A Review: Meridianins and Meridianins Derivatives
Abstract
:1. Introduction
2. Extraction and Purification Methods
3. Biological Activities
3.1. Protein Kinase Inhibitory Potencies
3.2. Antiprotozoal and Antimicrobial Activities
3.3. Chemical Defense Function
3.4. Other Biological Activities
4. Pharmacological Applications
4.1. Anticancer Effect
4.2. Prevention of Alzheimer’s Disease (AD)
4.3. Antimalarial Effect
4.4. Antitubercular Effect
4.5. Other Pharmacological Effects
5. Pharmacokinetic Study
6. Chemical Synthesis
7. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melander, R.J.; Basak, A.K.; Melander, C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat. Prod. Rep. 2020, 37, 1454–1477. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.H.; Joffe, E.B.; Puricelli, L.; Tatian, M.; Seldes, A.M.; Palermo, J.A. Indole alkaloids from the tunicate Aplidium meridianum. J. Nat. Prod. 1998, 61, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Kokkaliari, S.; Pham, K.; Shahbazi, N.; Calcul, L.; Wojtas, L.; Wilson, N.G.; Crawford, A.D.; Baker, B.J. Australindolones, new aminopyrimidine substituted indolone alkaloids from an Antarctic tunicate Synoicum sp. Mar. Drugs 2022, 20, 196. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Forestieri, R.; Nieto, R.M.; Varela, M.; Nappo, M.; Rodríguez, J.; Jiménez, C.; Castelluccio, F.; Carbone, M.; Ramos-Esplá, A.; et al. Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica). Polar Biol. 2010, 33, 1319–1329. [Google Scholar] [CrossRef]
- Lebar, M.D.; Baker, B.J. Synthesis and structure reassessment of psammopemmin A. Aust. J. Chem. 2010, 63, 862–866. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine indole alkaloids—Isolation, structure and bioactivities. Mar. Drugs 2021, 19, 658. [Google Scholar] [CrossRef]
- Gompel, M.; Leost, M.; Joffe, E.; Puricelli, L.; Franco, L.H.; Palermo, J.; Meijer, L. Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett. 2004, 14, 1703–1707. [Google Scholar] [CrossRef]
- Radwan, M.A.; El-Sherbiny, M. Synthesis and antitumor activity of indolylpyrimidines: Marine natural product meridianin D analogues. Bioorg. Med. Chem. 2007, 15, 1206–1211. [Google Scholar] [CrossRef]
- Lebar, M.D.; Hahn, K.N.; Mutka, T.; Maignan, P.; McClintock, J.B.; Amsler, C.D.; van Olphen, A.; Kyle, D.E.; Baker, B.J. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg. Med. Chem. 2011, 19, 5756–5762. [Google Scholar] [CrossRef]
- Yadav, R.R.; Khan, S.I.; Singh, S.; Khan, I.A.; Vishwakarma, R.A.; Bharate, S.B. Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur. J. Med. Chem. 2015, 98, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Llorach-Pares, L.; Nonell-Canals, A.; Sanchez-Martinez, M.; Avila, C. Computer-aided drug design applied to marine drug discovery: Meridianins as Alzheimer’s disease therapeutic agents. Mar. Drugs 2017, 15, 366. [Google Scholar] [CrossRef] [Green Version]
- Bharate, S.B.; Yadav, R.R.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Khan, I.A.; Vishwakarma, R.A. Meridianin G and its analogs as antimalarial agents. MedChemComm 2013, 4, 1042–1048. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Nieto, R.M.; Avila, C.; Jiménez, C.; Rodríguez, J. Mass spectrometry detection of minor new meridianins from the Antarctic colonial ascidians Aplidium falklandicum and Aplidium meridianum. J. Mass Spectrom. 2015, 50, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Pons, L.; Carbone, M.; Vazquez, J.; Rodriguez, J.; Nieto, R.M.; Varela, M.M.; Gavagnin, M.; Avila, C. Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar. Drugs 2012, 10, 1741–1764. [Google Scholar] [CrossRef] [Green Version]
- Seldes, A.M.; Rodriguez Brasco, M.F.; Hernandez Franco, L.; Palermo, J.A. Identification of two meridianins from the crude extract of the tunicate Aplidium meridianum by tandem mass spectrometry. Nat. Prod. Res. 2007, 21, 555–563. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Avila, C. Defensive metabolites from Antarctic invertebrates: Does energetic content interfere with feeding repellence? Mar. Drugs 2014, 12, 3770–3791. [Google Scholar] [CrossRef] [Green Version]
