Hyperpolarizabilities of Push–Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions †
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
3.1. Solvent Effects on the Static Electronic Hyperpolarizability
3.2. Solvent Effects on the Static Nuclear Relaxation Hyperpolarizability
3.3. Validation of the Methods
4. Computational Details
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajesh, K.; Balaswamy, B.; Yamamoto, K.; Yamaki, H.; Kawamata, J.; Radhakrishnan, T.P. Enhanced optical and nonlinear optical responses in a polyelectrolyte templated Langmuir-Blodgett film. Langmuir 2011, 27, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Yitzchaik, S.; Roscoe, S.B.; Kakkar, A.K.; Allan, D.S.; Marks, T.J.; Xu, Z.; Zhang, T.; Lin, W.; Wong, G.K. Chromophoric self-assembled NLO multilayer materials: Real time observation of monolayer growth and microstructural evolution by in situ second harmonic generation techniques. J. Phys. Chem. 1993, 97, 6958–6960. [Google Scholar] [CrossRef]
- Cariati, E.; Ugo, R.; Cariati, F.; Roberto, D.; Masciocchi, N.; Galli, S.; Sironi, A. J-aggregates granting giant second-order nlo responses in self-assembled hybrid inorganic-organic materials. Adv. Mater. 2001, 13, 1665–1668. [Google Scholar] [CrossRef]
- Mendiratta, S.; Lee, C.H.; Usman, M.; Lu, K.L. Metal-organic frameworks for electronics: Emerging second order nonlinear optical and dielectric materials. Sci. Technol. Adv. Mater. 2015, 16, 054204. [Google Scholar] [CrossRef] [Green Version]
- Mingabudinova, L.R.; Vinogradov, V.V.; Milichko, V.A.; Hey-Hawkins, E.; Vinogradov, A.V. Metal-organic frameworks as competitive materials for non-linear optics. Chem. Soc. Rev. 2016, 45, 5408–5431. [Google Scholar] [CrossRef] [Green Version]
- Coe, B.J.; Rusanova, D.; Joshi, V.D.; Sánchez, S.; Vávra, J.; Khobragade, D.; Severa, L.; Císařová, I.; Šaman, D.; Pohl, R.; et al. Helquat dyes: Helicene-like push-pull systems with large second-order nonlinear optical responses. J. Org. Chem. 2016, 81, 1912–1920. [Google Scholar] [CrossRef] [Green Version]
- Coe, B.J.; Foxon, S.P.; Pilkington, R.A.; Sánchez, S.; Whittaker, D.; Clays, K.; Depotter, G.; Brunschwig, B.S. Nonlinear optical chromophores with two ferrocenyl, octamethylferrocenyl, or 4-(diphenylamino)phenyl groups attached to rhenium(i) or zinc(ii) centers. Organometallics 2015, 34, 1701–1715. [Google Scholar] [CrossRef]
- Torrent-Sucarrat, M.; Sola, M.; Duran, M.; Luis, J.M.; Kirtman, B. Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules. J. Chem. Phys. 2003, 118, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, B.; Rajput, S.S.; Chołuj, M.; Wojaczyńska, E.; Miniewicz, A.; Alam, M.M.; Zaleśny, R. First-order hyperpolarizabilities of propellanes: Elucidating structure–property relationships. Phys. Chem. Chem. Phys. 2022, 24, 13534–13541. [Google Scholar] [CrossRef]
- Zaleśny, R. Anharmonicity contributions to the vibrational first and second hyperpolarizability of para-disubstituted benzenes. Chem. Phys. Lett. 2014, 595–596, 109–112. [Google Scholar] [CrossRef]
- Bishop, D.M.; Kirtman, B.; Kurtz, H.A.; Rice, J.E. Calculation of vibrational dynamic hyperpolarizabilities for H2O, CO2 and NH3. J. Chem. Phys. 1993, 98, 8024–8030. [Google Scholar] [CrossRef]
