Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PI Composite Films
2.2. Thermal Properties and Mechanical Properties
2.3. Dielectric Properties
3. Experimental
3.1. Materials
3.2. Preparation of FG/PI Composite Films
3.3. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Hernaez, M. Applications of Graphene-Based Materials in Sensors. Sensors 2020, 20, 3196. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Hu, J.; Yang, Z.; Li, X.; Zhang, H.; Zhang, G. Dielectric Properties Investigation of Metal-Insulator-Metal (MIM) Capacitors. Molecules 2022, 27, 3951. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Yang, L.; Shi, S.; Wang, T.; Duan, G.; Liu, X.; Li, Y. Flexible Polydopamine Bioelectronics. Adv. Funct. Mater. 2021, 31, 2103391. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.L.; Han, Z.B.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.M.; Wang, Q. Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Chisca, S.; Musteata, V.E.; Sava, I.; Bruma, M. Dielectric behavior of some aromatic polyimide films. Eur. Polym. J. 2011, 47, 1186–1197. [Google Scholar] [CrossRef]
- Arif, M.; Farooqi, Z.H.; Irfan, A.; Begum, R. Gold nanoparticles and polymer microgels: Last five years of their happy and successful marriage. J. Mol. Liq. 2021, 336, 116270. [Google Scholar] [CrossRef]
- Huang, C.; Wang, X.; Yang, P.; Shi, S.; Duan, G.; Liu, X.; Li, Y. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromol. Rapid Commun. 2022. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Yang, Z.; Zhu, F.; Zhao, W.; Duan, G.; Li, Y. Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Lett. 2022, 11, 251–256. [Google Scholar] [CrossRef]
- Xiao, S.; Zhao, Y.; Jin, S.; He, Z.; Duan, G.; Gu, H.; Xu, H.; Cao, X.; Ma, C.; Wu, J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. e-Polymers 2022, 22, 719–732. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Hu, J.; Feng, X.; Zhang, M.; Duan, G.; Zhang, R.; Li, Y. Self-Assembly of Poly (Janus particle) s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Lett. 2021, 10, 1563–1569. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, W.; Yang, P.; Hu, J.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Metal-phenolic network green flame retardants. Polymer 2021, 221, 123627. [Google Scholar] [CrossRef]
- Zheng, C.; Zhu, S.; Lu, Y.; Mei, C.; Xu, X.; Yue, Y.; Han, J. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J. For. Eng. 2020, 5, 93–100. [Google Scholar]
- Jing, H.; Yi, L. Construction of bionic structural color coating on wood surface based on polystyrene microspheres. J. For. Eng. 2021, 6, 35–42. [Google Scholar]
- Cherkashina, N.I.; Pavlenko, V.I.; Noskov, A.V.; Shkaplerov, A.N.; Kuritsyn, A.A.; Popova, E.V.; Zaitsev, S.V.; Kuprieva, O.V.; Kashibadze, N.V. Synthesis of PI/POSS nanocomposite films based on track nuclear membranes and assessment of their resistance to oxygen plasma flow. Polymer 2021, 212, 123192. [Google Scholar] [CrossRef]
- Dou, L.; Lin, Y.-H.; Nan, C.-W. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules 2021, 26, 6148. [Google Scholar] [CrossRef]
- Jiang, X.W.; Bin, Y.Z.; Matsuo, M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424. [Google Scholar] [CrossRef]
- Qiu, G.; Ma, W.; Wu, L. Low dielectric constant polyimide mixtures fabricated by polyimide matrix and polyimide microsphere fillers. Polym. Int. 2020, 69, 485–491. [Google Scholar] [CrossRef]
- Shi, T.; Zheng, Z.H.; Liu, H.; Wu, D.Z.; Wang, X.D. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage. Compos. Sci. Technol. 2022, 217, 109127. [Google Scholar] [CrossRef]
- Peng, S.; Sun, Y.; Ma, C.; Duan, G.; Liu, Z.; Ma, C. Recent advances in dynamic covalent bond-based shape memory polymers. e-Polymers 2022, 22, 285–300. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Zhao, H.; Miao, Q.; Huang, L.; Zhou, X.; Chen, L. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites. J. For. Eng. 2021, 6, 96–103. [Google Scholar]
