Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Distribution in the Raw Wastewater
2.2. Correlation among Parameters in the Raw Wastewater
2.3. Analysis of the Treated Effluent
2.3.1. Titanium (Anode) to Aluminium (Cathode) Electrode Arrangement (Ti-Al)
2.3.2. Aluminium (Anode) to Titanium (Cathode) Electrode Arrangement (Al-Ti)
2.4. Removal Efficiencies
2.4.1. Hydraulic Retention Time—20 min
2.4.2. Hydraulic Retention Time—40 min
2.5. Percent Compliance
3. Materials and Methods
3.1. Case Study, Water Samples, and Analytical Methods
3.2. Experimental Setup
3.3. Statistical Analysis
3.3.1. Removal Efficiency Analysis
- , percent compliance,
- the recommended standard for an ith parameter,
- concentration of the ith parameter.
3.3.2. Relationship Analysis
3.3.3. Data Distribution Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ronaldo, R. Measuring the performance of poultry business through effective supply chain management skills. Uncertain Supply Chain Manag. 2020, 8, 55–66. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Jakupova, Z.; Orynbekov, D.; Tashenov, E.; Kydyrbekova, A.; Mkilima, T.; Inglezakis, V.J. Evaluation of Electrochemical Methods for Poultry Slaughterhouse Wastewater Treatment. Sustainability 2020, 12, 5110. [Google Scholar] [CrossRef]
- Aziz, H.; Puat, N.; Alazaiza, M.; Hung, Y.-T. Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor. Int. J. Environ. Res. Public Health 2018, 15, 1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basitere, M.; Rinquest, Z.; Njoya, M.; Sheldon, M.S.; Ntwampe, S.K.O. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system. Water Sci. Technol. 2017, 76, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Rajab, A.R.; Salim, M.R.; Sohaili, J.; Anuar, A.N.; Salmiati; Lakkaboyana, S.K. Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater. Chem. Eng. J. 2017, 313, 967–974. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Devrishov, D.; Marzanov, N.; Marzanova, S.; Kydyrbekova, A.; Uryumtseva, T.; Tastanova, L.; Mkilima, T. Performance of Graphite and Titanium as Cathode Electrode Materials on Poultry Slaughterhouse Wastewater Treatment. Materials 2020, 13, 4489. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Atoche-Garay, D.F.; Pinto Pagaza, D.A.; Ahmed, M.A.; Colina Andrade, G.J.; Santos, J.C. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. J. Environ. Chem. Eng. 2021, 9, 105174. [Google Scholar] [CrossRef]
- Delforno, T.P.; Lacerda Júnior, G.V.; Noronha, M.F.; Sakamoto, I.K.; Varesche, M.B.A.; Oliveira, V.M. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: Integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiologyopen 2017, 6, e00443. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Zorpas, A.A.; Orynbekov, D.; Zhumagulov, M.; Saspugayeva, G.; Kydyrbekova, A.; Mkilima, T.; Inglezakis, V.J. The Effect of Scale on the Performance of an Integrated Poultry Slaughterhouse Wastewater Treatment Process. Sustainability 2020, 12, 4679. [Google Scholar] [CrossRef]
- Baker, B.R.; Mohamed, R.; Al-Gheethi, A.; Aziz, H.A. Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. J. Dispers. Sci. Technol. 2021, 42, 880–899. [Google Scholar] [CrossRef]
- Njoya, M.; Basitere, M.; Ntwampe, S.K.O.; Lim, J.W. Performance evaluation and kinetic modeling of down-flow high-rate anaerobic bioreactors for poultry slaughterhouse wastewater treatment. Environ. Sci. Pollut. Res. 2021, 28, 9529–9541. [Google Scholar] [CrossRef] [PubMed]
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of Poultry Slaughterhouse Wastewater with Membrane Technologies: A Review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Paulista, L.O.; Presumido, P.H.; Theodoro, J.D.P.; Pinheiro, A.L.N. Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes. Environ. Sci. Pollut. Res. 2018, 25, 19790–19800. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, F.; Abbasi, M. Poultry Slaughterhouse Wastewater Treatment Using Anaerobic Fluid Bed Reactor and Aerobic Mobile-Bed Biological Reactor. Int. J. Eng. 2019, 32, 634–640. [Google Scholar] [CrossRef]
