New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Content
2.2. Chemical Characterization
2.2.1. Phenolic Acids
2.2.2. Flavonoids
2.2.3. Rosmarinic and Derivatives (Salvianolic Acids)
2.2.4. Other Compounds
2.3. Relative Peak Areas and Heat Map
2.4. Chromatographic Quantification of the Main Phytochemicals
2.5. Antioxidant Properties
2.6. Enzyme Inhibition Properties
2.7. Molecular Docking
2.8. Ex Vivo Studies
3. Materials and Methods
3.1. Plant Materials and Extraction
3.2. Profile of Bioactive Compounds
3.3. Instrumentation
3.4. HPLC-ESI-MSn Analysis
3.5. Determination of Antioxidant and Enzyme Inhibitory Effects
3.6. Molecular Modeling
3.7. Ex Vivo Studies
3.8. RNA Extraction, Reverse Transcription and Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carović-StanKo, K.; PeteK, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Chakrabartty, I.; Mohanta, Y.K.; Nongbet, A.; Mohanta, T.K.; Mahanta, S.; Das, N.; Saravanan, M.; Sharma, N. Exploration of Lamiaceae in Cardio Vascular Diseases and Functional Foods: Medicine as Food and Food as Medicine. Front. Pharmacol. 2022, 13, 894814. [Google Scholar] [CrossRef] [PubMed]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.-M.; Stefanescu, R.; Bild, V.; Melnic, S. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manag. 2018, 2018, 7801543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.C.; Barroso, J.G.; Pedro’, L.G. Volatiles from Thymbra and Thymus species of the western Mediterranean basin, Portugal and Macaronesia. Nat. Prod. Commun. 2010, 5, 1465–1476. [Google Scholar] [CrossRef] [Green Version]
- Elbouny, H.; Ouahzizi, B.; El-guourrami, O.; Drioua, S.; Mbarek, A.N.; Sellam, K.; Alem, C. Chemical profile and biological properties of the essential oil of Thymus atlanticus (Ball) Roussine. S. Afr. J. Bot. 2022, 151, 475–480. [Google Scholar] [CrossRef]
- Jaouadi, R.; Boussaid, M.; Zaouali, Y. Variation in essential oil composition within and among Tunisian Thymus algeriensis Boiss et Reut. (Lamiaceae) populations: Effect of ecological factors and incidence on antiacetylcholinesterase and antioxidant activities. Biochem. Syst. Ecol. 2023, 106, 104543. [Google Scholar] [CrossRef]
- Stefanaki, A.; Cook, C.M.; Lanaras, T.; Kokkini, S. Essential oil variation of Thymbra spicata L. (Lamiaceae), an East Mediterranean “oregano” herb. Biochem. Syst. Ecol. 2018, 80, 63–69. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Sayed, S.R.M. In vitro antimicrobial activity of Thymus vulgaris extracts against some nosocomial and food poisoning bacterial strains. Process Biochem. 2022, 115, 152–159. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef]
- Rašković, A.L.; Kvrgić, M.P.; Tomas, A.D.; Stilinović, N.P.; Čabarkapa, V.S.; Stojšić-Milosavljević, A.Ð.; Kusturica, M.N.P.; Rakić, D.B. Antinociceptive activity of Thyme (Thymus vulgaris L.) and interactions with neurotropics and analgesics. Braz. J. Pharm. Sci. 2021, 56, 1–11. [Google Scholar] [CrossRef]
- Dauqan, E.M.; Abdullah, A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. J. Appl. Biol. Biotechnol. 2017, 5, 17–22. [Google Scholar]
- Ghasemi Pirbalouti, A.; Emami Bistghani, Z.; Malekpoor, F. An overview on genus Thymus. J. Med. Herb. 2015, 6, 93–100. [Google Scholar]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Shivamallu, C.; Amachawadi, R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021, 7, e07054. [Google Scholar] [CrossRef]
- Pasa, C. Use of Thymbra species spreading in the Flora of Turkey for medicinal purposes. Res. Med. Eng. Sci. 2022, 9, 1028–1030. [Google Scholar]
- Miguel, M.G.; da Silva, C.I.; Farah, L.; Castro Braga, F.; Figueiredo, A.C. Effect of essential oils on the release of TNF-α and CCL2 by LPS-stimulated THP-1 cells. Plants 2020, 10, 50. [Google Scholar] [CrossRef]
