Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. EOs Chemical Compositions
2.2. Antibacterial Activity
2.3. Screening the Synergistic Effect of the EO with Antibiotic Discs
3. Materials and Methods
3.1. Plant Material and Isolation of EOs
3.2. Gas Chromatography–Flame Ionization Detector (GS–FID) and Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.3. Tested Bacterial Isolates
3.4. Study of the Antibacterial Activities of EOs in Solid Media
3.5. Study of the Antibacterial Activities of EOs in a Liquid Medium
3.6. Screening the Synergistic Effect of the EO with Antibiotic Discs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abreviations
A. baumannii | Acinetobacter baumannii |
A. herba alba | Artemisia herba alba |
A | antagonism |
AK | amikacin |
AT | aztreonam |
CAZ | ceftazidime |
CIP | ciprofloxacin |
CTX | cefotaxime |
CX | cefoxitin |
E. coli | Escherichia coli |
EI | electronic impact |
EO | essential oil |
FEP | cefepime |
GC–FID | gas chromatography–flame ionization detector |
GC–MS | gas chromatography–mass spectrometry |
i.d. | internal diameter |
IMP | imipenem |
IZD | inhibition zone diameter |
L. innocua | Listeria innocua |
MIC | minimal inhibitory concentration |
M. pulegium | Mentha pulegium |
NA | nalidixic acid |
NZ | no inhibition Zone |
OX | oxacillin |
P. aeruginosa | Pseudomonas aeruginosa |
PIP | piperacillin |
S. aureus | Staphylococcus aureus |
S | synergism |
TCC | ticarcillin–clavulanic acid |
TIC | ticarcillin |
TOB | tobramicin |
VAN | vancomycin |
References
- Cavallo, J.D.; Fabre, R.; Jehl, F.; Rapp, C.; Garrabé, E. Bêtalactamines. EMC-Mal. Infect. 2004, 1, 129–202. [Google Scholar]
- Gordon, N.C.; Wareham, D.W. Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. Int. J. Antimicrob. Agents 2010, 35, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Gavanji, S.; Mohammadi, E.; Larki, B.; Bakhtari, A. Antimicrobial and cytotoxic evaluation of some herbal essential oils in comparison with common antibiotics in bioassay condition. Integr. Med. Res. 2014, 3, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and Antimicrobial Activity of Essential Oils from Aromatic Plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.-N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Mahendran, G.; Verma, S.K.; Rahman, L.-U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol. 2021, 278, 114266. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Tsouh Fokou, P.V.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Maiza-Benabdesselam, F.; Bekka, F.; Touati, A.; Gören, A.C.; Benallaoua, S. Antibacterial activity of essential oils of two algerian medicinal plants: Origanum glandulosum Desf. and Artemisia herba Alba Asso. Life Sci. Leafl. 2011, 16, 583–594. [Google Scholar]
- Maiza-Benabdesselam, F.; Bekka, F.; Benallaoua, S.; Bougoffa, K. Antibacterial activity of essential oils of two algerian medicinal plants. 3rd Int. Conf. Drug Discov. Ther. Curr. Med. Chem. 2011, 18, SL-14. [Google Scholar]
- Tohidpour, A.; Sattari, M.; Omidbaigi, R.; Yadegar, A.; Nazemi, J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2010, 17, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Khadir, A.; Bendahou, M.; Benbelaid, F.; Bellahcene, C.; Abdelouahid, D.E.; Muselli, A.; Paollini, J.; Desjober, J.; Costa, J. Evaluation of the MRSA sensitivity to essential oils obtained from four Algerian medicinal plants. J. Appl. Pharm. Sci. 2013, 3, 018–024. [Google Scholar]
