Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction Process
2.3. Extraction Process Standardization
2.4. Chemical Composition
2.4.1. TLC Assay
2.4.2. Polyphenol and Flavonoid Contents
2.4.3. HPLC-UV/DAD Assay
2.4.4. UHPLC-MS/MS Assay
2.5. Antioxidant Activity
2.5.1. DPPH Assay
2.5.2. Phosphomolybdenum Method
2.5.3. Lipid Peroxidation Assay
2.6. Seasonal Study
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Standardization
UHPLC-MS/MS Analysis
3.2. Antioxidant Activity
3.3. Seasonality Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Brasil. O Bioma Cerrado. Available online: https://antigo.mma.gov.br/biomas/cerrado (accessed on 10 October 2020).
- Goldenberg, R.; Baumgratz, J.F.A.; Souza, M.L.D.R. Taxonomia de Melastomataceae no Brasil: Retrospectiva, perspectivas e chave de identificação para os gêneros. Rodriguésia 2012, 63, 145–161. [Google Scholar] [CrossRef]
- Neto, G.G.; de Morais, R.G. Recursos medicinais de espécies do Cerrado de Mato Grosso: Um estudo bibliográfico. Acta Bot. Bras. 2003, 17, 561–584. [Google Scholar] [CrossRef]
- Goldenberg, R.; Caddah, M.K. Miconia in Lista de Espécies da Flora do Brasil. Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB9683 (accessed on 18 November 2021).
- Cruz, A.V.D.M.; Kaplan, M.A.C. Uso medicinal de espécies das famílias Myrtaceae e Melastomataceae no Brasil. Floresta Ambiente 2004, 11, 47–52. [Google Scholar]
- Calderon, A.I.; Simithy, J.; Gupta, M.P. Antimalarial natural products drug discovery in Panama. Pharm. Biol. 2012, 50, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, V.M.; e Silva, M.L.; Cunha, W.R.; Januario, A.H.; Costa, E.J.X.; Pauletti, P.M. Influence of environmental, geographic, and seasonal variations in the chemical composition of Miconia species from Cerrado. Biochem. Syst. Ecol. 2020, 91, 104049. [Google Scholar] [CrossRef]
- Bortolotto, I.M.; Damasceno-Junior, G.A.; Pott, A. Lista preliminar das plantas alimentícias nativas de mato grosso do sul, Brasil. Iheringia 2018, 73, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Pinto, G.F.D.S.; Kolb, R.M. Seasonality affects phytotoxic potential of five native species of Neotropical savanna. Botany 2016, 94, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Alves, N.R. Estudo dos extratos de três espécies do gênero Miconia sobre a inibição das MMPs 2 e 9 e sobre o crescimento tumoral in vitro. Ph.D. Thesis, Universidade Federal de São João Del-Rei, Divinópolis, Brazil, 2016. [Google Scholar]
- Gomes, L.F.; Martins, D.H.N.; da Silva, S.M.M.; de Barros, Y.Y.; de Souza, P.M.; de Freitas, M.M.; Fagg, C.W.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D.; et al. Propiedades biológicas y caracterización fitoquímica del extracto acuoso de Miconia chamissois Naudin. BLACPMA 2021, 20, 427–442. [Google Scholar] [CrossRef]
- Cunha, G.O.S.; da Cruz, D.C.; Menezes, A.C.S. An Overview of Miconia Genus: Chemical Constituents and Biological Activities. Pharmacogn. Rev. 2021, 13, 77–88. [Google Scholar] [CrossRef]
- Rosa, M.N.; e Silva, L.R.V.; Longato, G.B.; Evangelista, A.F.; Gomes, I.N.F.; Alves, A.L.V.; de Oliveira, B.G.; Pinto, F.E.; Romão, W.; de Rezende, A.R.; et al. Bioprospecting of Natural Compounds from Brazilian Cerrado Biome Plants in Human Cervical Cancer Cell Lines. Int. J. Mol. Sci. 2021, 22, 3383. [Google Scholar] [CrossRef]
- Silva, A.G.; Silva, V.A.O.; Oliveira, R.J.S.; de Rezende, A.R.; Chagas, R.C.R.; Pimenta, L.P.S.; Romão, W.; Santos, H.B.; Thomé, R.G.; Reis, R.M.; et al. Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo. Investig. New Drugs 2019, 38, 1044–1055. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Química Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Specifications for Pharmaceutical Preparations: Fiftieth Report; WHO Technical Report Series No. 996; World Health Organization: Geneva, Switzerland, 2016; pp. 1–358. ISBN 978-92-4-069548-1. [Google Scholar]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis-A thin Layer Chromatography Atlas; Springer Science & Business Media: München, Germany, 1996; ISBN 3-540-58676-8. [Google Scholar]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Leite, C.F.M.; Leite, B.H.M.; de Carvalho Barros, I.M.; Gomes, S.M.; Fagg, C.W.; Simeoni, L.A.; Silveira, D.; Fonseca, Y.M. Determination of rutin in Erythroxylum suberosum extract by liquid chromatography: Applicability in standardization of herbs and stability studies. BLACPMA 2014, 13, 135–143. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Veríssimo, A.R.; Faleiro, M.L.; Miguel, M.G. Chemical composition and biological activities of Algerian Thymus oils. Food Chem. 2009, 116, 714–721. [Google Scholar] [CrossRef]