- Perrino, E.V.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and plant community implication on essential oils composition in useful wild officinal species: A pilot case study in Apulia (Italy). Plants 2021, 10, 574. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Ruiz-Cruz, S.; Chaparro-Hernández, S.; Hernández-Ruiz, K.L.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ortega, L.E.G.; Mata, M.L. Flavonoids: Important biocompounds in food. In Flavonoids: From Biosynthesis to Human Health; Justino, J.G., Ed.; IntechOpen: London, UK, 2017; pp. 353–369. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Ali, G.; Neda, G. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of bioactive and volatile profiles of thyme (Thymus vulgaris L.) teas as affected by infusion times. J. Food Meas. Charact. 2018, 12, 2570–2580. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MS n identification of chlorogenic acids. J. Agric. Food. Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; El Majdoub, Y.O.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp. gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef]
- Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: Application to seeds of quince (Cydonia oblonga). Phytochem. Anal. 2003, 14, 352–359. [Google Scholar] [CrossRef]
- Hashim, S.N.; Schwarz, L.J.; Boysen, R.I.; Yang, Y.; Danylec, B.; Hearn, M.T. Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine. J. Chromatogr. A 2013, 1313, 284–290. [Google Scholar] [CrossRef]
- Jaouadi, R.; Cardoso, S.M.; Silva, A.M.; Yahia, I.B.H.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Ziani, B.E.; Heleno, S.A.; Bachari, K.; Dias, M.I.; Alves, M.J.; Barros, L.; Ferreira, I.C. Phenolic compounds characterization by LC-DAD-ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res. Int. 2019, 116, 312–319. [Google Scholar]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Chemical characterization and bioactivity of extracts from Thymus mastichina: A Thymus with a distinct salvianolic acid composition. Antioxidants 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barros, L.; Calhelha, R.C.; Ćirić, A.; Soković, M.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C. Melissa officinalis L. decoctions as functional beverages: A bioactive approach and chemical characterization. Food Funct. 2015, 6, 2240–2248. [Google Scholar] [CrossRef] [Green Version]
- Stanoeva, J.P.; Stefova, M.; Andonovska, K.B.; Stafilov, T. LC/DAD/MS n and ICP-AES Assay and Correlations between Phenolic Compounds and Toxic Metals in Endemic Thymus alsarensis from the Thallium Enriched Allchar Locality. Nat. Prod. Commun. 2017, 12, 1934578X1701200206. [Google Scholar]
- Brudzynski, K.; Miotto, D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 2011, 127, 1023–1030. [Google Scholar] [CrossRef]
- Yang, S.; Wu, X.; UPLC, R.W. Analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Ozarowski, M.; Mikolajczak, P.L.; Bogacz, A.; Gryszczynska, A.; Kujawska, M.; Jodynis-Liebert, J.; Piasecka, A.; Napieczynska, H.; Szulc, M.; Kujawski, R. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013, 91, 261–271. [Google Scholar] [CrossRef]
- Jiménez-López, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martínez, E. Rosa rubiginosa and Fraxinus oxycarpa herbal teas: Characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of the antioxidant activity. New J. Chem. 2017, 41, 7681–7688. [Google Scholar] [CrossRef]
- Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In vitro inhibition of the transcription factor NF-κB and cyclooxygenase by Bamboo extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