- Marder, S.; Perry, J.; Bourhill, G.; Gorman, C.; Tiemann, B.; Mansour, K. Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules. Science 1993, 261, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Bourhill, G.; Bredas, J.L.; Cheng, L.T.; Marder, S.R.; Meyers, F.; Perry, J.W.; Tiemann, B.G. Experimental demonstration of the dependence of the first hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond length alternation. J. Am. Chem. Soc. 1994, 116, 2619–2620. [Google Scholar] [CrossRef] [Green Version]
- Dehu, C.; Meyers, F.; Hendrickx, E.; Clays, K.; Persoons, A.; Marder, S.; Brédas, J. Solvent effects on the second-order nonlinear optical response of π-conjugated molecules: A combined evaluation through self-consistent reaction field calculations and hyper-Rayleigh scaterring measurements. J. Am. Chem. Soc. 1995, 117, 10127–10128. [Google Scholar] [CrossRef]
- Reis, H.; Grzybowski, A.; Papadopoulos, M.G. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. I. Molecular polarizabilities and hyperpolarizabilities. J. Phys. Chem. A 2005, 109, 10106–10120. [Google Scholar] [CrossRef]
- Lu, S.I.; Chiu, C.C.; Wang, Y.F. Density functional theory calculations of dynamic first hyperpolarizabilities for organic molecules in organic solvent: Comparison to experiment. J. Chem. Phys. 2011, 135, 134104. [Google Scholar] [CrossRef]
- Hrivnák, T.; Budzák, Š.; Reis, H.; Zaleśny, R.; Carbonniére, P.; Medveď, M. Electric properties of hydrated uracil: From micro- to macrohydration. J. Mol. Liq. 2019, 275, 338–346. [Google Scholar] [CrossRef]
- Castet, F.; Bogdan, E.; Plaquet, A.; Ducasse, L.; Champagne, B.; Rodriguez, V. Reference molecules for nonlinear optics: A joint experimental and theoretical investigation. J. Chem. Phys. 2012, 136, 024506. [Google Scholar] [CrossRef]
- Machado, D.F.S.; Lopes, T.O.; Lima, I.T.; da Silva Filho, D.A.; de Oliveira, H.C.B. Strong solvent effects on the nonlinear optical properties of Z and E isomers from azo-enaminone derivatives. J. Phys. Chem. C 2016, 120, 17660–17669. [Google Scholar] [CrossRef]
- Abegão, L.M.G.; Fonseca, R.D.; Santos, F.A.; Rodrigues, J.J.; Kamada, K.; Mendonça, C.R.; Piguel, S.; De Boni, L. First molecular electronic hyperpolarizability of series of π-conjugated oxazole dyes in solution: An experimental and theoretical study. RSC Adv. 2019, 9, 26476–26482. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Medveď, M.; Budzák, Š.; Bartkowiak, W.; Reis, H. Solvent effects on molecular electric properties. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–54. [Google Scholar]
- Corozzi, A.; Mennucci, B.; Cammi, R.; Tomasi, J. Structure versus solvent effects on nonlinear optical properties of push-pull systems: A quantum-mechanical study based on a polarizable continuum model. J. Phys. Chem. A 2009, 113, 14774–14784. [Google Scholar] [CrossRef] [PubMed]
- Benassi, E.; Egidi, F.; Barone, V. General strategy for computing nonlinear optical properties of large neutral and cationic organic chromophores in solution. J. Phys. Chem. B 2015, 119, 3155–3173. [Google Scholar] [CrossRef]
- Marrazzini, G.; Giovannini, T.; Egidi, F.; Cappelli, C. Calculation of linear and non-linear electric response properties of systems in aqueous solution: A polarizable quantum/classical approach with quantum repulsion effects. J. Chem. Theory Comput. 2020, 16, 6993–7004. [Google Scholar] [CrossRef] [PubMed]