- Badmus, J.A.; Adedosu, T.O.; Fatoki, J.O.; Adegbite, V.A.; Adaramoye, O.A.; Odunola, O.A. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica. Acta Pol. Pharm. 2011, 68, 23–29. [Google Scholar]
- Seneviratne, K.N.; Prasadani, W.C.; Jayawardena, B. Phenolic extracts of coconut oil cake: A potential alternative for synthetic antioxidants. Food Sci. Technol. 2016, 36, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Callegari-Jacques, S.M. Bioestatística: Princípios e Aplicações; Artmed: Porto Alegre, Brazil, 2003; ISBN 978-85-363-1144-9. [Google Scholar]
- Bauer, R. Quality Criteria and Standardization of Phytopharmaceuticals: Can Acceptable Drug Standards Be Achieved? Ther. Innov. Regul. Sci. 1998, 32, 101–110. [Google Scholar] [CrossRef]
- Gontijo, D.C.; Gontijo, P.C.; Brandão, G.C.; Diaz, M.A.N.; de Oliveira, A.B.; Fietto, L.G.; Leite, J.P.V. Antioxidant study indicative of antibacterial and antimutagenic activities of an ellagitannin-rich aqueous extract from the leaves of Miconia latecrenata. J. Ethnopharmacol. 2019, 236, 114–123. [Google Scholar] [CrossRef]
- Pasta, P.C.; Durigan, G.; Moraes, I.C.F.; Ribeiro, L.F.; Haminiuk, C.W.I.; Branco, I.G. Physicochemical properties, antioxidant potential and mineral content of Miconia albicans (Sw.) Triana: A fruit with high aluminium content. Braz. J. Bot. 2019, 42, 209–216. [Google Scholar] [CrossRef]
- de Moura, V.M.; Bezerra, A.N.S.; Mourão, R.H.V.; Lameiras, J.L.V.; Raposo, J.D.A.; de Sousa, R.L.; Boechat, A.L.; de Oliveira, R.B.; Chalkidis, H.D.M.; Dos-Santos, M.C. A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods. Toxicon 2014, 85, 59–68. [Google Scholar] [CrossRef]
- Lizcano, L.J.; Bakkali, F.; Ruiz-Larrea, M.B.; Ruiz-Sanz, J.I. Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Tong, Y.; Jiang, Y.; Chen, X.; Li, X.; Wang, P.; Jin, Y.; Cheng, K. Extraction, Enrichment, and Quantification of Main Antioxidant Aglycones of Flavonoids and Tannins from Melastoma Dodecandrum Lour.: Guided by UPLC-ESI-MS/MS. J. Chem. 2019, 2019, 2793058. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, H.; Gonzalez, J.; Ortega-Barria, E.; Cubilla-Rios, L. Antiprotozoal Activity of Flavonoid Glycosides Isolated from Clidemia sericea. and Mosquitoxylon jamaicense. Pharm. Biol. 2007, 45, 376–380. [Google Scholar] [CrossRef]
- Rath, G.; Touré, A.; Nianga, M.; Wolfender, J.L.; Hostettmann, K. Characterization of C-glycosylflavones from Dissotis rotundifolia by liquid chromatography—UV diode array detection—tandem mass spectrometry. Chromatographia 1995, 41, 332–342. [Google Scholar] [CrossRef]
- Lawarence, B.; Murugan, K. Comprehensive Evaluation of Antioxidant Potential of Selected Osbeckia species and their in vitro Culture, Purification and Fractionation. Pharmacogn. J. 2017, 9, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Lima, T.C.; Matos, S.S.; Carvalho, T.F.; Silveira-Filho, A.J.; Couto, L.P.S.M.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Silva, A.M.O.; Heimfarth, L.; Passos, F.R.S.; et al. Evidence for the involvement of IL-1β and TNF-α in anti-inflammatory effect and antioxidative stress profile of the standardized dried extract from Miconia albicans Sw. (Triana) Leaves (Melastomataceae). J. Ethnopharmacol. 2020, 259, 112908. [Google Scholar] [CrossRef]
- Peethambar, S.K.; Puttaswamy, R.; Vinayaka, K.S.; Padukone, S.; Achur, R.N. Pharmacological and gross behavioral studies on Memecylon terminale Dalz, a medicinal plant from Western Ghats in southern India. World J. Pharm. Sci. 2013, 1, 61–92. [Google Scholar]
- International Council for Harmonization. ICH Guideline M10 on Bioanalytical Method Validation-Draft Version. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b_en.pdf (accessed on 20 November 2021).