- Nabet, N.; Gilbert-López, B.; Madani, K.; Herrero, M.; Ibáñez, E.; Mendiola, J.A. Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Ind. Crops Prod. 2019, 129, 395–404. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants 2020, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Elbouny, H.; Ouahzizi, B.; Bouhlali, E.D.T.; Sellam, K.; Alem, C. Pharmacological, biological and phytochemical aspects of Thymus munbyanus Boiss. & Reut.: A review. Plant Sci. Today 2022, 9, 399–404. [Google Scholar]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef] [PubMed]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S. Antioxidant and anticholinesterase potential of six Thymus species. Evid. Based Complement. Altern. Med. 2015, 2015, 403950. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.; Novak, J. Contribution of the main polyphenols of Thymus mastichina subsp. mastichina to its antioxidant properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
- Ustuner, O.; Anlas, C.; Bakirel, T.; Ustun-Alkan, F.; Diren Sigirci, B.; Ak, S.; Akpulat, H.A.; Donmez, C.; Koca-Caliskan, U. In vitro evaluation of antioxidant, anti-inflammatory, antimicrobial and wound healing potential of Thymus sipyleus boiss. subsp. rosulans (borbas) jalas. Molecules 2019, 24, 3353. [Google Scholar] [CrossRef] [Green Version]
- Adewusi, E.A.; Moodley, N.; Steenkamp, V. Medicinal plants with cholinesterase inhibitory activity: A review. Afr. J. Biotechnol. 2010, 9, 8257–8276. [Google Scholar]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Asghari, B.; Habibzadeh, F.; Ghorbani Nohooji, M. Persian Thyme (Thymus persicus): A plant containing active metabolites with antioxidant, anti-diabetic and anti-Alzheimer effects. J. Med. Plants 2019, 18, 97–109. [Google Scholar] [CrossRef]
- Dessalegn, E.; Bultosa, G.; Haki, G.D.; Rupasinghe, H.V. Evaluation of in vitro antidiabetic potential of Thymus schimperi R. and Thymus vulgaris L. Evaluation 2019, 6, 9–16. [Google Scholar]
- Hyun, T.K.; Kim, H.-C.; Kim, J.-S. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. Ind. Crops Prod. 2014, 52, 611–616. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; Veschi, S.; Cama, A.; Acquaviva, A.; Libero, M.L.; Leone, S.; Di Simone, S.C.; Pagano, E.; Zengin, G. A grape (Vitis vinifera L.) pomace water extract modulates inflammatory and immune response in SW-480 cells and isolated mouse colon. Phytother. Res. 2022, 36, 4620–4630. [Google Scholar] [CrossRef]
- Chatatikun, M.; Supjaroen, P.; Promlat, P.; Chantarangkul, C.; Waranuntakul, S.; Nawarat, J.; Tangpong, J. Antioxidant and tyrosinase inhibitory properties of an aqueous extract of Garcinia atroviridis griff. ex. T. Anderson fruit pericarps. Pharmacogn. J. 2020, 12, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Meserole, L. Health foods in anti-aging therapy: Reducers of physiological decline and degenerative diseases. In Advances in Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1, pp. 173–180. [Google Scholar]
- Jin, B.-R.; Chung, K.-S.; Cheon, S.-Y.; Lee, M.; Hwang, S.; Noh Hwang, S.; Rhee, K.-J.; An, H.-J. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci. Rep. 2017, 7, 46252. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.S.; Arulselvan, P.; Ng, S.-F.; Mat Taib, C.N.; Sarian, M.N.; Fakurazi, S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement. Altern. Med. 2019, 19, 20. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Poyatos, M.D.P.; Ruiz-Medina, A.; Zengin, G.; Llorent-Martínez, E.J. Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. leaves: A valuable source of phenolic acids. Molecules 2019, 24, 4171. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Gerlits, O.; Ho, K.-Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radić, Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biol. Interact. 2019, 309, 108698. [Google Scholar] [CrossRef]