- Llorach-Pares, L.; Rodriguez-Urgelles, E.; Nonell-Canals, A.; Alberch, J.; Avila, C.; Sanchez-Martinez, M.; Giralt, A. Meridianins and lignarenone B as potential GSK3 inhibitors and inductors of structural neuronal plasticity. Biomolecules 2020, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cole, P.A. Catalytic mechanisms and regulation of protein kinases. Method. Enzymol. 2014, 548, 1–21. [Google Scholar]
- Roskoski, R. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharm. Res. 2015, 100, 1–23. [Google Scholar] [CrossRef] [PubMed]
- More, K.N.; Jang, H.W.; Hong, V.S.; Lee, J. Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 2424–2428. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; More, K.N.; Yang, S.; Hong, V.S. 3,5-Bis(aminopyrimidinyl)indole derivatives: Synthesis and evaluation of Pim kinase inhibitory activities. Bull. Korean Chem. Soc. 2014, 35, 2123–2129. [Google Scholar] [CrossRef] [Green Version]
- More, K.N.; Hong, V.S.; Lee, A.; Park, J.; Kim, S.; Lee, J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 2513–2517. [Google Scholar] [CrossRef]
- Han, S.; Zhou, W.; Zhuang, C.; Chen, F. Structure-based design of marine-derived Meridianin C derivatives as glycogen synthase kinase 3β inhibitors with improved oral bioavailability: From aminopyrimidyl-indoles to the sulfonyl analogues. Bioorg. Chem. 2022, 119, 105537. [Google Scholar] [CrossRef]
- Akue-Gedu, R.; Debiton, E.; Ferandin, Y.; Meijer, L.; Prudhomme, M.; Anizon, F.; Moreau, P. Synthesis and biological activities of aminopyrimidyl-indoles structurally related to meridianins. Bioorg. Med. Chem. 2009, 17, 4420–4424. [Google Scholar] [CrossRef] [Green Version]
- Giraud, F.; Alves, G.; Debiton, E.; Nauton, L.; Théry, V.; Durieu, E.; Ferandin, Y.; Lozach, O.; Meijer, L.; Anizon, F.; et al. Synthesis, protein kinase inhibitory potencies, and in Vitro antiproliferative activities of meridianin derivatives. J. Med. Chem. 2011, 54, 4474–4489. [Google Scholar] [CrossRef]
- Kuo, P.C.; Shi, L.S.; Damu, A.G.; Su, C.R.; Huang, C.H.; Ke, C.H.; Wu, J.B.; Lin, A.J.; Bastow, K.F.; Lee, K.H.; et al. Cytotoxic and antimalarial β-carboline alkaloids from the roots of Eurycoma longifolia. J. Nat. Prod. 2003, 66, 1324–1327. [Google Scholar] [CrossRef]
- Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2005, 15, 3133–3136. [Google Scholar] [CrossRef]
- Frederich, M.; Tits, M.; Angenot, L. Potential antimalarial activity of indole alkaloids. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 11–19. [Google Scholar] [CrossRef]
- Brackett, S.M.; Cox, K.E.; Barlock, S.L.; Huggins, W.M.; Ackart, D.F.; Bassaraba, R.J.; Melander, R.J.; Melander, C. Meridianin D analogues possess antibiofilm activity against Mycobacterium smegmatis. RSC Med. Chem. 2020, 11, 92–97. [Google Scholar] [CrossRef]
- Huggins, W.M.; Barker, W.T.; Baker, J.T.; Hahn, N.A.; Melander, R.J.; Melander, C. Meridianin D analogues display antibiofilm activity against MRSA and increase colistin efficacy in Gram-negative bacteria. ACS Med. Chem. Lett. 2018, 9, 702. [Google Scholar] [CrossRef]
- Zeiler, M.J.; Melander, R.J.; Melander, C. Second-generation meridianin analogues inhibit the formation of Mycobacterium smegmatis biofilms and sensitize polymyxin-resistant Gram-negative bacteria to colistin. ChemMedChem 2020, 15, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Huang, S.S.; Hao, Y.N.; Wang, Z.W.; Liu, Y.X.; Li, Y.Q.; Wang, Q.M. Marine-natural-products for biocides development: First discovery of meridianin alkaloids as antiviral and anti-phytopathogenic-fungus agents. Pest Manag. Sci. 2020, 76, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- López-Legentil, S.; Turón, X.; Schupp, P. Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J. Exp. Mar. Biol. Ecol. 2006, 332, 27–36. [Google Scholar] [CrossRef]
