protein) |
---|---|
Essential amino acids | |
arginine | 65 |
lysine | 43 |
histidine | 18 |
isoleucine | 47 |
leucine | 62 |
methionine | 22 |
Methionine + cystine | 45 |
phenylalanine | 45 |
Phenylalanine + tyrosine | 64 |
threonine | 32 |
valine | 58 |
Non-essential amino acids | |
Aspartic acid | 205 |
Glutamic acid | 143 |
serine | 42 |
glycine | 43 |
alanine | 46 |
proline | 65 |
tyrosine | 26 |
cystine | 23 |
Fish or Aquatic Animals | Enzyme Used | Pro-Health Benefits | Reference |
---|---|---|---|
Alaska pollock skin | Pronase E | Antioxidant | [203] |
Atlantic salmon skin | Flavourzyme | Dipeptidyl-peptidase IV enzyme inhibitory activity–type 2 diabetes, symptoms mitigation | [204] |
Amur sturgeon skin | Alcalase | Antioxidant, cryoprotective benefit | [205] |
Brownstripe red snapper skin | Trypsin-like proteases from pyloric caeca | Antioxidant | [206] |
Blacktip shark skin | Papain, papaya latex crude enzymes | Antioxidants, hypertension prevention, human LDL cholesterol inhibition, DNA oxidation inhibition, metal ion chelation | [207,208,209,210] |
Chum salmon skin | Papain, Alcalase | Cell proliferation, cycle progression, apoptosis | [211] |
Hoki skin gelatin | Trypsin | Antioxidant | [212] |
Japanese flounder skin | Pepsin | Antioxidant | [213] |
Jumbo squid skin | Trypsin | Antioxidant | [214] |
Nile tilapia scale | Alcalase | Antioxidant | [215] |
Pacific cod scale | Pepsin, trypsin, α–chymotrypsin | Antioxidant, antihypertensive benefit | [216] |
Pacific cod skin | Papain | Antioxidant, ACE-inhibition (hypertension prevention) | [208] |
Squid inner and outer tunics | Protamex, trypsin, neutrase, savinase, NS37005, esperase, alcalase | Antioxidant, hypertension prevention, anticancer benefit against lines MCF-7 and U87 | [217] |
Squid skin | Pepsin | Hypertension prevention | [218] |
Tilapia skin | Properase E, multifactor neutral | Antioxidant, photoaging prevention | [219,220] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waraczewski, R.; Muszyński, S.; Sołowiej, B.G. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules 2022, 27, 8686. https://doi.org/10.3390/molecules27248686
Waraczewski R, Muszyński S, Sołowiej BG. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules. 2022; 27(24):8686. https://doi.org/10.3390/molecules27248686
Chicago/Turabian StyleWaraczewski, Robert, Siemowit Muszyński, and Bartosz G. Sołowiej. 2022. "An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry" Molecules 27, no. 24: 8686. https://doi.org/10.3390/molecules27248686
APA StyleWaraczewski, R., Muszyński, S., & Sołowiej, B. G. (2022). An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules, 27(24), 8686. https://doi.org/10.3390/molecules27248686