- Narayanan, C.M.; Narayan, V. Biological wastewater treatment and bioreactor design: A review. Sustain. Environ. Res. 2019, 29, 33. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, G. Biological Wastewater Treatment. In Principles of Membrane Bioreactors for Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2015; pp. 32–91. ISBN 9781536135800. [Google Scholar]
- Xu, S.; Wu, X.; Lu, H. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Front. Environ. Sci. Eng. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Edwards, J.K.; Heath, A.W. Biological Treatments. In A Consumer’s Guide to Mental Health Services; Routledge: Oxfordshire, UK, 2011; pp. 99–114. [Google Scholar]
- Chollom, M.N.; Rathilal, S.; Swalaha, F.M.; Bakare, B.F.; Tetteh, E.K. Anaerobic Treatment of Slaughterhouse Wastewater: Evaluating Operating Conditions. In Proceedings of the WIT Transactions on Ecology and the Environment, Ashurst, New Forest, UK, 3–5 October 2019; WIT Press: New Forest National Park, UK, 2019; pp. 251–262. [Google Scholar]
- Amin, M.; Rafiei, N.; Taheri, E. Treatment of slaughterhouse wastewater in an upflow anaerobic sludge blanket reactor: Sludge characteristics. Int. J. Environ. Health Eng. 2016, 5, 22. [Google Scholar] [CrossRef]
- Trishitman, D.; Cassano, A.; Basile, A.; Rastogi, N.K. Reverse osmosis for industrial wastewater treatment. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–228. ISBN 9780128167779. [Google Scholar]
- Patel, D.; Mudgal, A.; Patel, V.; Patel, J. Water desalination and wastewater reuse using integrated reverse osmosis and forward osmosis system. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1146, 012029. [Google Scholar] [CrossRef]
- Eryuruk, K.; Tezcan Un, U.; Bakır Ogutveren, U. Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes. J. Clean. Prod. 2018, 172, 1089–1095. [Google Scholar] [CrossRef]
- Asselin, M.; Drogui, P.; Benmoussa, H.; Blais, J.-F. Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere 2008, 72, 1727–1733. [Google Scholar] [CrossRef]
- Ngobeni, P.V.; Basitere, M.; Thole, A. Treatment of poultry slaughterhouse wastewater using electrocoagulation: A review. Water Pract. Technol. 2021, 17, 38–59. [Google Scholar] [CrossRef]
- Sharma, S.; Simsek, H. Sugar beet industry process wastewater treatment using electrochemical methods and optimization of parameters using response surface methodology. Chemosphere 2020, 238, 124669. [Google Scholar] [CrossRef] [PubMed]
- Davarnejad, R.; Nikseresht, M. Dairy wastewater treatment using an electrochemical method: Experimental and statistical study. J. Electroanal. Chem. 2016, 775, 364–373. [Google Scholar] [CrossRef]
- Hoang, T.L.; Luu, T.L. Fabrication of textile wastewater treatment block unit using electrochemical method. Desalin. Water Treat. 2020, 187, 24–29. [Google Scholar] [CrossRef]
- Tien, T.T.; Luu, T. Le Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials. Environ. Eng. Res. 2019, 25, 324–334. [Google Scholar] [CrossRef]
- Al-Barakat, H.S.; Matloub, F.K.; Ajjam, S.K.; Al-Hattab, T.A. Modeling and Simulation of Wastewater Electrocoagulation Reactor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 871, 012002. [Google Scholar] [CrossRef]
- Bitenc, J.; Lindahl, N.; Vizintin, A.; Abdelhamid, M.E.; Dominko, R.; Johansson, P. Concept and electrochemical mechanism of an Al metal anode—Organic cathode battery. Energy Storage Mater. 2020, 24, 379–383. [Google Scholar] [CrossRef]
- Salazar-Banda, G.R.; Santos, G.d.O.S.; Gonzaga, I.M.D.; Dória, A.R.; Eguiluz, K.I.B. Developments in electrode materials for wastewater treatment. Curr. Opin. Electrochem. 2021, 26, 100663. [Google Scholar] [CrossRef]
- Peng, H.; Leng, Y.; Cheng, Q.; Shang, Q.; Shu, J.; Guo, J. Efficient removal of hexavalent chromium from wastewater with electro-reduction. Processes 2019, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Rethinam, A.J.; Kennedy, C.J. Indirect electrooxidation of crotyl and cinnamyl alcohol using a Ni(OH)2 electrode. J. Appl. Electrochem. 2004, 34, 371–374. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Ma, H.; Dong, G. Enhancing the yield of hydrogen peroxide and phenol degradation via a synergistic effect of photoelectrocatalysis using a g-C3N4/ACF electrode. Int. J. Hydrogen Energy 2018, 43, 19500–19509. [Google Scholar] [CrossRef]