- Bekka-Hadji, F.; Bombarda, I.; Touati, A. Antibacterial activity against methicillin-resistant Staphylococcus aureus of five essential oils from Algerian medicinal plants (Lamiaceae). J. Essent. Oil Res. 2016, 28, 518–527. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. Food Sci. Technol. 2020, 122, 109057. [Google Scholar] [CrossRef]
- Rosato, A.; Piarulli, M.; Corbo, F.; Muraglia, M.; Carone, A.; Vitali, M.E.; Vitali, C. In Vitro Synergistic Action of Certain Combinations of Gentamicin and Essential Oils. Curr. Med. Chem. 2010, 17, 3289–3295. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Shaukat, S.; Mahnaaz, K.H.; Arshiya, T.; Zahoor, A. Synergistic Effect of Salvadora persica Extracts, Tetracycline and Penicillin Against Staphylococcus aureus. Afr. J. Basic Appl. Sci. 2010, 2, 25–29. [Google Scholar]
- Durate, A.; Silva, F.; Ferriera, S.; Domingues, F.C. Synergitic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedecine 2012, 19, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales; Tome II C.N.R.S.: Paris, France, 1933; p. 603. [Google Scholar]
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Trabelsi, N.; Noumi, E.; Snoussi, M.; Fallah, H.; Ksouri, R.; Bakhrouf, A. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J. Microbiol. Biotechnol. 2009, 25, 2227–2238. [Google Scholar] [CrossRef]
- Fenardji, F.; Klur, M.; Fourlon, C.; Ferrando, R. Contribution à l’étude de l’armoise blanche (Artemisia herba alba L.). RcvElevMédvét. Pays Trop. 1974, 27, 203–206. [Google Scholar] [CrossRef]
- Salido, S.; Valenzuela, L.R.; Altarejos, J.; Nogueras, M.; Sánchez, A.; Cano, E. Composition and infraspecific variability of Artemisia herba-alba from southern Spain. Biochem. Syst. Ecol. 2004, 32, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Atoum, M.; Al-Charchafchi, F.; Modallal, N. Biological activity and antimutagencity of Water Soluble Phytotoxins from Artemisia herba alba Asso. Pak. J. Biol. Sci. 2006, 9, 1774–1778. [Google Scholar] [CrossRef] [Green Version]
- Bendjilali, B.; Richard, H. Etude de quelquespeuplementsd’Armoise blanche du Maroc Artemisia herba-alba. Riv. Ital. EPPOS 1980, 62, 69–74. [Google Scholar]
- Bendjilali, B.; Sarris, J.; Richard, H. Nouveaux Chemotypes d’Artemisiaherba alba. Sci. Aliment. 1982, 2, 515–527. [Google Scholar]
- Vernin, G.; Merad, L.O. Mass spectra and Kovats indexes of some new cis-chrysanthenyl esters found in the essential oil of Artemisia herba alba from Algeria. J. Essent. Oil Res. 1994, 6, 437–448. [Google Scholar] [CrossRef]
- Vernin, G.; Parkanyi, C. GC/MS analysis of Artemisia herba alba Asso. From Algeria, Non polar and polar extracts. Riv. Ital. EPPOS 2001, 32, 3–16. [Google Scholar]
- Said, M.E.-A.; Vanloot, P.; Bombarda, I.; Naubron, J.V.; Dahmane, E.M.; Aamouche, H.; Jean, M.; Vanthuyne, N.; Dupuy, N.; Roussel, C. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs. Anal. Chim. Acta 2016, 903, 121–130. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- Duru, M.E.; Öztürk, M.; Ugur, A.; Ceylan, Ö. The constituents of essential oil and in vitro antimicrobial activity of Micromeria cilicica from Turkey. J. Ethnopharmacol. 2004, 94, 43–48. [Google Scholar] [CrossRef]
- Benouda, A.; Benjilali, B.; Hassar, M. Les Propriétés Antiseptiques des Huiles Essentielles ln Vitro. Testées Contre des Germes Pathogènes Hospitaliers. Phytotherapia 1988, 59, 115–119. [Google Scholar]
- Tepe, B.; Daferera, D.; Sökmen, M.; Polissiou, M.; Sökmen, A. The in vitro antioxidant and antimicrobial activities of the essential oil and various extracts of Origanum syriacum L. var bevanii. J. Sci. Food Agric. 2004, 84, 1389–1396. [Google Scholar] [CrossRef]