- Rosenberry, T.; Brazzolotto, X.; Macdonald, I.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurus, R.; Begum, A.; Williams, L.K.; Fredriksen, J.R.; Zhang, R.; Withers, S.G.; Brayer, G.D. Alternative Catalytic Anions Differentially Modulate Human α-Amylase Activity and Specificity. Biochemistry 2008, 47, 3332–3344. [Google Scholar] [CrossRef] [PubMed]
- Ielo, L.; Deri, B.; Germanò, M.P.; Vittorio, S.; Mirabile, S.; Gitto, R.; Rapisarda, A.; Ronsisvalle, S.; Floris, S.; Pazy, Y.; et al. Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. Eur. J. Med. Chem. 2019, 178, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Karade, S.S.; Hill, M.L.; Kiappes, J.L.; Manne, R.; Aakula, B.; Zitzmann, N.; Warfield, K.L.; Treston, A.M.; Mariuzza, R.A. N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity. J. Med. Chem. 2021, 64, 18010–18024. [Google Scholar] [CrossRef]
- Omer, H.A.A.; Caprioli, G.; Abouelenein, D.; Mustafa, A.M.; Uba, A.I.; Ak, G.; Ozturk, R.B.; Zengin, G.; Yagi, S. Phenolic Profile, Antioxidant and Enzyme Inhibitory Activities of Leaves from Two Cassia and Two Senna Species. Molecules 2022, 27, 5590. [Google Scholar] [CrossRef]
- Uba, A.I.; Zengin, G.; Montesano, D.; Cakilcioglu, U.; Selvi, S.; Ulusan, M.D.; Caprioli, G.; Sagratini, G.; Angeloni, S.; Jugreet, S.; et al. Antioxidant and Enzyme Inhibitory Properties, and HPLC–MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey. Appl. Sci. 2022, 12, 6561. [Google Scholar] [CrossRef]
- Miteva, M.A.; Guyon, F.; Tuffery, P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res. 2010, 38, W622–W627. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Uba, A.I.; Yelekçi, K. Pharmacophore-based virtual screening for identification of potential selective inhibitors of human histone deacetylase 6. Comput. Biol. Chem. 2018, 77, 318–330. [Google Scholar] [CrossRef]
- Uba, A.İ.; YelekÇİ, K. Exploration of the binding pocket of histone deacetylases: The design of potent and isoform-selective inhibitors. Turk. J. Biol. 2017, 41, 901–918. [Google Scholar] [CrossRef]
- Zengin, G.; Dall’Acqua, S.; Sinan, K.I.; Uba, A.I.; Sut, S.; Peron, G.; Etienne, O.K.; Kumar, M.; Cespedes-Acuña, C.L.; Alarcon-Enos, J.; et al. Gathering scientific evidence for a new bioactive natural ingredient: The combination between chemical profiles and biological activities of Flueggea virosa extracts. Food Biosci. 2022, 49, 101967. [Google Scholar] [CrossRef]
- Zengin, G.; Fahmy, N.M.; Sinan, K.I.; Uba, A.I.; Bouyahya, A.; Lorenzo, J.M.; Yildiztugay, E.; Eldahshan, O.A.; Fayez, S. Differential Metabolomic Fingerprinting of the Crude Extracts of Three Asteraceae Species with Assessment of Their In Vitro Antioxidant and Enzyme-Inhibitory Activities Supported by In Silico Investigations. Processes 2022, 10, 1911. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Kantharia, N. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef]
Extracts | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg RE/g) | DPPH (mg TE/g) | ABTS (mg TE/g) |
---|---|---|---|---|
T. capitata-Methanol | 127.52 ± 4.32 a | 44.08 ± 0.54 b | 269.71 ± 0.63 a | 379.11 ± 6.07 a |
T. capitata-Infusion | 94.57 ± 0.83 b | 9.41 ± 1.58 d | 259.63 ± 0.62 b | 305.60 ± 7.56 d |
T. sipylus-Methanol | 83.43 ± 0.57 d | 46.34 ± 0.27 a | 240.73 ± 3.49 c | 360.93 ± 1.61 b |
T. sipylus-Infusion | 88.88 ± 0.65 c | 34.11 ± 2.50 c | 256.66 ± 5.12 b | 345.10 ± 4.33 c |
T. sipylus | T. capitata | |||||||