- Avramopoulos, A.; Papadopoulos, M.G.; Reis, H. Calculation of the microscopic and macroscopic linear and nonlinear optical properties of liquid acetonitrile. II. Local fields and linear and nonlinear susceptibilities in quadrupolar approximation. J. Phys. Chem. B 2007, 111, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Rinkevicius, Z.; Li, X.; Sandberg, J.A.R.; Ågren, H. Non-linear optical properties of molecules in heterogeneous environments: A quadratic density functional/molecular mechanics response theory. Phys. Chem. Chem. Phys. 2014, 16, 8981–8989. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo Cardenuto, M.; Champagne, B. QM/MM investigation of the concentration effects on the second-order nonlinear optical responses of solutions. J. Chem. Phys. 2014, 141, 234104. [Google Scholar] [CrossRef]
- Hidalgo Cardenuto, M.; Champagne, B. The first hyperpolarizability of nitrobenzene in benzene solutions: Investigation of the effects of electron correlation within the sequential QM/MM approach. Phys. Chem. Chem. Phys. 2015, 17, 23634–23642. [Google Scholar] [CrossRef]
- Quertinmont, J.; Champagne, B.; Castet, F.; Hidalgo Cardenuto, M. Explicit versus implicit solvation effects on the first hyperpolarizability of an organic biphotochrome. J. Phys. Chem. A 2015, 119, 5496–5503. [Google Scholar] [CrossRef]
- Campo, J.; Painelli, A.; Terenziani, F.; Van Regemorter, T.; Beljonne, D.; Goovaerts, E.; Wenseleers, W. First hyperpolarizability dispersion of the octupolar molecule crystal violet: Multiple resonances and vibrational and solvation effects. J. Am. Chem. Soc. 2010, 132, 16467–16478. [Google Scholar] [CrossRef]
- Hrivnák, T.; Reis, H.; Neogrády, P.; Zaleśny, R.; Medveď, M. Accurate nonlinear optical properties of solvated para-nitroaniline predicted by an electrostatic discrete local field approach. J. Phys. Chem. B 2020, 124, 10195–10209. [Google Scholar] [CrossRef] [PubMed]
- Egidi, F.; Giovannini, T.; Piccardo, M.; Bloino, J.; Cappelli, C.; Barone, V. Stereoelectronic, vibrational, and environmental contributions to polarizabilities of large molecular systems: A feasible anharmonic protocol. J. Chem. Theory Comput. 2014, 10, 2456–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, N.A.; Kongsted, J.; Rinkevicius, Z.; Ågren, H. Breakdown of the first hyperpolarizability / bond-length alternation parameter relationship. Proc. Natl. Acad. Sci. USA 2010, 107, 16453–16458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, C.B.; Christiansen, O.; Mikkelsen, K.V.; Kongsted, J. Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. J. Chem. Phys. 2007, 126, 154112. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.H.; Blanchard-Desce, M.; Hynes, J.T. Two valence bond state model for molecular nonlinear optical properties. Nonequilibrium solvation formulation. J. Phys. Chem. A 1998, 102, 7712–7722. [Google Scholar] [CrossRef]
- Thompson, W.H.; Blanchard-Desce, M.; Alain, V.; Muller, J.; Fort, A.; Barzoukas, M.; Hynes, J.T. Two valence bond state model for molecular nonlinear optical properties. Comparison with push-pull polyene solution measurements. J. Phys. Chem. A 1999, 103, 3766–3771. [Google Scholar] [CrossRef]
