Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet
Abstract
:1. Introduction
2. Results
2.1. Changes in the Contents of Limonene, Nobiletin and 3-Methoxynobiletin within Fermented Citrus Peel
2.2. Effect of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with HFD
2.3. Effect of Fermented Citrus Peel on Modulating Activities of Lipid Metabolic Enzymes in Rats Fed with HFD
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Fermented Citrus Peel Powder Sample
4.3. Determination of Limonene, Nobiletin and 3-Methoxynobiletin
4.4. Animals and Experimental Design
4.5. Measurement of Triglyceride, Total Cholesterol and Lipoprotein–Cholesterol Levels in the Plasma
4.6. Measurement of Triglyceride and Total Cholesterol Levels in the Liver Tissues
4.7. Evaluation of Malondialdehyde (MDA) Levels in the Serum and Liver
4.8. Measurement of the Activities of ACC and FAS in the Liver Tissues
4.9. Measurement of HSL and LPL Activity in the Abdominal Adipose Tissues
4.10. Histopathological Examinations
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirai, K. Obesity as the core of the metabolic syndrome and the management of coronary heart disease. Curr. Med. Res. Opin. 2004, 20, 295–304. [Google Scholar] [CrossRef]
- Eckel, R.H.; York, D.A.; Rössner, S.; Hubbard, V.; Caterson, I.; St. Jeor, S.T.; Hayman, L.L.; Mullis, R.M.; Blair, S.N. Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: Executive summary. Circulation 2004, 110, 2968–2975. [Google Scholar] [CrossRef]
- Zakharieva, S. Arterial hypertension and obesity--a dangerous combination. Vutreshni Boles. 1999, 31, 28–32. [Google Scholar]
- Gavrilova, O.; Marcus-Samuels, B.; Graham, D.; Kim, J.K.; Shulman, G.I.; Castle, A.L.; Vinson, C.; Eckhaus, M.; Reitman, M.L. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Investig. 2000, 105, 271–278. [Google Scholar] [CrossRef]
- Moraski, G.C.; Markley, L.D.; Cramer, J.; Hipskind, P.A.; Boshoff, H.; Bailey, M.A.; Alling, T.; Ollinger, J.; Parish, T.; Miller, M.J. Advancement of imidazo [1, 2-a] pyridines with improved pharmacokinetics and nM activity vs. Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013, 4, 675–679. [Google Scholar] [CrossRef]
- Berndt, J.; Kovacs, P.; Ruschke, K.; Klöting, N.; Fasshauer, M.; Schön, M.; Körner, A.; Stumvoll, M.; Blüher, M. Fatty acid synthase gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Diabetologia 2007, 50, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Holm, C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 2003, 31, 1120–1124. [Google Scholar] [CrossRef]
- Chen, Y.-D.I.; Risser, T.R.; Cully, M.; Reaven, G.M. Is the hypertriglyceridemia associated with insulin deficiency caused by decreased lipoprotein lipase activity? Diabetes 1979, 28, 893–898. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (2021). Citrus: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 30 June 2022).
- Kondo, M.; Goto, M.; Kodama, A.; Hirose, T. Fractional extraction by supercritical carbon dioxide for the deterpenation of bergamot oil. Ind. Eng. Chem. Res. 2000, 39, 4745–4748. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Tung, Y.-C.; Chang, W.-T.; Li, S.; Wu, J.-C.; Badmeav, V.; Ho, C.-T.; Pan, M.-H. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food Funct. 2018, 9, 3363–3373. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Widmer, W.W.; Grohmann, K. Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 2007, 42, 1614–1619. [Google Scholar] [CrossRef]
- Karagozlu, M.Z.; Kim, M.; Lee, M. Citrus peel ethanol extract inhibits the adipogenesis caused from high fat-induced DIO model. Food Nutr. Sci. 2016, 7, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wang, N.; Li, N.; Li, B.; Yan, F.; Song, Y.; Hou, J.; Huo, G. Modulation effect of Chenpi extract on gut microbiota in high-fat diet-induced obese C57BL/6 mice. J. Food Biochem. 2021, 45, e13541. [Google Scholar] [CrossRef]