---|---|---|---|---|---|---|---|---|
S. No. | tR (min) | [M-H]− m/z | m/z (% Base Peak) | Assigned Identification | MeOH | Inf | MeOH | Inf |
1 | 1.8 | 377 | MS2 [377]: 341 (100) MS3 [377→341]: 179 (66), 161 (100), 143 (23) | Disaccharide (HCl adduct) | ✓ | ✓ | ||
2 | 1.8 | 533 | MS2 [533]: 191 (100) MS3 [533→191]: 191 (100), 173 (28), 127 (14), 109 (12) | Quinic acid derivative | ✓ | ✓ | ||
3 | 2.1 | 191 | MS2 [191]: 173 (34), 127 (8), 111 (100) | Isocitric acid * | ✓ | ✓ | ✓ | ✓ |
4 | 2.6 | 191 | MS2 [191]: 173 (31), 111 (100) | Citric acid * | ✓ | ✓ | ✓ | ✓ |
5 | 3.7 | 315 | MS2 [315]: 153 (100), 135 (11) MS3 [315→153]: 123 (13), 109 (100) | Dihydroxybenzoic acid-O-hexoside | ✓ | ✓ | ✓ | ✓ |
6 | 3.9 | 395 | MS2 [395]: 197 (100), 179 (13), 135 (7) MS3 [395→197]: 179 (100), 153 (9), 135 (7) MS4 [395→197→179]: 135 (100) | Danshensu (dimer) | ✓ | ✓ | ✓ | ✓ |
7 | 4.4 | 353 | MS2 [353]: 191 (18), 179 (43), 173 (100), 135 (10) | Caffeolylquinic acid | ✓ | |||
8 | 9.0 | 353 | MS2 [353]: 191 (18), 179 (37), 173 (100), 135 (8) | 4-O-caffeoylquinic acid * | ✓ | ✓ | ||
9 | 9.3 | 367 | MS2 [367]: 193 (100), 173 (27), 149 (5), 134 (12) MS3 [367→193]: 149 (55), 134 (100) | 3-Feruloylquinic acid | ✓ | ✓ | ✓ | |
10 | 9.7 | 305 | MS2 [305]: 225 (100) MS3 [305→225]: 147 (95), 135 (100) | Unknown | ✓ | ✓ | ||
11 | 10.6 | 387 | MS2 [387]: 207 (100), 163 (33), 119 (8), 113 (15) MS3 [387→207]: 163 (100), 145 (3) | Medioresinol | ✓ | ✓ | ✓ | ✓ |
12 | 11.3 | 489 | MS2 [489]: 295 (33), 235 (61), 193 (100), 175 (20) MS3 [489→193]: 178 (63), 149 (100), 134 (57) | Ferulic acid derivative | ✓ | ✓ | ||
13 | 11.3 | 179 | MS2 [179]: 135 (100) | Caffeic acid * | ✓ | ✓ | ✓ | ✓ |
14 | 12.4 | 609 | MS2 [609]: 447 (100) MS3 [609→447]: 285 (100) | Flavonoid-O-dihexoside | ✓ | ✓ | ||
15 | 12.9 | 593 | MS2 [593]: 503 (28), 473 (100), 383 (16), 353 (41) MS3 [593→473]: 383 (17), 353 (100) | Vicenin-2 (apigenin-6,8-di-C-glucoside) * | ✓ | ✓ | ✓ | ✓ |
16 | 13.8 | 367 | MS2 [367]: 173 (100), 193 (6) MS3 [367→173]: 111 (100) | 4-Feruloylquinic acid | ✓ | ✓ | ||
17 | 14.1 | 473 | MS2 [473]: 295 (20), 235 (13), 193 (100), 175 (61) MS3 [473→193]: 149 (13), 134 (100) | Ferulic acid derivative | ✓ | ✓ | ||
18 | 14.8 | 449 | MS2 [449]: 287 (100) MS3 [449→287]: 151 (100), 135 (11), 125 (3), 107 (5) | Eriodictyol-O-hexoside | ✓ | |||
19 | 15.0 | 367 | MS2 [367]: 191 (100), 173 (13) | 5-Feruloylquinic acid | ✓ | |||
20 | 15.1 | 563 | MS2 [563]: 545 (45), 503 (75), 473 (100), 443 (25), 383 (45), 353 (54) | Apigenin-6-C- pentoside-8-C- hexoside | ✓ | ✓ | ||
21 | 15.3 | 593 | MS2 [593]: 503 (20), 473 (40), 431 (100), 353 (36), 311 (40) MS3 [593→431]: 341 (9), 311 (100) | Vitexin-hexoside (apigenin di-hexoside) | ✓ | ✓ | ✓ | ✓ |
22 | 16.0 | 739 | MS2 [739]: 431 (100), 311 (28) MS3 [739→431]: 341 (19), 311 (100) | Vitexin-rutinoside (apigenin-hexoside-rutinoside) | ✓ | |||
23 | 17.7 | 477 | MS2 [477]: 301 (100) | Unknown | ✓ | ✓ | ✓ | ✓ |
24 | 17.9 | 563 | MS2 [563]: 545 (15), 503 (8), 473 (47), 443 (100), 383 (22), 353 (30) | Apigenin-6-C- hexoside-8-C-pentoside | ✓ | ✓ | ✓ | |
25 | 18.0 | 595 | MS2 [595]: 287 (100) MS3 [595→287]: 151 (100), 135 (25), 125 (8), 107 (12) | Eriodictyol-O-rutinoside | ✓ | ✓ | ✓ | ✓ |
26 | 18.2 | 377 | MS2 [377]: 331 (100), 179 (16) MS3 [377→331]: 179 (100), 161 (18), 143 (33), 131 (22), 119 (9), 113 (21), 101 (12) | Hexoside derivative | ✓ | ✓ | ✓ | ✓ |
27 | 18.6 | 447 | MS2 [447]: 285 (100) MS3 [447→285]: 243 (45), 241 (27), 217 (100), 151 (19) | Luteolin-O-hexoside | ✓ | ✓ | ||
28 | 19.2 | 431 | MS2 [431]: 341 (6), 311 (100), 283 (6) | Vitexin (8-C-glucosyl apigenin) | ✓ | ✓ | ||
29 | 19.8 | 303 | MS2 [303]: 285 (100), 177 (12), 125 (12) | Taxifolin | ✓ | ✓ | ✓ | |