- Koplovitz, G.; McClintock, J.B. An evaluation of chemical and physical defenses against fish predation in a suite of seagrass-associated ascidians. J. Exp. Mar. Biol. Ecol. 2011, 407, 48–53. [Google Scholar] [CrossRef]
- Paul, V.J.; Arthur, K.E.; Ritson-Williams, R.; Ross, C.; Sharp, K. Chemical defenses: From compounds to communities. Biol. Bull. 2007, 213, 226–251. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Lee, T.Y.; Choi, J.S.; Hong, V.S.; Lee, J.; Park, J.W.; Jang, B.C. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C. Biochem. Biophys. Res. Commun. 2014, 452, 1078–1083. [Google Scholar] [CrossRef]
- Bharate, S.B.; Yadav, R.R.; Battula, S.; Vishwakarma, R.A. Meridianins: Marine-derived potent kinase inhibitors. Mini-Rev. Med. Chem. 2012, 12, 618–631. [Google Scholar] [CrossRef]
- Elsherbeny, M.H.; Elkamhawy, A.; Nada, H.; Abdellattif, M.H.; Lee, K.; Roh, E.J. Development of new Meridianin/Leucettine-derived hybrid small molecules as nanomolar multi-kinase inhibitors with antitumor activity. Biomedicines 2021, 9, 1131. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, C.G.; Xiong, W.N.; Wang, J. Synthesis and cytotoxicity evaluation of novel indolylpyrimidines and indolylpyrazines as potential antitumor agents. Bioorg. Med. Chem. 2001, 9, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, E.; Debiton, E.; Fabbro, D.; Moreau, P.; Prudhomme, M.; Anizon, F. In-vitro antiproliferative activities and kinase inhibitory potencies of meridianin derivatives. Anti-Cancer Drug. 2008, 19, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.M.; Abdel-Hameid, M.K.; El-Nassan, H.B.; El-Khouly, E.A. Synthesis and cytotoxicity evaluation of novel indole derivatives as potential anti-cancer agents. Med. Chem. 2019, 15, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Park, N.S.; Park, Y.K.; Ramalingam, M.; Yadav, A.K.; Cho, H.R.; Hong, V.S.; More, K.N.; Bae, J.H.; Bishop-Bailey, D.; Kano, J.; et al. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J. Cell Mol. Med. 2018, 22, 5833–5846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Yadav, A.K.; Do, Y.; Heo, M.; Bishop-Bailey, D.; Lee, J.; Jang, B.C. Anti-survival and pro-apoptotic effects of meridianin C derivatives on MV4-11 human acute myeloid leukemia cells. Int. J. Oncol. 2020, 56, 368–378. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, R.; Dong, X.Y.; He, N.; Yin, R.J.; Yang, M.K.; Liu, J.Y.; Yu, R.L.; Zhao, C.Y.; Jiang, T. Design, synthesis and structure-activity relationship studies of meridianin derivatives as novel JAK/STAT3 signaling inhibitors. Int. J. Mol. Sci. 2022, 23, 2199. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s disease: Past, present, and future. J. Int. Neuropsychol. Soc. 2017, 23, 818–831. [Google Scholar] [CrossRef] [Green Version]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Yardin, C.; Terro, F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev. 2013, 12, 289–309. [Google Scholar] [CrossRef]
- Tell, V.; Hilgeroth, A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front. Cell Neurosci. 2013, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.B.; Yadav, R.R.; Vishwakarma, R.A. QSAR and pharmacophore study of Dyrk1A inhibitory meridianin analogs as potential agents for treatment of neurodegenerative diseases. Med. Chem. 2013, 9, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Nisha, C.M.; Kumar, A.; Vimal, A.; Bai, B.M.; Pal, D.; Kumar, A. Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. J. Mol. Graph. Model. 2016, 65, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Llorach-Pares, L.; Nonell-Canals, A.; Avila, C.; Sanchez-Martinez, M. Kororamides, convolutamines, and indole derivatives as possible tau and dual-specificity kinase inhibitors for Alzheimer’s disease: A computational study. Mar. Drugs 2018, 16, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, R.R.; Sharma, S.; Joshi, P.; Wani, A.; Vishwakarma, R.A.; Kumar, A.; Bharate, S.B. Meridianin derivatives as potent Dyrk1A inhibitors and neuroprotective agents. Bioorg. Med. Chem. Lett. 2015, 25, 2948–2952. [Google Scholar] [CrossRef]