- Fu, Y.J.; Zu, Y.G.; Chen, L.Y.; Shi, X.G.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial Activity of Clove and Rosemary Essential Oils Alone and in Combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef]
- Rasooli, I.; Mirmostafa, S.A. Bacterial Susceptibility to and Chemical Composition of Essential Oils from Thymus kotschyanus and Thymus persicus. J. Agric. Food Chem. 2004, 51, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Uzair, B.; Niazl, N.; Bano, A.; Khan, B.A.; Zafar, N.; Iqbal, M.; Tahira, R.; Fasim, F. Essential oils showing in vitro antiMRSA and synergistic activity with penicillin group of antibiotics. Pak. J. Pharm. Sci. 2017, 30, 1997–2002. [Google Scholar] [PubMed]
- Al-Samydai, A.M.J. Jordanian medicinal plants as an alternative source for new antimicrobials against multi drug resistant: Review. Int. J. Pharmacogn. 2018, 5, 581–589. [Google Scholar]
- D’Arrigo, M.; Ginestra, G.; Mandalari, G.; Furneri, P.M.; Bisignano, G. Synergism and post antibiotic effect of tobramicin and Melaleuca alternifolia (teatree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine 2011, 17, 317–322. [Google Scholar] [CrossRef]
- Halawani, E. Antibacterial Activity of Thymoquinone and Thymohydroquinone of Nigella sativa L. and Their Interaction with Some Antibiotics. Adv. Biol. Res. 2009, 3, 148–152. [Google Scholar]
- Boonyanugomol, W.; Kraisriwattana, K.; Rukseree, K.; Boonsam, K.; Narachai, P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health 2017, 10, 586–592. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ. Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Vardar-Ünlü, G.; Candan, F.; Sökmen, A.; Daferera, D.; Polissiou, M.; Sökmen, M.; Dönmez, E.; Tepe, B. Antimicrobial and Antioxidant Activity of the Essential Oil and Methanol Extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). J. Agric. Food Chem. 2003, 51, 63–67. [Google Scholar] [CrossRef] [PubMed]
RI a | RI b | Compounds | Relative Composition c |
---|---|---|---|
913 | 924 | α-thujene | 0.3 |
924 | 932 | α-pinene | 1.6 |
945 | 946 | camphene | 3.6 |
974 | 969 | sabinene | 0.3 |
981 | 974 | β-pinene | 0.2 |
990 | 988 | β-myrcene | 0.3 |
1009 | 1002 | α-phellandrene | 0.1 |
1015 | 1008 | 3-carene | 0.2 |
1020 | 1014 | α-terpinene | 0.2 |
1027 | 1020 | p-cymene | 2.1 |
1030 | 1024 | limonene | 0.4 |
1035 | 1026 | 1,8-cineole | 9.8 |
1058 | 1054 | γ-terpinene | 0.7 |
1068 | 1065 | cis-sabinene hydrate | 0.4 |
1091 | 1083 | fenchone | 0.6 |
1107 | 1101 | α-thujone | 13.7 |
1118 | 1112 | β-thujone | 5.0 |
1128 | 1124 | chrysanthenone | 1.7 |
1143 | 1139 | pinocarvéol | 1.2 |
1151 | 1141 | camphor | 32.0 |
1169 | 1167 | menthol | 1.0 |
1172 | 1165 | borneol | 3.8 |
1183 | 1174 | terpinen-4-ol | 0.9 |
1191 | 1179 | p-cymen-8-ol | 0.2 |
1205 | 1195 | myrtenal | 0.5 |
1252 | 1239 | carvone | 0.2 |
1296 | 1289 | thymol | 0.6 |
1306 | 1298 | carvacrol | 1.7 |
1331 | 1324 | myrtenyl acetate | 0.4 |
1507 | 1500 | bicyclogermacrene | 0.2 |
1532 | 1522 | δ-cadinene | 0.1 |
1564 | - | eudesma-3,7(11)-diene | 0.1 |
1595 | 1582 | caryophyllene oxide | 0.2 |
1615 | 1602 | ledol | 0.1 |
Plants | Essential Oil | Staphylococcus aureus ATCC25923 | MRSA S19 | Listeria innocua CLIP 74915 | Escherichia coli ATCC25922 | Pseudomonas aeruginosa ATCC27853 | IRABS3310 |
---|---|---|---|---|---|---|---|
M. pulegium L. | IZD | 18.2 ± 0.4 | 17.8 ± 2.9 | 20.7 ± 1.6 | 17.2 ± 0.7 | 06.6 ± 0.5 | 25.3 ± 3 |
MIC | 1.2 | 2.3 | 1.2 | 9.4 | 75 | 1.2 | |
A. herba alba Asso. | IZD | 19.7 ± 0.7 | 13.5 ± 0.0 | 13.2 ± 0.9 | 13.2 ± 0.1 | NZ | 15.3 ± 0.6 |
MIC | 1.2 | 1.2 | 1.2 | 4.7 | 18.8 | 1.2 | |
ciprofloxacin (CIP) | IZD | - | - | - | 34 ± 2.8 | 38.5 ± 0.0 | 14 ± 0.0 |