- Kabdaşlı, I.; Arslan-Alaton, I.; Ölmez-Hancı, T.; Tünay, O. Electrocoagulation applications for industrial wastewaters: A critical review. Environ. Technol. Rev. 2012, 1, 2–45. [Google Scholar] [CrossRef]
- Chopra, A.K.; Sharma, A.K. Effect of electrochemical treatment on the COD removal from biologically treated municipal wastewater. Desalin. Water Treat. 2015, 53, 41–47. [Google Scholar] [CrossRef]
- Hasanah, U.; Mulyati, A.H.; Sutanto; Widiastuti, D.; Warnasih, S.; Syahputri, Y.; Panji, T. Development of COD (Chemical Oxygen Demand) Analysis Method in Waste Water Using UV-VIS Spectrophotometer. J. Sci. Innovare 2020, 3, 35–38. [Google Scholar] [CrossRef]
Turbidity | Color | TSS | COD | BOD | |
---|---|---|---|---|---|
Turbidity | 1 | ||||
Color | 0.99 | 1 | |||
TSS | 0.87 | 0.88 | 1 | ||
COD | 0.77 | 0.75 | 0.88 | 1 | |
BOD | 0.80 | 0.85 | 0.80 | 0.81 | 1 |
Parameter | Min | Max | Median | Mean | STD |
---|---|---|---|---|---|
Turbidity | 0 | 1.5 | 0.05 | 0.283 | 0.546 |
Color | 0 | 59 | 32 | 29 | 18.102 |
TSS | 0 | 5 | 1.5 | 2 | 1.633 |
COD | 4.8 | 412 | 10.05 | 126.333 | 170.225 |
BOD | 4.68 | 31.2 | 15.315 | 15.945 | 9.441 |
Ammonia | 0 | 2.24 | 1.35 | 1.377 | 0.763 |
Chromium | 0 | 0.1 | 0.05 | 0.05 | 0.05 |
Nickel | 0 | 0.06 | 0 | 0.019 | 0.027 |
Manganese | 0.1 | 0.15 | 0.105 | 0.115 | 0.019 |
Parameter | Min | Max | Median | Mean | STD |
---|---|---|---|---|---|
Turbidity | 0 | 0 | 0 | 0 | 0 |
Color | 0 | 35 | 19 | 15 | 12.298 |
TSS | 0 | 0 | 0 | 0 | 0 |
COD | 5.5 | 70.6 | 21.15 | 26.567 | 20.997 |
BOD | 8.08 | 13 | 10.21 | 10.393 | 1.790 |
Ammonia | 0 | 1.14 | 0.9 | 0.680 | 0.503 |
Chromium | 0 | 0.1 | 0.05 | 0.050 | 0.050 |
Nickel | 0 | 0 | 0 | 0 | 0 |
Manganese | 0.12 | 0.19 | 0.15 | 0.152 | 0.029 |
Parameter | Min | Max | Median | Mean | STD | Guideline | Agency | Unit |
---|---|---|---|---|---|---|---|---|
Turbidity | 45.4 | 902 | 664 | 600.88 | 301.505 | 5 | WHO | FAU * |
Color | 422 | 5340 | 4235 | 3694.4 | 1705.302 | 5 | WHO | degree |
TSS | 126 | 2264 | 1814 | 1528.8 | 738.1153 | 500 | KZ | mg/L |
COD | 358 | 5998 | 3480 | 3359 | 1901.393 | 125 | KZ | mg/L |
BOD | 139.6 | 2214 | 1625 | 1419.52 | 717.577 | 30 | KZ | mg/L |
Ammonium | 2.21 | 5.66 | 4.03 | 3.836 | 1.208 | 0.5 | KZ | mg/L |
Manganese | 0.387 | 4.26 | 1.44 | 1.6934 | 1.403 | 0.1 | WHO | mg/L |
Nickel | 3.73 | 8.61 | 6.06 | 6.5684 | 1.834 | 0.1 | WHO | mg/L |
Chromium | 0.56 | 4.62 | 2.16 | 2.255 | 1.426 | 0.1 | WHO | mg/L |
Parameter | Value | Unit |
---|---|---|
Initial water temperature | 5–10 | °C |
Potential (voltage) | 24 | V |
Average current density | 5.5 | A |
Average power | 132 | W |
Hydraulic retention time | 40 | min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meiramkulova, K.; Bazarbayeva, T.; Orynbassar, R.; Tleukulov, A.; Madina, N.; Mashan, T.; Dariya, A.; Apendina, A.; Nurmukhanbetova, N. Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater. Molecules 2022, 27, 1014. https://doi.org/10.3390/molecules27031014
Meiramkulova K, Bazarbayeva T, Orynbassar R, Tleukulov A, Madina N, Mashan T, Dariya A, Apendina A, Nurmukhanbetova N. Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater. Molecules. 2022; 27(3):1014. https://doi.org/10.3390/molecules27031014
Chicago/Turabian StyleMeiramkulova, Kulyash, Tursynkul Bazarbayeva, Raigul Orynbassar, Almas Tleukulov, Nabiollina Madina, Togzhan Mashan, Akubayeva Dariya, Ainagul Apendina, and Nurgul Nurmukhanbetova. 2022. "Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater" Molecules 27, no. 3: 1014. https://doi.org/10.3390/molecules27031014
APA StyleMeiramkulova, K., Bazarbayeva, T., Orynbassar, R., Tleukulov, A., Madina, N., Mashan, T., Dariya, A., Apendina, A., & Nurmukhanbetova, N. (2022). Assessing the Influence of Electrode Polarity on the Treatment of Poultry Slaughterhouse Wastewater. Molecules, 27(3), 1014. https://doi.org/10.3390/molecules27031014