- Falduto, M.; Smedile, F.; Zhang, M.; Zheng, T.; Zhu, J.; Huang, Q.; Weeks, R.; Ermakov, A.; Chikindas, M. Anti-obesity effects of Chenpi: An artificial gastrointestinal system study. Microb. Biotechnol. 2022, 15, 874–885. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, J.; Zhang, X.; Zhao, D.; Ma, Y.; Li, D.; Ho, C.; Huang, Q. Aged citrus peel (Chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct. 2020, 11, 2667–2678. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, Z.; Wen, M.; Wu, Z.; Zha, M.; Xu, W.; Zhang, L. Chemical Variation of Chenpi (Citrus Peels) and Corresponding Correlated Bioactive Compounds by LC-MS Metabolomics and Multibioassay Analysis. Front. Nutr. 2022, 9, 825381. [Google Scholar] [CrossRef]
- Jing, L.; Zhang, Y.; Fan, S.; Gu, M.; Guan, Y.; Lu, X.; Huang, C.; Zhou, Z. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. Eur. J. Pharmacol. 2013, 715, 46–55. [Google Scholar] [CrossRef]
- Valerii, M.C.; Turroni, S.; Ferreri, C.; Zaro, M.; Sansone, A.; Dalpiaz, A.; Botti, G.; Ferraro, L.; Spigarelli, R.; Bellocchio, I. Effect of a fiber D-limonene-enriched food supplement on intestinal microbiota and metabolic parameters of mice on a high-fat diet. Pharmaceutics 2021, 13, 1753. [Google Scholar] [CrossRef]
- Vajdi, M.; Farhangi, M.A. Citrus peel derived’poly-methoxylated flavones (PMF) A systematic review of the potential bioactive agents against obesity and obesity related metabolic disorders. Int. J. Vitam. Nutr. Res. 2021, 1, 1–16. [Google Scholar]
- Lee, Y.-S.; Cha, B.-Y.; Choi, S.-S.; Choi, B.-K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.-T. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J. Nutr. Biochem. 2013, 24, 156–162. [Google Scholar] [CrossRef]
- Lian, C.-Y.; Zhai, Z.-Z.; Li, Z.-F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem.-Biol. Interact. 2020, 330, 109199. [Google Scholar] [CrossRef]
- Jung, H.K.; Jeong, Y.S.; Park, C.-D.; Park, C.-H.; Hong, J.-H. Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 169–176. [Google Scholar] [CrossRef]
- Do Ngoc, L.; Nguyen, T.T.Q.; Vu, C.P.; Phung, T.H. Effect of pomelo (Citrus grandis (l). osbeck) peel extract on lipid-carbohydrate metabolic enzymes and blood lipid, glucose parameters in experimental obese and diabetic mice. VNU J. Sci. Nat. Sci. Technol. 2010, 26, 224–232. [Google Scholar]
- Josephine, O.E.-O.; Ngozi, C.G. Comparative effects of peel extract from Nigerian grown citrus on body weight, liver weight and serum lipids in rats fed a high-fat diet. Afr. J. Biochem. Res. 2015, 9, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Tao, H.; Cao, Y.; Ho, C.-T.; Jin, S.; Huang, Q. Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract. J. Agric. Food Chem. 2016, 64, 2053–2061. [Google Scholar] [CrossRef]
- Wu, C.; Huang, Y.; Hou, C.; Chen, Y.; Dong, C.; Chen, C.; Singhania, R.; Leang, J.; Hsieh, S. Lemon fermented products prevent obesity in high-fat diet-fed rats by modulating lipid metabolism and gut microbiota. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Akaike, M.; Aihara, K.-I.; Yanagawa, H.; Iwase, T.; Yoshida, S.; Sato, C.; Saijo, T.; Mikasa, H.; Kashiwada, Y.; Takaishi, Y. Efficacy and safety of Citrus sudachi peel in obese adults: A randomized, double-blind, pilot study. Funct. Foods Health Dis. 2014, 4, 276–284. [Google Scholar] [CrossRef]
- Kang, S.; Song, S.; Lee, J.; Chang, H.; Lee, S. Clinical investigations of the effect of Citrus unshiu peel pellet on obesity and lipid profile. Evid.-Based Complement. Altern. Med. 2018, 19, 4341961. [Google Scholar]
- Kamel, H.; Salib, J.Y.; El-Toumy, S.A.; Awad, A.H.; Elmenabbawy, M.K. Citrus reticulata peel extract: An anti-obesity therapy for adolescents. Middle East J. Appl. Sci. 2019, 9, 117–124. [Google Scholar]