- Houghton, P.; Mukherjee, P.K. Evaluation of Herbal Medicinal Products; Pharmaceutical Press: London, UK, 2009; pp. 85–94. ISBN 978-0-85369-751-0. [Google Scholar]
- Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 2004, 58, 39–46. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Mills, K.; Le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P.; Tomás-Barberán, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Vukics, V.; Guttman, A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crop. Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Xiong, A.; Li, D.; Wang, Z. Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC–DAD/ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 165–172. [Google Scholar] [CrossRef]
- Cherfia, R.; Zaiter, A.; Akkal, S.; Chaimbault, P.; Abdelwahab, A.B.; Kirsch, G.; Chaouche, N.K. New approach in the characterization of bioactive compounds isolated from Calycotome spinosa (L.) Link leaves by the use of negative electrospray ionization LITMSn, LC-ESI-MS/MS, as well as NMR analysis. Bioorg. Chem. 2020, 96, 103535. [Google Scholar] [CrossRef]
- Vukics, V.; Ringer, T.; Kéry, Á.; Bonn, G.K.; Guttman, A. Analysis of heartsease (Viola tricolor L.) flavonoid glycosides by micro-liquid chromatography coupled to multistage mass spectrometry. J. Chromatogr. A 2008, 1206, 11–20. [Google Scholar] [CrossRef]
- Mimura, M.R.M.; Salatino, A.; Salatino, M.L.F. Distribution of flavonoids and the taxonomy of Huberia (Melastomataceae). Biochem. Syst. Ecol. 2004, 32, 27–34. [Google Scholar] [CrossRef]
- Zheng, W.-J.; Ren, Y.-S.; Wu, M.-L.; Yang, Y.-L.; Fan, Y.; Piao, X.-H.; Ge, Y.-W.; Wang, S.-M. A review of the traditional uses, phytochemistry and biological activities of the Melastoma genus. J. Ethnopharmacol. 2021, 264, 113322. [Google Scholar] [CrossRef]
- Sarju, N.; Samad, A.A.; Ghani, M.A.; Ahmad, F. Detection and quantification of Naringenin and kaempferol in Melastoma decemfidum extracts by GC-FID and GC-MS. Acta Chromatogr. 2012, 24, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.-H.; Mu, Y.-X.; Gong, X.; Zhang, N.; Zhang, C.-H.; Li, M.-H. Chemical constituents of Medinilla septentrionalis (W. W. Sm.) H. L. Li (Melastomataceae). Biochem. Syst. Ecol. 2019, 86, 103901. [Google Scholar] [CrossRef]
- Azahar, N.F.; Gani, S.S.A.; Zaidan, U.H.; Bawon, P.; Halmi, M.I.E. Optimization of the Antioxidant Activities of Mixtures of Melastomataceae Leaves Species (M. malabathricum Linn Smith, M. decemfidum, and M. hirta) Using a Simplex Centroid Design and Their Anti-Collagenase and Elastase Properties. Appl. Sci. 2020, 10, 7002. [Google Scholar] [CrossRef]
- Kazuno, S.; Yanagida, M.; Shindo, N.; Murayama, K. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal. Biochem. 2005, 347, 182–192. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Xue, X.; Zhang, Y.; Xiao, H.; Liang, X. Rapid Identification of Polyphenol C-Glycosides from Swertia franchetiana by HPLC—ESI-MS—MS. J. Chromatogr. Sci. 2009, 47, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, Y.; Su, D.; Gao, G.; Zhou, X.; Sun, L.; Ba, X.; Chen, X.; Bi, K. A Sensitive LC–MS–MS Method for Simultaneous Quantification of Two Structural Isomers, Hyperoside and Isoquercitrin: Application to Pharmacokinetic Studies. Chromatographia 2011, 73, 353–359. [Google Scholar] [CrossRef]