- Shaw, S.J.; Goff, D.A.; Lin, N.; Singh, R.; Li, W.; McLaughlin, J.; Baltgalvis, K.A.; Payan, D.G.; Kinsella, T.M. Developing DYRK inhibitors derived from the meridianins as a means of increasing levels of NFAT in the nucleus. Bioorg. Med. Chem. Lett. 2017, 27, 2617–2621. [Google Scholar] [CrossRef]
- Rodríguez-Urgellés, E.; Sancho-Balsells, A.; Chen, W.; López-Molina, L.; Ballasch, I.; Del Castillo, I.; Avila, C.; Alberch, J.; Giralt, A. Meridianins rescue cognitive deficits, spine density and neuroinflammation in the 5xFAD model of Alzheimer’s disease. Front. Pharmacol. 2022, 13, 791666. [Google Scholar] [CrossRef]
- Guerin, P.J.; Olliaro, P.; Nosten, F.; Druilhe, P.; Laxminarayan, R.; Binka, F.; Kilama, W.L.; Ford, N.; White, N.J. Malaria: Current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis. 2002, 2, 564–573. [Google Scholar] [CrossRef]
- Santos, D.O.; Coutinho, C.E.; Madeira, M.F.; Bottino, C.G.; Vieira, R.T.; Nascimento, S.B.; Bernardino, A.; Bourguignon, S.C.; Corte-Real, S.; Pinho, R.T.; et al. Leishmaniasis treatment--a challenge that remains: A review. Parasitol. Res. 2008, 103, 1–10. [Google Scholar] [CrossRef]
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef]
- Han, S.; Zhuang, C.; Zhou, W.; Chen, F. Structural-based optimizations of the marine-originated meridianin C as glucose uptake agents by inhibiting GSK-3β. Mar. Drugs 2021, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Met. 2017, 13, 1147–1158. [Google Scholar] [CrossRef]
- Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in Drug Discovery. J. Pharm. Sci. 2008, 97, 654–690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xiao, L.; Qi, L. Metabolite profiling of meridianin C in vivo of rat by UHPLC/Q-TOF MS. J. Anal. Methods Chem. 2021, 2021, 1382421. [Google Scholar] [CrossRef] [PubMed]
- Fresneda, P.M.; Molina, P.; Bleda, J.A. Synthesis of the indole alkaloids meridianins from the tunicate Aplidium meridianum. Tetrahedron 2001, 57, 2355–2363. [Google Scholar] [CrossRef]
- Sperry, J. A concise synthesis of meridianin F. Tetrahedron Lett. 2011, 52, 4537–4538. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, C.G. Synthesis of indolylpyrimidines via cross-coupling of indolylboronic acid with chloropyrimidines: Facile synthesis of meridianin D. Heterocycles 2000, 53, 1489–1498. [Google Scholar] [CrossRef]
- Karpov, A.S.; Merkul, E.; Rominger, F.; Müeller, T.J.J. Concise syntheses of meridianins by carbonylative alkynylation and a four-component pyrimidine synthesis. Angew. Chem. Int. Ed. 2005, 44, 6951–6956. [Google Scholar] [CrossRef]
- Kruppa, M.; Sommer, G.A.; Müller, T.J.J. Concise syntheses of marine (bis)indole alkaloids meridianin C, D, F, and G and scalaridine A via one-pot masuda borylation-Suzuki coupling sequence. Molecules 2022, 27, 2233. [Google Scholar] [CrossRef]
- Oliveira-Campos, A.M.F.; Salaheldin, A.M.; Almeida Paz, F.A.; Rodrigues, L.M. Synthesis of 3-indolylazoles and meridianin derivatives from indolyl enaminonitriles. Arkivoc 2011, xi, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.F.; Yu, Z.K. Direct alkenylation of indoles with alpha-oxo ketene dithioacetals: Efficient synthesis of indole alkaloids meridianin derivatives. Angew. Chem. Int. Ed. 2009, 48, 2929–2933. [Google Scholar] [CrossRef] [PubMed]