- Kang, S.-I.; Shin, H.-S.; Kim, H.-M.; Hong, Y.-S.; Yoon, S.-A.; Kang, S.-W.; Kim, J.-H.; Kim, M.-H.; Ko, H.-C.; Kim, S.-J. Immature Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice. Biol. Pharm. Bull. 2012, 35, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Goto, T.; Inoue, E.; Miyaguchi, Y.; Toyoda, A. Dietary intake of immature Citrus tumida Hort. ex Tanaka peels suppressed body weight gain and fat accumulation in a mouse model of acute obesity. J. Nutr. Sci. Vitaminol. 2019, 65, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Thai, H.; Camp, J.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar]
- Kimoto-Nira, H.; Moriya, N.; Nogata, Y.; Sekiyama, Y.; Toguchi, Y. Fermentation of Shiikuwasha (Citrus depressa Hayata) pomace by lactic acid bacteria to generate new functional materials. Int. J. Food Sci. Technol. 2019, 54, 688–695. [Google Scholar] [CrossRef]
- Shabnam, J.; Rauf, A.; Khurram, S.; Shaista, N.; Salman, S.; Yasar, S. Chemical constituents, antimicrobial and antioxidant activity of essential oil of Citrus limetta var. Mitha (sweet lime) peel in Pakistan. Afr. J. Microbiol. Res. 2013, 7, 3071–3077. [Google Scholar] [CrossRef]
- Subba, M.; Soumithri, T.; Rao, R.S. Antimicrobial action of citrus oils. J. Food Sci. 1967, 32, 225–227. [Google Scholar] [CrossRef]
- Murdock, D.; Allen, W. Germicidal effect of orange peel oil and D-limonene in water and orange juice. Food Technol. 1960, 14, 441–445. [Google Scholar]
- Tian, X.; Liu, Y.; Feng, X.; Khaskheli, A.A.; Xiang, Y.; Huang, W. The effects of alcohol fermentation on the extraction of antioxidant compounds and flavonoids of pomelo peel. LWT-Food Sci. Technol. 2018, 89, 763–769. [Google Scholar] [CrossRef]
- Jeon, H.J.; Yu, S.N.; Kim, S.H.; Park, S.K.; Choi, H.D.; Kim, K.Y.; Lee, S.Y.; Chun, S.S.; Ahn, S.C. Antiobesity effect of citrus peel extract fermented with Aspergillus oryzae. J. Life Sci. 2014, 24, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Tan, J.; Long, X.; Yi, R.; Zhao, X.; Park, K.Y. Anti-obesity effect of fermented lemon peel on high-fat diet-induced obese mice by modulating the inflammatory response. J. Food Biochem. 2022, 46, e14200. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, M.; Hoffmann, C.; Sherrill-Mix, S.; Keilbaugh, S.; Hamady, M.; Chen, Y.; Knight, R.; Ahima, R.; Bushman, R.; Wu, G. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009, 137, 1716–1724.e2. [Google Scholar] [CrossRef] [Green Version]
- Assmann, G.; Schriewer, H.; Schmitz, G.; Hägele, E. Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin. Chem. 1983, 29, 2026–2030. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, P.M.; Dickstein, R.; Greenfield, E. Detection of ligand-induced perturbations affecting the biotinyl group of mammalian acetyl-coenzyme A carboxylase by using biotin-binding antibodies. Biochem. J. 1981, 197, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, C.; Kameda, K.; Tsujita, T.; Okuda, H. Relationships between lipolysis induced by various lipolytic agents and hormone-sensitive lipase in rat fat cells. J. Lipid Res. 2001, 42, 120–127. [Google Scholar] [CrossRef]
- Shirai, K. Lipoprotein lipase-catalyzed hydrolysis of p-nitrophenyl butyrate: Interfacial activation by phospholipid vesicles. J. Biol. Chem. 1982, 257, 1253–1258. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-H.; Hsiao, S.-Y.; Lin, Y.-H.; Tsai, G.-J. Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules 2022, 27, 8966. https://doi.org/10.3390/molecules27248966
Huang C-H, Hsiao S-Y, Lin Y-H, Tsai G-J. Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules. 2022; 27(24):8966. https://doi.org/10.3390/molecules27248966
Chicago/Turabian StyleHuang, Chung-Hsiung, Shun-Yuan Hsiao, Yung-Hsiang Lin, and Guo-Jane Tsai. 2022. "Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet" Molecules 27, no. 24: 8966. https://doi.org/10.3390/molecules27248966
APA StyleHuang, C. -H., Hsiao, S. -Y., Lin, Y. -H., & Tsai, G. -J. (2022). Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules, 27(24), 8966. https://doi.org/10.3390/molecules27248966