30 | 20.4 | 593 | MS2 [593]: 285 (100) | Flavonoid-rutinoside | ✓ | ✓ | ✓ | |
31 | 21.2 | 463 | MS2 [463]: 301 (100) MS3 [463→301]: 255 (16), 229 (12), 179 (64), 151 (100) | Quercetin-O-hexoside | ✓ | ✓ | ||
32 | 21.7 | 461 | MS2 [461]: 285 (100) MS3 [461→285]: 285 (100), 243 (6), 241 (14) | Luteolin-O-glucuronide | ✓ | ✓ | ✓ | ✓ |
33 | 22.1 | 521 | MS2 [521]: 359 (100) MS3 [521→359]: 223 (4), 197 (100), 179 (22), 161 (20), 135 (32) | Rosmarinic acid-O-hexoside | ✓ | ✓ | ✓ | |
34 | 22.2 | 579 | MS2 [579]: 271 (100) MS3 [579→271]: 151 (100), 125 (12) | Naringenin-O-hexoside | ✓ | ✓ | ||
35 | 22.5 | 431 | MS2 [431]: 269 (100) MS3 [431→269]: 225 (100), 183 (88), 151 (57) | Apigenin-O-hexoside | ✓ | ✓ | ||
36 | 22.7 | 579 | MS2 [579]: 417 (100) MS3 [579→417]: 402 (17), 387 (4), 181 (100), 166 (34), 151 (12) | Syringaresinol-O-hexoside | ✓ | ✓ | ||
37 | 23.0 | 623 | MS2 [623]: 447 (100) MS3 [623→447]: 315 (92), 271 (33), 163 (44), 151 (100) MS4 [623→447→271]: 151 (100) | Naringenin-di-O-glucuronide | ✓ | ✓ | ||
38 | 23.5 | 461 | MS2 [461]: 299 (100) MS3 [461→299]: 284 (100) | Methylated flavonoid-O-hexoside | ✓ | ✓ | ||
39 | 24.0 | 577 | MS2 [577]: 269 (100) | Unknown | ✓ | ✓ | ||
40 | 24.3 | 609 | MS2 [609]: 301 (100) MS3 [609→301]: 286 (100), 242 (21) | Hesperidin (hesperetin 7-O-rutinoside) * | ✓ | ✓ | ✓ | ✓ |
41 | 25.6 | 607 | MS2 [607]: 299 (100), 284 (42) | Methylated flavonoid-O-rutinoside | ✓ | ✓ | ||
42 | 26.1 | 359 | MS2 [359]: 223 (13), 197 (27), 179 (41), 161 (100), 133 (15) | Rosmarinic acid | ✓ | ✓ | ✓ | ✓ |
43 | 26.7 | 555 | MS2 [555]: 493 (100), 359 (54) MS3 [555→493]: 359 (100) MS4 [555→493→359]: 197 (21), 179 (14), 161 (100) | Salvianolic acid K | ✓ | ✓ | ||
44 | 29.2 | 717 | MS2 [717]: 555 (18), 519 (100), 357 (62) MS3 [→]: MS4 [→→]: | Salvianolic acid B/E isomer | ✓ | ✓ | ✓ | |
45 | 29.6 | 537 | MS2 [537]: 493 (100), 359 (24) MS3 [537→493]: 359 (100), 179 (12), 161 (10) | Salvianolic acid I (lithospermic acid A) | ✓ | |||
46 | 30.7 | 717 | MS2 [717]: 519 (100) MS3 [717→519]: 339 (24), 321 (100) | Salvianolic acid B/E isomer | ✓ | ✓ | ||
47 | 31.1 | 505 | MS2 [505]: 193 (100) MS3 [505→193]: 149 (18), 134 (100) | Ferulic acid derivative | ✓ | ✓ | ||
48 | 32.4 | 287 | MS2 [287]: 151 (100) | Eriodictyol | ✓ | ✓ | ✓ | ✓ |
49 | 33.5 | 637 | MS2 [637]: 591 (100) MS3 [637→591]: 283 (100), 268 (12) | Methylated flavonoid-O-rutinoside | ✓ | ✓ | ||
50 | 35.5 | 301 | MS2 [301]: 179 (100), 151 (84) | Quercetin * | ✓ | |||
51 | 36.1 | 285 | MS2 [285]: 285 (100), 243 (7), 241 (46), 151 (11) | Luteolin | ✓ | ✓ | ||
52 | 36.3 | 717 | MS2 [717]: 519 (100) MS3 [717→519]: 339 (100) | Salvianolic acid B/E isomer | ✓ | ✓ | ✓ | |
53 | 36.9 | 493 | MS2 [493]: 359 (100), 313 (10), 161 (23) MS3 [493→359]: 223 (12), 197 (23), 179 (26), 161 (100) | Salvianolic acid A | ✓ | ✓ | ✓ | |
54 | 38.1 | 329 | MS2 [329]: 314 (100) MS3 [329→314]: 299 (100) | Dimethylated flavonoid | ✓ | ✓ | ||
55 | 38.2 | 551 | MS2 [551]: 519 (79), 359 (100) MS3 [551→359]: 223 (27), 197 (35), 179 (13), 161 (100) | Monomethyl lithospermate | ✓ | |||
56 | 39.1 | 327 | MS2 [327]: 309 (27), 291 (43), 229 (100), 211 (66) | Oxo-dihydroxy-octadecenoic acid | ✓ | ✓ | ✓ | ✓ |
57 | 39.2 | 271 | MS2 [271]: 151 (100) | Naringenin | ✓ | ✓ | ||
58 | 40.0 | 269 | MS2 [269]: 269 (100), 225 (36), 197 (28), 151 (79): | Apigenin * | ✓ | ✓ | ||
59 | 40.6 | 329 | MS2 [329]: 311 (20), 229 (100), 211 (69), 209 (10), 171 (27) | Trihydroxy-octadecenoic acid | ✓ | ✓ | ✓ | ✓ |
T. sipylus | T. capitata | ||||
---|---|---|---|---|---|
Peak | Compound | MeOH | Infusion | Peak | Compound |
1 | Disaccharide | 3.43 | 0.00 | 0.66 | 0.00 |