- Tibiletti, F.; Simonetti, M.; Nicholas, K.M.; Palmisano, G.; Parravicini, M.; Imbesi, F.; Tollari, S.; Penoni, A. One-pot synthesis of meridianins and meridianin analogues via indolization of nitrosoarenes. Tetrahedron 2010, 66, 1280–1288. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, B.; Liu, Z.; Gong, A.Y.; Gunning, W.T.; Ge, Y.; Malhotra, D.; Gohara, A.F.; Dworkin, L.D.; Gong, R. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J. Clin. Investig. 2022, 132, e141848. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, X.; Luo, J.; Zhao, L.; Li, X.; Guo, H.; Bai, H.; Cui, W.; Guo, W.; Feng, D.; et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp. Neurol. 2020, 329, 113302. [Google Scholar] [CrossRef]
- Wang, S.H.; Cui, L.G.; Su, X.L.; Komal, S.; Ni, R.C.; Zang, M.X.; Zhang, L.R.; Han, S.N. GSK-3β-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts. Eur. J. Pharmacol. 2022, 920, 174830. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Meng, C.; Zhang, J.; Wu, J.; Zhao, J. Inhibition of GSK-3β alleviates cerebral ischemia/reperfusion injury in rats by suppressing NLRP3 inflammasome activation through autophagy. Int. Immunopharmacol. 2019, 68, 234–241. [Google Scholar] [CrossRef]
Extraction Solvents | Extraction Times | Partition |
---|---|---|
Acetone | 3 | Partition against diethyl ether thrice and butanol once. |
Ethanol | 3 | No need to partition. |
1:1 dichloromethane/methanol | 3 | Partition between hexane and 95% aqueous methanol, and the condensed aqueous layer was sequentially partitioned between ethyl acetate and water to obtain ethyl acetate layer. |
Protein Kinase | Meridianin | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
CDK1/cyclin B | 2.50 | 1.50 | 3.00 | 13.00 | 0.18 | 20.00 | 150.00 |
CDK5/p25 | 3.00 | 1.00 | 6.00 | 5.50 | 0.15 | 20.00 | 140.00 |
PKA | 11.00 | 0.21 | 0.70 | 1.00 | 0.09 | 3.20 | 120.00 |
PKG | 200.00 | 1.00 | 0.40 | 0.80 | 0.60 | 0.60 | 400.00 |
GSK-3β | 1.30 | 0.50 | 2.00 | 2.50 | 2.50 | 2.00 | 350.00 |
CK1 | nt a | 1.00 | 30.00 | 100.00 | 0.40 | nt | nt |
Cell Line | Meridianin | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
PTP | nd a | 37.2 | 23.9 | 42 | 22 | nd | nd |
Hep2 | na b | 1.7 | 9.7 | 7.3 | 1.1 | 1.8 | nd |
HT29 | na | nd | 5.5 | 36.6 | nd | nd | nd |
RD | nd | nd | 6.6 | 21.7 | nd | nd | nd |
U937 | nd | 11.6 | 2.7 | 16.9 | 9.8 | 0.2 | nd |
LMM3 | na | 17.7 | 9.3 | 33.9 | 11.1 | 1.4 | nd |
Hela | 25.4 | nd | 24.1 | 13.2 | nd | nd | 22.5 |
MDA-MB-231 | na | nd | 14 | na | nd | nd | na |
A549 | 15 | nd | 23.5 | 26.7 | nd | nd | na |
DU145 | na | nd | na | na | nd | nd | na |
Compound | Absorption | Distribution | Metabolism | Excretion | Toxicity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Caco2 Permeability | Intestinal Absorption | Skin Permeability | LogP | BBB | PPB | CYP450 | OCT2 Substrate | hERG I/II Inhibition | AMES Toxicity | |
A | H | 93.38% | −2.76 | 1.53 | No | >90% | Yes | No | No | No |
B | H | 92.22% | −2.76 | 2.39 | No | >90% | Yes | No | No | No |
C | H | 91.77% | −2.92 | 3.10 | No | >90% | Yes | No | No | Yes |
D | H | 92.72% | −2.91 | 3.10 | No | >90% | Yes | No | No | Yes |
E | H | 90.98% | −2.74 | 2.40 | No | >90% | Yes | No | No | No |
F | H | 91.49% | −2.92 | 3.58 | No | >90% | Yes | No | No | Yes |
G | H | 93.44% | −2.90 | 2.44 | No | <50% | Yes | No | No | Yes |
1 | OAD | 91.41% | −2.90 | 3.40 | No | >90% | Yes | No | No | Yes |
2 | OAD | 89.89% | −2.88 | 3.40 | No | >90% | Yes | No | No | Yes |
3 | H | 91.04% | −2.90 | 3.10 | No | >90% | Yes | No | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L. A Review: Meridianins and Meridianins Derivatives. Molecules 2022, 27, 8714. https://doi.org/10.3390/molecules27248714
Xiao L. A Review: Meridianins and Meridianins Derivatives. Molecules. 2022; 27(24):8714. https://doi.org/10.3390/molecules27248714
Chicago/Turabian StyleXiao, Linxia. 2022. "A Review: Meridianins and Meridianins Derivatives" Molecules 27, no. 24: 8714. https://doi.org/10.3390/molecules27248714
APA StyleXiao, L. (2022). A Review: Meridianins and Meridianins Derivatives. Molecules, 27(24), 8714. https://doi.org/10.3390/molecules27248714