- Tarawneh, A.H.; Leon, F.; Ibrahim, M.A.; Pettaway, S.; McCurdy, C.R.; Cutler, S.J. Flavanones from Miconia prasina. Phytochem. Lett. 2014, 7, 130–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; ElSohly, H.N.; Li, X.-C.; Khan, S.I.; Broedel, S.E.; Raulli, R.E.; Cihlar, R.L.; Walker, L.A. Flavanone Glycosides from Miconia trailii. J. Nat. Prod. 2003, 66, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ma, Y.; Liang, C.; Wang, H.; Sun, Y.; Zhang, L.; Jia, Q. A Complete Study of Farrerol Metabolites Produced in Vivo and in Vitro. Molecules 2019, 24, 3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, R.; Parimelazhagan, T. Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn.–An in vitro approach. J. King Saud. Univ. Sci. 2014, 26, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, J.E.; Shemishere, U.B.; Omoregie, E.S. Phytochemical constituents and in vitro antioxidant activities of Melastomastrum capitatum and Solanum macrocarpon leaf extracts. Niger. J. Life Sci. 2017, 7, 128–149. [Google Scholar]
- Zanatta, A.C.; Vilegas, W.; Edrada-Ebel, R. UHPLC-(ESI)-HRMS and NMR-Based Metabolomics Approach to Access the Seasonality of Byrsonima intermedia and Serjania marginata From Brazilian Cerrado Flora Diversity. Front. Chem. 2021, 9, 534. [Google Scholar] [CrossRef]
- Albuquerque, L.B.; Aquino, F.G.; Costa, L.C.; Miranda, Z.J.G.; Sousa, S.R. Espécies de Melastomataceae Juss. com potencial para restauração ecológica de mata ripária no cerrado. Polibotánica 2013, 35, 1–19. [Google Scholar]
- Ishino, M.N.; de Sibio, P.R.; Rossi, M.N. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado. Braz. J. Biol. 2012, 72, 587–594. [Google Scholar] [CrossRef] [Green Version]
Peak | Rt (min.) | Area | λ max (nm) | λ min (nm) |
---|---|---|---|---|
1 | 16.44 ± 0.13 | 605,461 ± 75,626 | 267; 397 | 393; 261 |
2 | - | - | 252; 350; 354 | 331; 351; 361 |
3 | 20.92 ± 0.08 | 3,053,209 ± 247,842 | 269; 349 | 304; 247 |
4 | 22.68 ± 0.07 | 3,165,255 ± 196,166 | 268; 256; 349 | 306; 246; 260 |
5 | - | - | ||
6 | 24.89 ± 0.08 | 7,057,969 ± 298,667 | 27; 336 | 247; 304 |
7 | 27.56 ± 0.07 | 1,089,016 ± 112,057 | 269 | 250 |
8 | - | - | ||
9 | 29.58 ± 0.09 | 1,169,432 ± 146,103 | 256; 354 | 319; 241 |
10 | - | - | ||
11 | 41.36 ± 0.12 | 3,326,752 ± 1,134,026 | 28; 363 | 319; 249 |
12 | 50.76 ± 0.06 | 3,460,879 ± 1,572,479 | 282; 363 | 319; 249 |
Peak (nº) | tR (min) | UV Max (nm) | [M − H]− (m/z) | MS/MS Fragments | [M + H]+ (m/z) | MS/MS Fragments | MW | Compound Identity or Partial Identity | |
---|---|---|---|---|---|---|---|---|---|
1 | 1.87 | - | - | - | - | - | - | - | - |
2 | 2.19 | - | - | - | - | - | - | - | - |
3 | 2.98 | 241 | - | 935 | - | - | - | 936 | - |
4 | 3.71 | 269 | 350 | 609 | 489, 327, 309, 298 | 611 | 449, 431, 413, 383, 353 | 610 | a mixed O,C glycoside of luteolin eg 2″-O-hexosyl orientin |
5 | 4.16 | 255 | 349 | 609 | 357, 327, 309, 297 | 611 | 449, 431, 413, 353, 329 | 610 | a mixed O,C glycoside of luteolin eg 2″-O-hexosyl isoorientin |
6 | 4.6 | 270 | 338 | 593 | 293 | 595 | 433, 415, 367, 337, 313 | 594 | a mixed O,C glycoside of apigenin eg 2″-O-hexosyl vitexin |
7 | 4.71 | 267 | 338 | 593 | 293 | 595 | 433, 415, 337, 313 | 594 | a mixed O,C glycoside of apigenin eg 2″-O-hexosyl isovitexin |