- Bartkowiak, W.; Misiaszek, T. Solvent effect on static vibrational and electronic contribution of first-order hyperpolarizability of π-conjugated push-pull molecules: Quantum chemical calculations. Chem. Phys. 2000, 261, 353–357. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tam, W.; Stevenson, S.H.; Meredith, G.R.; Rikken, G.; Marder, S.R. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 1991, 95, 10631–10643. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tam, W.; Marder, S.R.; Stiegman, A.E.; Rikken, G.; Spangler, C.W. Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependence. J. Phys. Chem. 1991, 95, 10643–10652. [Google Scholar] [CrossRef]
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Marder, S.R.; Perry, J.W. Molecular materials for second-order nonlinear optical applications. Adv. Mater. 1993, 5, 804–815. [Google Scholar] [CrossRef]
- He, G.S.; Tan, L.S.; Zheng, Q.; Prasad, P.N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef] [PubMed]
- Kuzyk, M.G. Using fundamental principles to understand and optimize nonlinear-optical materials. J. Mater. Chem. 2009, 19, 7444–7465. [Google Scholar] [CrossRef]
- de Wergifosse, M.; Champagne, B. Electron correlation effects on the first hyperpolarizability of push-pull π-conjugated systems. J. Chem. Phys. 2011, 134, 074113. [Google Scholar] [CrossRef] [PubMed]
- Bureš, F. Fundamental aspects of property tuning in push-pull molecules. RSC Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef] [Green Version]
- Cinteza, L.O.; Marinescu, M. Synthesis and nonlinear studies on selected organic compounds in nanostructured thin films. In Advanced Surface Engineering Research; Chowdhury, M.A., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar]
- Likhtenshtein, G.I. Stilbenes synthesis and applications. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2012; pp. 1–24. [Google Scholar]
- Allen, M.T.; Whitten, D.G. The photophysics and photochemistry of α,ω-diphenylpolyene singlet states. Chem. Rev. 1989, 89, 1691–1702. [Google Scholar] [CrossRef]
- Waldeck, D.H. Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91, 415–436. [Google Scholar] [CrossRef]
- Quenneville, J.; Martí nez, T.J. Ab initio study of cis-trans photoisomerization in stilbene and ethylene. J. Phys. Chem. A 2003, 107, 829–837. [Google Scholar] [CrossRef]
- Improta, R.; Santoro, F. Excited-state behavior of trans and cis isomers of stilbene and stiff stilbene: A TD-DFT study. J. Phys. Chem. A 2005, 109, 10058–10067. [Google Scholar] [CrossRef]
- Minezawa, N.; Gordon, M.S. Photoisomerization of stilbene: A spin-flip density functional theory approach. J. Phys. Chem. A 2011, 115, 7901–7911. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.C.; Chen, W.C.; Cheng, P.Y. Excited-state vibrational relaxation and deactivation dynamics of trans-4-(N,N-dimethylamino)-4’-nitrostilbene in nonpolar solvents studied by ultrafast time-resolved broadband fluorescence spectroscopy. J. Photochem. Photobiol. A Chem. 2015, 310, 26–32. [Google Scholar] [CrossRef]
- Singh, C.; Ghosh, R.; Mondal, J.A.; Palit, D.K. Excited state dynamics of a push-pull stilbene: A femtosecond transient absorption spectroscopic study. J. Photochem. Photobiol. A Chem. 2013, 263, 50–60. [Google Scholar] [CrossRef]