- Zhang, Q.; Xue, T.; Tian, J.; Yang, Y.; Fan, W.; Liu, T. Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation. Compos. Sci. Technol. 2022, 226, 109541. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, B.-P.; Lu, Z.-H.; Wang, Z.-Y.; Fei, C.-L.; Yin, D.; Xiong, R.; Shi, J.; Chi, Q.-G.; Lei, Q.-Q. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl. Phys. Lett. 2013, 102, 042904. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Ye, W.; Liao, X.; Hou, H. High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers. Polym. Compos. 2016, 37, 794–801. [Google Scholar] [CrossRef]
- Gu, J.; Lv, Z.; Wu, Y.; Guo, Y.; Tian, L.; Qiu, H.; Li, W.; Zhang, Q. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A-Appl. Sci. Manuf. 2017, 94, 209–216. [Google Scholar] [CrossRef]
- Guo, Y.; Lyu, Z.; Yang, X.; Lu, Y.; Ruan, K.; Wu, Y.; Kong, J.; Gu, J. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B-Eng. 2019, 164, 732–739. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, Z.; He, H.; Zhou, H.; Liu, Y.; Chen, Y.; Liu, Z.; Gong, L.; Zhang, L.; Zhang, Q. High-kappa Polyimide-Based Dielectrics by Introducing a Functionalized Metal-Organic Framework. Inorg. Chem. 2022, 61, 3412–3419. [Google Scholar] [CrossRef]
- Zhou, W.; Long, L.; Li, Y. Mechanical and electromagnetic wave absorption properties of C-f-Si3N4 ceramics with PyC/SiC interphases. J. Mater. Sci. Technol. 2019, 35, 2809–2813. [Google Scholar] [CrossRef]
- Li, P.; Yu, J.; Jiang, S.; Fang, H.; Liu, K.; Hou, H. Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by in situ polymerization. e-Polymers 2020, 20, 226–232. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, L.; Jiang, S.; Ding, Y.; Xu, W.; Hou, H. Electrospun nanofiber reinforced all-organic PVDF/PI tough composites and their dielectric permittivity. Mater. Lett. 2015, 160, 515–517. [Google Scholar] [CrossRef]
- Shahid, M.; Farooqi, Z.H.; Begum, R.; Arif, M.; Wu, W.; Irfan, A. Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Crit. Rev. Anal. Chem. 2020, 50, 513–537. [Google Scholar] [CrossRef]
- Arif, M.; Tahir, F.; Fatima, U.; Begum, R.; Farooqi, Z.H.; Shahid, M.; Ahmad, T.; Faizan, M.; Naseem, K.; Ali, Z. Catalytic degradation of methyl orange using bimetallic nanoparticles loaded into poly(N-isopropylmethacrylamide) microgels. Mater. Today Commun. 2022, 33, 104077. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Yang, S.-Y.; Huang, Y.-L.; Tien, H.-W.; Chin, W.-K.; Ma, C.-C.M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem. 2011, 21, 13569–13575. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Zhu, J.; Ye, W.; Shen, Y.; Hou, H. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polym. J. 2014, 59, 129–135. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Zhang, H.; Bai, Y.; Niu, Y.; Wang, H. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl. Phys. Lett. 2012, 101, 012903. [Google Scholar] [CrossRef]
- Fan, W.; Zuo, L.Z.; Zhang, Y.F.; Chen, Y.; Liu, T.X. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos. Sci. Technol. 2018, 156, 186–191. [Google Scholar] [CrossRef]
- Li, Y.; Pei, X.; Shen, B.; Zhai, W.; Zhang, L.; Zheng, W. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 2015, 5, 24342–24351. [Google Scholar] [CrossRef]
- Mo, T.C.; Wang, H.W.; Chen, S.Y.; Yeh, Y.C. Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polym. Compos. 2008, 29, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Wang, X.; Zhu, Y.; Hui, D.; Qiu, Y. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos. Part B-Eng. 2014, 56, 408–412. [Google Scholar] [CrossRef]
- Okutan, M.; Mert, H.; Boran, F.; Ergun, A.; Deligoz, H. Synthesis of a novel fluorinated graphene oxide hybrid material based on poly(2,3,4,5,6-pentafluorostyrene) and its use as a filler for thermoplastic polyurethane film. Colloids Surf. a-Physicochem. Eng. Asp. 2022, 640, 128504. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 41–42. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Cao, Q.; Li, M.; Liu, F.; Tang, N.; Du, Y. Synthesis and photoluminescence of fluorinated graphene quantum dots. Appl. Phys. Lett. 2013, 102, 013111. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Halbig, C.E.; Rietsch, P.; Eigler, S. Towards the Synthesis of Graphene Azide from Graphene Oxide. Molecules 2015, 20, 21050–21057. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, M. Graphene Nanocomposites. Molecules 2019, 24, 2440. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef]