8 | 5.04 | 269 | 337 | 431 | 283 | 433 | 415, 397, 367, 337, 313 | 432 | isovitexin |
9 | 5.25 | 255 | 354 | 463 | 301 | 465 | 303 | 464 | isoquercitrin or hyperoside |
10 | 5.97 | 276 | - | 599 | - | - | - | 600 | - |
11 | 6.61 | 268 | 341 | 583 | 447 | 585 | 449 | 584 | ? |
12 | 9.07 | 281 | 363 | 593 | 299, 179, 135 | 595 | 301, 181, 147 | 594 | miconioside B |
13 | 13.02 | 281 | 362 | 607 | 313, 192 | 609 | 315, 181, 161 | 608 | matteucinol-7-O-β-apiofuranosyl (1→ 6)-β-glucopyranoside |
14 | 15.86 | 297 | 249 | 299 | 179, 135,119 | 301 | 181, 147 | 300 | farrerol |
Collection Period | Yield (%) | Solids Content (%) | TPC (μg GA/mg) | TFC (μg QE/mL) | Antioxidant Activity (%) |
---|---|---|---|---|---|
P1 | 22.01 | 2.70 ± 0.003 | 20.73 ± 0.81 | 8.28 ±0.46 | 56.22 ± 2.44 |
P2 | 19.4 | 2.83 ± 0.002 | 19.28 ±0.49 | 7.70 ± 0.23 | 49.38 ± 4.95 |
P3 | 21.7 | 2.70 ± 0.002 | 18.58 ± 0.23 | 7.58 ± 0.09 | 47.97 ± 4.34 |
P4 | 17.94 | 2.70 ± 0.002 | 18.60 ± 0.36 | 7.73 ± 0.30 | 52.39 ± 6.09 |
P5 | 22.78 | 3.03 ± 0.002 | 19.11 ± 0.31 | 6.91 ± 0.21 | 56.60 ± 0.70 |
Global Radiation (MJm−2d−1) | Rainfall Index (mm) | Temperature Max (°C) | Temperature Min (°C) | |
---|---|---|---|---|
Total solids | r = 0.363; p = 0.548 | r = −0,092; p = 0.442 | r = 0.430; p = 0.235 | r = 0.198; p = 0.749 |
TPC | r = −0.775; p = 0.124 | r = −0.190; p = 0.377 | r = 0.230; p = 0.355 | r = 0.209; p = 0.375 |
TFC | r = −0.753; p = 0.142 | r = 0,10; p = 439 | r = −0.233; p = 0.353 | r = −0.043; p = 0.473 |
Antioxidant activity | r = 0.174; p = 0.780 | r = −0.688; = p = 0.100 | r = 0.012; p = 0,492 | r = −0.257; p = 0.338 |
Collection Months | Global Radiation (MJm−2d−1) | Rainfall Index (mm) | Temperature Max (°C) | Temperature Min (°C) |
---|---|---|---|---|
May/2017 (P1) | 332.05 | 45.21 | 22.88 | 17.19 |
Nov/2017 (P2) | 337.65 | 241.81 | 23.79 | 18.62 |
Feb/2018 (P3) | 363.89 | 160.78 | 23.32 | 20.49 |
May/2018 (P4) | 350.38 | 27.69 | 21.02 | 17.42 |
Aug/2018 (P5) | 360.6 | 22.86 | 23.38 | 18.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.d.F.; López, M.H.M.; Gomes, J.V.D.; Martins, D.H.N.; Fagg, C.W.; Magalhães, P.O.; Davies, N.W.; Silveira, D.; Fonseca-Bazzo, Y.M. Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna. Molecules 2022, 27, 1120. https://doi.org/10.3390/molecules27031120
Ferreira JdF, López MHM, Gomes JVD, Martins DHN, Fagg CW, Magalhães PO, Davies NW, Silveira D, Fonseca-Bazzo YM. Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna. Molecules. 2022; 27(3):1120. https://doi.org/10.3390/molecules27031120
Chicago/Turabian StyleFerreira, Juliana de Freitas, Manuel Humberto Mera López, João Victor Dutra Gomes, Diegue H. Nascimento Martins, Christopher William Fagg, Pérola Oliveira Magalhães, Noel William Davies, Dâmaris Silveira, and Yris Maria Fonseca-Bazzo. 2022. "Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna" Molecules 27, no. 3: 1120. https://doi.org/10.3390/molecules27031120
APA StyleFerreira, J. d. F., López, M. H. M., Gomes, J. V. D., Martins, D. H. N., Fagg, C. W., Magalhães, P. O., Davies, N. W., Silveira, D., & Fonseca-Bazzo, Y. M. (2022). Seasonal Chemical Evaluation of Miconia chamissois Naudin from Brazilian Savanna. Molecules, 27(3), 1120. https://doi.org/10.3390/molecules27031120