- Muniz-Miranda, F.; Pedone, A.; Muniz-Miranda, M. Spectroscopic and DFT investigation on the photo-chemical properties of a push-pull chromophore: 4-Dimethylamino-4’-nitrostilbene. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 190, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Raucci, U.; Weir, H.; Bannwarth, C.; Sanchez, D.M.; Martínez, T.J. Chiral photochemistry of achiral molecules. Nature Comm. 2022, 13, 2091. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xia, S.H.; Zhang, Y. Photochemical and photophysical properties of cis-stilbene molecule by electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Chem. Phys. 2020, 539, 110957. [Google Scholar] [CrossRef]
- Oelgemöller, M.; Frank, R.; Lemmen, P.; Lenoir, D.; Lex, J.; Inoue, Y. Synthesis, structural characterization and photoisomerization of cyclic stilbenes. Tetrahedron 2012, 68, 4048–4056. [Google Scholar] [CrossRef]
- Quick, M.; Berndt, F.; Dobryakov, A.L.; Ioffe, I.N.; Granovsky, A.A.; Knie, C.; Mahrwald, R.; Lenoir, D.; Ernsting, N.P.; Kovalenko, S.A. Photoisomerization dynamics of stiff-stilbene in solution. J. Phys. Chem. B 2014, 118, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Villarón, D.; Wezenberg, S.J. Stiff-stilbene photoswitches: From fundamental studies to emergent applications. Angew. Chem. Int. Ed. 2020, 59, 13192–13202. [Google Scholar] [CrossRef]
- Villarón, D.; Duindam, N.; Wezenberg, S.J. Push-pull stiff-stilbene: Proton-gated visible-light photoswitching and acid-catalyzed isomerization. Chem. Eur. J. 2021, 27, 17346–17350. [Google Scholar] [CrossRef]
- Coe, B.J. Molecular materials possessing switchable quadratic nonlinear optical properties. Chem. Eur. J. 1999, 5, 2464–2471. [Google Scholar] [CrossRef]
- Asselberghs, I.; Clays, K.; Persoons, A.; Ward, M.D.; McCleverty, J. Switching of molecular second-order polarisability in solution. J. Mater. Chem. 2004, 14, 2831–2839. [Google Scholar] [CrossRef]
- Castet, F.; Rodriguez, V.; Pozzo, J.L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and characterization of molecular nonlinear optical switches. Acc. Chem. Res. 2013, 46, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Shelton, D.P.; Rice, J.E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chem. Rev. 1994, 94, 3–29. [Google Scholar] [CrossRef]
- Bishop, D.M. Molecular vibration and nonlinear optics. Adv. Chem. Phys. 1998, 104, 1–40. [Google Scholar]
- Bishop, D.M.; Kirtman, B. A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. J. Chem. Phys. 1991, 95, 2646. [Google Scholar] [CrossRef]
- Luis, J.M.; Duran, M.; Champagne, B.; Kirtman, B. Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates. J. Chem. Phys. 2000, 113, 5203–5213. [Google Scholar] [CrossRef] [Green Version]
- Luis, J.M.; Duran, M.; Kirtman, B. Field-induced coordinates for the determination of dynamic vibrational nonlinear optical properties. J. Chem. Phys. 2001, 115, 4473–4483. [Google Scholar] [CrossRef] [Green Version]
- Reis, H. Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. J. Chem. Phys. 2006, 125, 014506. [Google Scholar] [CrossRef]
- Bosshard, C.; Gubler, U.; Kaatz, P.; Mazerant, W.; Meier, U. Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: Cascaded second-order contributions for the calibration of third-order nonlinearities. Phys. Rev. B 2000, 61, 10688–10701. [Google Scholar] [CrossRef]
- Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Wortmann, R.; Bishop, D.M. Effective polarizabilities and local field corrections for nonlinear optical experiments in condensed media. J. Chem. Phys. 1998, 108, 1001–1007. [Google Scholar] [CrossRef]