amikacin (AK) | IZD | - | - | - | 20 ± 0.0 | 26 ± 0.0 | 12 ± 0.5 |
oxacillin (OX) | IZD | 25.5 ± 0.7 | 19 ± 0.0 | - | - | - | - |
cefoxitin (CX) | IZD | 25.5 ± 0.7 | 19.5 ± 0.0 | - | - | - | - |
vancomycin (VAN) | IZD | 18.8 ± 2.5 | 17.5 ± 0.0 | - | - | - | - |
Groups | Antibiotics | Inhibition Zone a with the Antibiotics | Inhibition Zone a with the Essential Oil | Sum of the Inhibitions Zone a with the Antibiotics and Essential Oil | Inhibition Zone a with the Antibiotics and the Essential Oil in Association | Effects b | |
---|---|---|---|---|---|---|---|
MRSA S19 | penicillin | OX | 13.0 ± 0.0 | 11.8 ± 2.9 | >24.8 | 19.4 ± 1.5 | A |
cephalosporines | CX | 13.5 ± 0.0 | 11.8 ± 2.9 | >25.3 | 26.8 ± 0.6 | S | |
glycopeptids | VAN | 11.5 ± 0.0 | 11.8 ± 2.9 | >23.3 | 14.5 ± 0.0 | A | |
IRAB S3310 | penicillin | TIC | NZ | 19.3 ± 3 | >19.3 | 16.1 ± 1.0 | A |
PIP | NZ | 19.3 ± 3 | >19.3 | 14.0 ± 2.0 | A | ||
TCC | NZ | 19.3 ± 3 | >19.3 | 27.5 ± 1.3 | S | ||
cephalosporines | CTX | NZ | 19.3 ± 3 | >19.3 | 17.0 ± 2.0 | A | |
CAZ | NZ | 19.3 ± 3 | >19.3 | 22.7 ± 1.5 | S | ||
FEP | NZ | 19.3 ± 3 | >19.3 | 24.5 ± 0.9 | S | ||
carbapenems | IMP | NZ | 19.3 ± 3 | >19.3 | 24.8 ± 0.3 | S | |
aminoglycosides | AK | 6.0 ± 0.0 | 19.3 ± 3 | >25.3 | 34.0 ± 1.0 | S | |
TOB | 9.0 ± 0.0 | 19.3 ± 3 | >28.3 | 29.0 ± 3.0 | S | ||
fluoroquinolones | CIP | 8.0 ± 0.0 | 19.3 ± 3 | >27.3 | 24.7 ± 0.6 | A | |
NA | NZ | 19.3 ± 3 | >19.3 | 18.5 ± 1.3 | A | ||
monobactames | AT | 4.0 ± 0.0 | 19.3 ± 3 | >23.3 | 16.8 ± 1.8 | A |
Groups | Antibiotics | Inhibition Zone a with the Antibiotics | Inhibition Zone a with the Essential Oil | Sum of the Inhibitions Zone a with the Antibiotics and the Essential Oil | Inhibition Zone a with the Antibiotics and the Essential Oil in Association | Effects b | |
---|---|---|---|---|---|---|---|
MRSA S19 | penicillin | OX | 13.0 ± 0.0 | 07.5 ± 0.0 | >20.5 | 20.8 ± 0.6 | I |
cephalosporines | CX | 13.5 ± 0.0 | 07.5 ± 0.0 | >21.0 | 29.0 ± 0.0 | S | |
glycopeptids | VAN | 11.5 ± 0.0 | 07.5 ± 0.0 | >19.0 | 17.7 ± 0.3 | A | |
IRABS3310 | penicillin | TIC | NZ | 9.3 ± 0.6 | >09.3 | 09.6 ± 2.1 | I |
PIP | NZ | 9.3 ± 0.6 | >09.3 | 06.6 ± 1.3 | A | ||
TCC | NZ | 9.3 ± 0.6 | >09.3 | 10.5 ± 0.5 | S | ||
cephalosporines | CTX | NZ | 9.3 ± 0.6 | >09.3 | 13.3 ± 2.6 | S | |
CAZ | NZ | 9.3 ± 0.6 | >09.3 | 09.6 ± 2.1 | I | ||
FEP | NZ | 9.3 ± 0.6 | >09.3 | 08.8 ± 1.0 | A | ||
carbapenems | IMP | NZ | 9.3 ± 0.6 | >09.3 | 10.8 ± 1.6 | S | |
aminoglycosides | AK | 6.0 ± 0.0 | 9.3 ± 0.6 | >15.3 | 13.0 ± 2.6 | A | |
TOB | 9.0 ± 0.0 | 9.3 ± 0.6 | >18.3 | 17.0 ± 2.0 | A | ||
fluoroquinolones | CIP | 8.0 ± 0.0 | 9.3 ± 0.6 | >17.3 | 15.3 ± 1.0 | A | |
NA | NZ | 9.3 ± 0.6 | >09.3 | 10.3 ± 1.5 | S | ||
monobactames | AT | 4.0 ± 0.0 | 9.3 ± 0.6 | >13.3 | 09.5 ± 3.3 | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekka-Hadji, F.; Bombarda, I.; Djoudi, F.; Bakour, S.; Touati, A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules 2022, 27, 1095. https://doi.org/10.3390/molecules27031095
Bekka-Hadji F, Bombarda I, Djoudi F, Bakour S, Touati A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules. 2022; 27(3):1095. https://doi.org/10.3390/molecules27031095
Chicago/Turabian StyleBekka-Hadji, Fahima, Isabelle Bombarda, Ferhat Djoudi, Sofiane Bakour, and Abdelaziz Touati. 2022. "Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria" Molecules 27, no. 3: 1095. https://doi.org/10.3390/molecules27031095
APA StyleBekka-Hadji, F., Bombarda, I., Djoudi, F., Bakour, S., & Touati, A. (2022). Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules, 27(3), 1095. https://doi.org/10.3390/molecules27031095