2 | Quinic acid derivative | 2.00 | 8.72 | 0.00 | 0.00 |
3 | Isocitric acid | 0.09 | 0.05 | 0.05 | 0.05 |
4 | Citric acid | 0.01 | 0.02 | 0.01 | 0.14 |
5 | Dihydroxybenzoic acid-O-Hex | 0.25 | 1.04 | 0.05 | 0.23 |
6 | Danshensu | 0.42 | 1.47 | 0.51 | 1.26 |
7 | Caffeolylquinic acid | 0.02 | 0.00 | 0.00 | 0.00 |
8 | 4-O-caffeoylquinic acid | 0.87 | 1.21 | 0.00 | 0.00 |
9 | 3-Feruloylquinic acid | 0.30 | 2.67 | 0.01 | 0.00 |
10 | Unknown | 0.00 | 0.00 | 12.13 | 32.12 |
11 | Medioresinol | 5.09 | 6.91 | 0.56 | 1.61 |
12 | Ferulic acid derivative | 0.12 | 0.50 | 0.00 | 0.00 |
13 | Caffeic acid | 0.12 | 0.50 | 0.11 | 0.05 |
14 | Flavonoid-O-di-Hex | 0.33 | 1.10 | 0.00 | 0.00 |
15 | Vicenin-2 | 3.38 | 11.55 | 10.85 | 13.63 |
16 | 4-Feruloylquinic acid | 3.89 | 4.11 | 0.00 | 0.00 |
17 | Ferulic acid derivative | 0.14 | 0.30 | 0.00 | 0.00 |
18 | Eriodictyol-O-Hex | 0.14 | 0.00 | 0.00 | 0.00 |
19 | 5-Feruloylquinic acid | 0.00 | 1.78 | 0.00 | 0.00 |
20 | Apigenin-6-C-Pen-8-C-Hex | 0.10 | 0.38 | 0.00 | 0.00 |
21 | Vitexin Hex | 0.16 | 0.47 | 0.30 | 0.59 |
22 | Vitexin-Rut | 0.00 | 0.00 | 0.08 | 0.00 |
23 | Unknown | 0.74 | 2.23 | 0.10 | 0.32 |
24 | Apigenin-6-C-Hex-8-C-Pen | 0.09 | 0.00 | 0.17 | 0.28 |
25 | Eriodictyol-O-Rut | 0.58 | 0.63 | 2.53 | 1.55 |
26 | Hexoside derivative | 2.33 | 2.48 | 0.01 | 0.39 |
27 | Luteolin-O-Hex | 3.34 | 2.54 | 0.00 | 0.00 |
28 | Vitexin | 0.00 | 0.00 | 0.73 | 0.56 |
29 | Taxifolin | 0.31 | 0.00 | 3.67 | 0.93 |
30 | Flavonoid-Rut | 1.04 | 0.57 | 4.27 | 0.00 |
31 | Quercetin-O-Hex | 0.38 | 0.40 | 0.00 | 0.00 |
32 | Luteolin-O-Gluc | 6.57 | 11.15 | 2.43 | 5.01 |
33 | Rosmarinic acid-O-Hex | 0.22 | 0.51 | 0.00 | 0.58 |
34 | Naringenin-O-Hex | 0.24 | 0.30 | 0.00 | 0.00 |
35 | Apigenin-O-Hex | 1.08 | 0.89 | 0.00 | 0.00 |
36 | Syringaresinol-O-Hex | 0.00 | 0.00 | 1.04 | 1.36 |
37 | Naringenin-di-O-Gluc | 1.36 | 3.13 | 0.00 | 0.00 |
38 | Methylated flavonoid-O-Hex | 0.85 | 0.47 | 0.00 | 0.00 |
39 | Unknown | 1.01 | 0.00 | 0.00 | 0.28 |
40 | Hesperidin | 0.18 | 0.09 | 10.19 | 1.87 |
41 | Methylated flavonoid-O-Rut | 0.00 | 0.00 | 5.85 | 0.78 |
42 | Rosmarinic acid | 25.56 | 14.96 | 20.95 | 22.80 |
43 | Salvianolic acid K | 4.44 | 9.31 | 0.00 | 0.00 |
44 | Salvianolic acid B/E isomer | 0.00 | 0.78 | 2.84 | 5.79 |
45 | Salvianolic acid I | 12.24 | 0.00 | 0.00 | 0.00 |
46 | Salvianolic acid B/E isomer | 0.00 | 0.00 | 1.84 | 3.38 |
47 | Ferulic acid derivative | 0.36 | 0.00 | 0.09 | 0.00 |
48 | Eriodictyol | 2.40 | 0.25 | 2.79 | 0.58 |
49 | Methylated flavonoid-O-Rut | 0.00 | 0.00 | 6.07 | 0.57 |
50 | Quercetin | 0.00 | 0.00 | 0.30 | 0.00 |
51 | Luteolin | 1.08 | 0.00 | 2.01 | 0.00 |
52 | Salvianolic acid B/E isomer | 1.54 | 1.97 | 0.00 | 0.15 |
53 | Salvianolic acid A | 0.64 | 1.55 | 0.00 | 0.50 |
54 | Dimethylated flavonoid | 0.00 | 0.00 | 2.64 | 0.42 |
55 | Monomethyl lithospermate | 6.21 | 0.00 | 0.00 | 0.00 |
56 | Oxo-dihydroxy-octadecenoic acid | 1.47 | 2.06 | 1.08 | 1.36 |
57 | Naringenin | 1.43 | 0.00 | 0.25 | 0.00 |
58 | Apigenin | 0.61 | 0.00 | 2.11 | 0.00 |
59 | Trihydroxy-octadecenoic acid | 0.86 | 0.94 | 0.69 | 0.85 |
No. | Assigned Identification | T. sipylus | T. capitata | ||
---|---|---|---|---|---|
MeOH | Inf | MeOH | Inf | ||
Phenolic acids | |||||
8 + 9 | CQA + FQA | 2.4 ± 0.2 b | 5.5 ± 0.4 a | --- | --- |
12 + 13 | Ferulic + caffeic acids | 1.04 ± 0.07 a | 0.61 ± 0.04 b | --- | --- |
16 | FQA | 1.8 ± 0.1 a | 1.00 ± 0.07 b | --- | --- |
19 | FQA | --- | 0.49 ± 0.03 | --- | --- |
42 | Rosmarinic acid | 19 ± 1 a | 12.3 ± 0.8 b | 9.3 ± 0.6 c | 6.1 ± 0.4 d |
43 | Salvianolic acid K | 1.07 ± 0.06 b | 1.8 ± 0.1 a | --- | --- |
44 | Salvianolic acid B/E | --- | 0.29 ± 0.02 b | 0.31 ± 0.02 b | 0.46 ± 0.03 a |