- Munn, R.W.; Luo, Y.; Macák, P.; Ågren, H. Role of the cavity field in nonlinear optical response in the condensed phase. J. Chem. Phys. 2001, 114, 3105–3108. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Cammi, R.; Cappelli, C.; Corni, S.; Tomasi, J. On the calculation of infrared intensities in solution within the polarizable continuum model. J. Phys. Chem. A 2000, 104, 9874–9879. [Google Scholar] [CrossRef]
- Cammi, R.; Mennucci, B.; Tomasi, J. On the calculation of local field factors for microscopic static hyperpolarizabilities of molecules in solution with the aid of quantum-mechanical methods. J. Phys. Chem. A 1998, 102, 870–875. [Google Scholar] [CrossRef]
- Oudar, J.; Chemla, D. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 1977, 66, 2664–2668. [Google Scholar] [CrossRef]
- Pérez-Moreno, J.; Asselberghs, I.; Song, K.; Clays, K.; Zhao, Y.; Nakanishi, H.; Okada, S.; Nogi, K.; Kim, O.K.; Je, J.; et al. Combined molecular and supramolecular bottom-up nanoengineering for enhanced nonlinear optical response: Experiments, modeling, and approaching the fundamental limit. J. Chem. Phys. 2007, 126, 074705. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Tafur, S.; Masunov, A.E. Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability. J. Chem. Phys. 2008, 129, 044109. [Google Scholar] [CrossRef]
- van Walree, A.C.; Franssen, O.W.; Marsman, A.; Flipse, C.M.; Jenneskens, W.L. Second-order nonlinear optical properties of stilbene, benzylideneaniline and azobenzene derivatives. The effect of π-bridge nitrogen insertion on the first hyperpolarizability. J. Chem. Soc. Perkin Trans. 2 1997, 799–808. [Google Scholar] [CrossRef]
- Champagne, B.; Perpete, E.A.; Jacquemin, D.; van Gisbergen, S.J.A.; Baerends, E.J.; Soubra-Ghaoui, C.; Robins, K.A.; Kirtman, B. Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push-pull π-conjugated systems. J. Phys. Chem. A 2000, 104, 4755–4763. [Google Scholar] [CrossRef]
- Garza, A.J.; Osman, O.I.; Asiri, A.M.; Scuseria, G.E. Can gap tuning schemes of long-range corrected hybrid functionals improve the description of hyperpolarizabilities? J. Phys. Chem. B 2015, 119, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Suponitsky, K.Y.; Liao, Y.; Masunov, A.E. Electronic hyperpolarizabilities for donor–acceptor molecules with long conjugated bridges: Calculations versus experiment. J. Phys. Chem. A 2009, 113, 10994–11001. [Google Scholar] [CrossRef] [PubMed]
- Besalú-Sala, P.; Sitkiewicz, S.P.; Salvador, P.; Matito, E.; Luis, J.M. A new tuned range-separated density functional for the accurate calculation of second hyperpolarizabilities. Phys. Chem. Chem. Phys. 2020, 22, 11871–11880. [Google Scholar] [CrossRef] [PubMed]
- Rudberg, E.; Sałek, P.; Helgaker, T.; Ågren, H. Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory. J. Chem. Phys. 2005, 123, 184108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, P.N.; Nguyen, K.A.; Pachter, R. Calculation of two-photon absorption spectra of donor-π-acceptor compounds in solution using quadratic response time-dependent density functional theory. J. Chem. Phys. 2006, 125, 094103. [Google Scholar] [CrossRef]