- Inagaki, M.; Kang, F. Graphene derivatives: Graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2014, 2, 13193–13206. [Google Scholar] [CrossRef]
- Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. Thermal properties of fluorinated graphene. Phys. Rev. B 2013, 87, 104114. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Li, Z.; Gong, P.; Liu, X.; Zhang, L.; Ren, J.; Wang, H.; Yang, S. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410. [Google Scholar] [CrossRef]
- You, X.; Feng, Q.; Yang, J.; Huang, K.; Hu, J.; Dong, S. Preparation of high concentration graphene dispersion with low boiling point solvents. J. Nanoparticle Res. 2019, 21, 19. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef]
- Sattar, T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Top. Curr. Chem. 2019, 377, 10. [Google Scholar] [CrossRef]
- Long, L.; Xu, J.; Luo, H.; Xiao, P.; Zhou, W.; Li, Y. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites. J. Am. Ceram. Soc. 2020, 103, 6869–6880. [Google Scholar] [CrossRef]
- Fang, D.; Yao, K.; Ding, Y.; Li, P.; Hou, H. High dielectric polyimide composite film filled with a heat-resistant organic salt. Compos. Commun. 2019, 14, 29–33. [Google Scholar] [CrossRef]
- Kou, S.; Yu, S.; Sun, R.; Wong, C.P. High-dielectric-constant graphite oxide-polyimide composites as embedded dielectrics. IEEE 2012, 7, 86–89. [Google Scholar]
Sample | T-5% (°C) | Residue-800 °C | Tg (°C) | Stress (MPa) | Strain | Modulus (GPa) |
---|---|---|---|---|---|---|
PI | 562.3 | 61.27% | 284.1 | 159.7 | 8.2% | 3.6 |
PI/rFG-0.5% | 560.3 | 60.54% | 284.5 | 168.4 | 8.1% | 3.8 |
PI/rFG-1% | 557.1 | 59.85% | 285.3 | 183.5 | 7.4% | 4.4 |
PI/rFG-1.5% | 555.5 | 59.06% | 287.4 | 178.5 | 6.9% | 4.8 |
PI/rFG-2% | 550.7 | 59.36% | 288.7 | 175.9 | 5.4% | 5.5 |
PI/rFG-3% | 545.5 | 59.13% | 289.3 | 170.2 | 4.6% | 5.8 |
PI/rFG-4% | 541.3 | 58.75% | 291.1 | 155.3 | 3.6% | 6.1 |
PI/rFG-6% | 534.5 | 58.27% | 293.2 | 145.8 | 3.1% | 6.5 |
PI/rFG-8% | 530.1 | 57.88% | 294.5 | 130.1 | 2.3% | 7.3 |
Filler | Filler Content | Dielectric Permittivity | Dielectric Loss | Breakdown Strength (kV/mm) | Energy Storage Density (J/cm3) | Ref. |
---|---|---|---|---|---|---|
PSF | 40 wt. % | 6.40 | 0.015 | 152 | 0.64 | [33] |
PVDF | 50 wt. % | 8.85 | 0.018 | - | - | [34] |
MOF | 20% wt. % | 8.80 | 0.034 | 208 | 0.39 | [31] |
Ag@SiO2 | 50 vol. % | 11.70 | 0.015 | - | - | [39] |
BaTiO3 | 50 vol. % | 29.66 | 0.009 | 59.5 | 0.465 | [28] |
LiTFSI | 30 vol. % | 38.18 | 1.600 | 42 | 0.30 | [59] |
GO | 1 wt. % | 68.00 | 0.600 | - | - | [60] |
MWCNTs | 20 vol. % | 217 | 1.580 | 45 | 1.957 | [38] |
CCTO | 16.4 vol. % | 171.00 | 0.450 | - | - | [27] |
rFG | 0 vol. % | 3.47 | 0.009 | 210 | 0.664 | This work |
0.5% | 3.77 | 0.019 | 200 | 0.663 | ||
1% | 4.06 | 0.028 | 185 | 0.616 | ||
1.5% | 4.19 | 0.035 | 160 | 0.476 | ||
2% | 5.11 | 0.037 | 140 | 0.543 | ||
3% | 96.50 | 0.040 | 115 | 5.651 | ||
4% | 136.54 | 0.052 | 90 | 4.897 | ||
6% | 171.02 | 0.410 | 65 | 3.198 | ||
8% | 235.74 | 0.534 | 40 | 1.648 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, T.; Hu, R.; Jiang, S.; Zhang, C.; Hou, H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules 2022, 27, 8896. https://doi.org/10.3390/molecules27248896
Zhang Y, Hu T, Hu R, Jiang S, Zhang C, Hou H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules. 2022; 27(24):8896. https://doi.org/10.3390/molecules27248896
Chicago/Turabian StyleZhang, Yuyin, Tian Hu, Rubei Hu, Shaohua Jiang, Chunmei Zhang, and Haoqing Hou. 2022. "Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene" Molecules 27, no. 24: 8896. https://doi.org/10.3390/molecules27248896
APA StyleZhang, Y., Hu, T., Hu, R., Jiang, S., Zhang, C., & Hou, H. (2022). Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules, 27(24), 8896. https://doi.org/10.3390/molecules27248896