45 | Salvianolic acid I | 5.4 ± 0.4 | --- | --- | --- |
46 | Salvianolic acid B/E | --- | --- | 0.25 ± 0.02 b | 0.43 ± 0.03 a |
53 | Salvianolic acid A | 0.34 ± 0.02 a | 0.42 ± 0.03 a | --- | 0.35 ± 0.02 a |
55 | Monomethyl Lith | 1.34 ± 0.08 | --- | --- | --- |
Total | 32 ± 1 a | 22.4 ± 0.9 b | 9.9 ± 0.6 c | 7.3 ± 0.4 d | |
Flavonoids | |||||
15 | Vicenin-2 | 2.5 ± 0.1 c | 6.8 ± 0.4 b | 7.0 ± 0.4 b | 9.0 ± 0.5 a |
20 + 21 | Apigenin glycosides | --- | 0.29 ± 0.02 b | 0.27 ± 0.02 b | 0.58 ± 0.04 a |
25 | Eriodictyol-O-rutinoside | --- | --- | 0.43 ± 0.03 a | 0.46 ± 0.03 a |
27 | Luteolin-O-hexoside | 5.5 ± 0.4 a | 2.2 ± 0.1 b | --- | --- |
28 | Vitexin | --- | --- | 0.33 ± 0.02 a | 0.36 ± 0.02 a |
29 | Taxifolin | 0.50 ± 0.04 b | --- | 1.18 ± 0.07 a | --- |
31 | Quercetin-O-hexoside | --- | 0.24 ± 0.02 | --- | --- |
32 | Luteolin-O-glucuronide | 13.1 ± 0.8 a | 7.4 ± 0.5 b | 1.6 ± 0.1 d | 2.1 ± 0.1 c |
37 | Naringenin-di-O-Gluc | 1.14 ± 0.08 a | 0.19 ± 0.01 b | --- | --- |
40 | Hesperidin | --- | --- | 0.51 ± 0.03 | --- |
48 | Eriodictyol | 0.41 ± 0.03 a | --- | 0.20 ± 0.01 b | 0.44 ± 0.03 a |
57 | Naringenin | 0.35 ± 0.02 | --- | --- | --- |
58 | Apigenin | 0.38 ± 0.03 b | --- | 2.2 ± 0.1 a | --- |
Total | 24 ± 1 a | 17.1 ± 0.7 b | 13.7 ± 0.4 c | 12.9 ± 0.5 c | |
TIPC | 56 ± 2 a | 40 ± 1 b | 23.6 ± 0.7 c | 20.2 ± 0.6 d |
Extracts | CUPRAC (mg TE/g) | FRAP (mg TE/g) | Metal Chelating (mg EDTAE/g) | Phosphomolybdenum (mmol TE/g) |
---|---|---|---|---|
T. capitata-Methanol | 802.22 ± 34.70 a | 270.16 ± 6.75 b | 16.61 ± 0.96 c | 3.61 ± 0.27 a |
T. capitata-Infusion | 622.65 ± 15.73 c | 285.42 ± 5.70 a | 28.04 ± 2.80 b | 2.57 ± 0.08 b |
T. sipylus-Methanol | 657.70 ± 3.05 b | 249.33 ± 8.21 c | 14.97 ± 3.00 d | 2.52 ± 0.23 b |
T. sipylus-Infusion | 625.20 ± 16.29 c | 278.37 ± 5.64 a | 36.72 ± 0.73 a | 2.39 ± 0.11 c |
Extracts | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|
T. capitata-Methanol | 3.86 ± 0.35 a | 4.36 ± 0.37 a | 89.66 ± 0.66 a | 0.84 ± 0.03 a | 1.78 ± 0.03 a |
T. capitata-Infusion | 0.73 ± 0.02 c | na | 19.11 ± 3.69 b | 0.11 ± 0.01 c | 1.67 ± 0.03 b |
T. sipylus-Methanol | 3.49 ± 0.14 b | 3.79 ± 0.12 b | 83.18 ± 2.57 a | 0.61 ± 0.07 b | 1.73 ± 0.04 a |
T. sipylus-Infusion | 0.35 ± 0.05 d | na | 18.74 ± 2.24 b | 0.11 ± 0.01 c | 1.45 ± 0.03 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llorent-Martínez, E.J.; Ruiz-Medina, A.; Zengin, G.; Ak, G.; Jugreet, S.; Mahomoodally, M.F.; Emre, G.; Orlando, G.; Libero, M.L.; Nilofar; et al. New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches. Molecules 2022, 27, 9029. https://doi.org/10.3390/molecules27249029
Llorent-Martínez EJ, Ruiz-Medina A, Zengin G, Ak G, Jugreet S, Mahomoodally MF, Emre G, Orlando G, Libero ML, Nilofar, et al. New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches. Molecules. 2022; 27(24):9029. https://doi.org/10.3390/molecules27249029
Chicago/Turabian StyleLlorent-Martínez, Eulogio J., Antonio Ruiz-Medina, Gokhan Zengin, Gunes Ak, Sharmeen Jugreet, Mohamad Fawzi Mahomoodally, Gizem Emre, Giustino Orlando, Maria Loreta Libero, Nilofar, and et al. 2022. "New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches" Molecules 27, no. 24: 9029. https://doi.org/10.3390/molecules27249029
APA StyleLlorent-Martínez, E. J., Ruiz-Medina, A., Zengin, G., Ak, G., Jugreet, S., Mahomoodally, M. F., Emre, G., Orlando, G., Libero, M. L., Nilofar, Acquaviva, A., Di Simone, S. C., Menghini, L., Ferrante, C., Brunetti, L., Recinella, L., Leone, S., Shariati, M. A., Uba, A. I., & Chiavaroli, A. (2022). New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches. Molecules, 27(24), 9029. https://doi.org/10.3390/molecules27249029