- Murugan, A.N.; Kongsted, J.; Rinkevicius, Z.; Aidas, K.; Mikkelsen, K.V.; Ågren, H. Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. Phys. Chem. Chem. Phys. 2011, 13, 12506–12516. [Google Scholar] [CrossRef]
- Zaleśny, R.; Bulik, I.W.; Bartkowiak, W.; Luis, J.M.; Avramopoulos, A.; Papadopoulos, M.G.; Krawczyk, P. Electronic and vibrational contributions to first hyperpolarizability of donor-acceptor-substituted azobenzene. J. Chem. Phys. 2010, 133, 244308. [Google Scholar] [CrossRef] [Green Version]
- Bulik, I.W.; Zaleśny, R.; Bartkowiak, W.; Luis, J.M.; Kirtman, B.; Scuseria, G.E.; Avramopoulos, A.; Reis, H.; Papadopoulos, M.G. Performance of density functional theory in computing nonresonant vibrational (hyper)polarizabilities. J. Comput. Chem. 2013, 34, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Baranowska-ączkowska, A.; Bartkowiak, W.; Góra, R.W.; Pawłowski, F.; Zaleśny, R. On the performance of long-range-corrected density functional theory and reduced-size polarized LPol-n basis sets in computations of electric dipole (hyper)polarizabilities of π-conjugated molecules. J. Comput. Chem. 2013, 34, 819–826. [Google Scholar] [CrossRef]
- Zaleśny, R.; Medveď, M.; Sitkiewicz, S.; Matito, E.; Luis, J.M. Can density functional theory be trusted for high-order electric properties? The case of hydrogen-bonded complexes. J. Chem. Theory Comput. 2019, 15, 3570–3579. [Google Scholar] [CrossRef]
- Hait, D.; Head-Gordon, M. Delocalization errors in density functional theory are essentially quadratic in fractional occupation number. J. Phys. Chem. Lett. 2018, 9, 6280–6288. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, D.; Dos Santos, H.F. Assessing the quantum mechanical level of theory for prediction of linear and nonlinear optical properties of push-pull organic molecules. J. Mol. Model. 2013, 19, 2079–2090. [Google Scholar] [CrossRef] [PubMed]
- Zouaoui-Rabah, M.; Sekkal-Rahal, M.; Djilani-Kobibi, F.; Elhorri, A.; Springborg, M. Performance of hybrid DFT compared to MP2 methods in calculating nonlinear optical properties of divinylpyrene derivative molecules. J. Phys. Chem. A 2016, 120, 8843–8852. [Google Scholar] [CrossRef]
- Elhorri, A.; Zouaoui-Rabah, M. NLO response of derivatives of benzene, stilbene and diphenylacetylene: MP2 and DFT calculations. Chin. J. Chem. Eng. 2017, 25, 800–808. [Google Scholar] [CrossRef]
- Lu, S.I. Computational study of static first hyperpolarizability of donor–acceptor substituted (E)-benzaldehyde phenylhydrazone. J. Comput. Chem. 2011, 32, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM–B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian~16 Revision C.01, 2016; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. (THEOCHEM) 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 2003, 118, 9095. [Google Scholar] [CrossRef]
- Purvis, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E.F.; Neese, F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016, 144, 024109. [Google Scholar] [CrossRef]
- Liakos, D.G.; Sparta, M.; Kesharwani, M.K.; Martin, J.M.L.; Neese, F. Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput. 2015, 11, 1525–1539. [Google Scholar] [CrossRef]
- Medveď, M.; Stachová, M.; Jacquemin, D.; André, J.M.; Perpète, E.A. A generalized Romberg differentiation procedure for calcultion of hyperpolarizabilities. J. Mol. Struct. (THEOCHEM) 2007, 847, 39–46. [Google Scholar] [CrossRef]
A = NO (Series 1) | A = CN (Series 2) | |||||||
---|---|---|---|---|---|---|---|---|
n = 1 | n = 3 | n = 1 | n = 3 | |||||
CAM-B3LYP | 2.997 | 5105 | 3.323 | 12,574 | 2.819 | 2972 | 3.087 | 7979 |
M06-2X | 2.985 | 4973 | 3.307 | 12,728 | 2.770 | 2988 | 3.032 | 8269 |
MN15 | 3.026 | 5908 | 3.387 | 15,384 | 2.814 | 3327 | 3.105 | 9418 |
SCS-MP2 | 2.597 | 4720 | 2.754 | 10,893 | 2.554 | 3002 | 2.695 | 7530 |
DLPNO-CCSD(T) | 2.64 (4) | 2.57 (1) |
n | Method | ||||||
---|---|---|---|---|---|---|---|
1 | CAM-B3LYP | 3.502 | 12,040 | 3.857 | 13,551 | 52.27 | 11.93 |
M06-2X | 3.473 | 11,539 | 3.825 | 12,972 | 49.63 | 11.40 | |
MN15 | 3.558 | 14,885 | 3.914 | 16,770 | 65.65 | 14.68 | |
exp | 10.64 | ||||||
2 | CAM-B3LYP | 3.696 | 20,505 | 4.050 | 22,544 | 91.32 | 19.50 |
M06-2X | 3.662 | 20,071 | 4.014 | 22,033 | 88.45 | 19.04 | |
MN15 | 3.776 | 26,535 | 4.132 | 29,196 | 120.67 | 25.06 | |
exp | 15.69 | ||||||
3 | CAM-B3LYP | 3.842 | 31,359 | 4.193 | 33,886 | 142.11 | 29.03 |
M06-2X | 3.805 | 31,249 | 4.154 | 33,709 | 140.06 | 28.86 | |
MN15 | 3.946 | 42,548 | 4.298 | 46,001 | 197.78 | 38.99 | |
exp | 26.96 |
n | Method | ||||||
---|---|---|---|---|---|---|---|
1 | CAM-B3LYP | 3.287 | 6225 | 3.554 | 6915 | 24.58 | 5.59 |
M06-2X | 3.220 | 6247 | 3.483 | 6941 | 24.18 | 5.52 | |
MN15 | 3.294 | 7282 | 3.562 | 8101 | 28.86 | 6.45 | |
exp | 5.02 | ||||||
2 | CAM-B3LYP | 3.442 | 11,005 | 3.708 | 11,924 | 44.23 | 9.85 |
M06-2X | 3.371 | 11,234 | 3.633 | 12,170 | 44.22 | 9.90 | |
MN15 | 3.464 | 13,368 | 3.731 | 14,520 | 54.19 | 11.79 | |
exp | 8.45 | ||||||
3 | CAM-B3LYP | 3.559 | 17,372 | 3.823 | 18,516 | 70.82 | 14.65 |
M06-2X | 3.485 | 17,979 | 3.745 | 19,156 | 71.77 | 14.94 | |
MN15 | 3.598 | 22,015 | 3.862 | 23,484 | 90.73 | 18.21 | |
exp | 12.24 |
(NO-nX-OMe)/(CN-nY-OMe) | ||||
X/Y | CAM-B3LYP | M06-2X | MN15 | exp |
1/1 | 2.13 | 2.07 | 2.28 | 2.12 |
2/2 | 1.98 | 1.92 | 2.13 | 1.86 |
3/3 | 1.98 | 1.93 | 2.14 | 2.20 |
(NO-nX-OMe)/(NO-nY-OMe) | ||||
X/Y | CAM-B3LYP | M06-2X | MN15 | exp |
2/1 | 1.63 | 1.67 | 1.71 | 1.47 |
3/1 | 2.43 | 2.53 | 2.66 | 2.53 |
3/2 | 1.49 | 1.52 | 1.56 | 1.72 |
(CN-nX-OMe)/(CN-nY-OMe) | ||||
X/Y | CAM-B3LYP | M06-2X | MN15 | exp |
2/1 | 1.76 | 1.79 | 1.83 | 1.68 |
3/1 | 2.62 | 2.71 | 2.82 | 2.44 |
3/2 | 1.49 | 1.51 | 1.54 | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrivnák, T.; Medveď, M.; Bartkowiak, W.; Zaleśny, R. Hyperpolarizabilities of Push–Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions. Molecules 2022, 27, 8738. https://doi.org/10.3390/molecules27248738
Hrivnák T, Medveď M, Bartkowiak W, Zaleśny R. Hyperpolarizabilities of Push–Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions. Molecules. 2022; 27(24):8738. https://doi.org/10.3390/molecules27248738
Chicago/Turabian StyleHrivnák, Tomáš, Miroslav Medveď, Wojciech Bartkowiak, and Robert Zaleśny. 2022. "Hyperpolarizabilities of Push–Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions" Molecules 27, no. 24: 8738. https://doi.org/10.3390/molecules27248738
APA StyleHrivnák, T., Medveď, M., Bartkowiak, W., & Zaleśny, R. (2022). Hyperpolarizabilities of Push–Pull Chromophores in Solution: Interplay between Electronic and Vibrational Contributions. Molecules, 27(24), 8738. https://doi.org/10.3390/molecules27248738