QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties
2.2. The Molar Ratio of the Complexes
2.3. Infrared Spectra (IR)
2.4. Electronic Spectroscopic and Magnetic Susceptibility
2.5. Electron Paramagnetic Resonance Spectra (EPR)
2.6. Thermal Analysis (TGA)
2.7. Kinetic Analysis for Thermogravimetric Data
2.8. Molecular Modeling of Investigated Compounds
2.8.1. Geometry Description
2.8.2. Global Reactivity Descriptors
2.8.3. DNA Binding Study
2.8.4. Molecular Docking
2.8.5. QSAR Study
2.9. Anticancer Study
3. Materials and Methods
3.1. Materials and Reagent
3.2. Apparatuses
3.3. Molar Ratio Method
3.4. Synthesis of VO(II) Complexes
3.5. Molecular Modeling Method
3.6. Molecular Docking Method
3.7. QSAR Technique
3.7.1. Data Set Used
3.7.2. Physiochemical Descriptors
3.7.3. Development of Experimental Data Model
3.8. Biological Applications
3.8.1. CT-DNA Interaction
3.8.2. In Vitro Antitumor Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ma, L.; Xu, G.B.; Tang, X.; Zhang, C.; Zhao, W.; Wang, J.; Chen, H. Anti-cancer potential of polysaccharide extracted from hawthorn (Crataegus.) on human colon cancer cell line HCT116 via cell cycle arrest and apoptosis. J. Funct. Foods 2020, 64, 103677. [Google Scholar] [CrossRef]
- Sun, Y.; Mironova, V.; Chen, Y.; Lundh, E.P.; Zhang, Q.; Cai, Y.; Vasiliou, V.; Zhang, Y.; Garcia-Milian, R.; Khan, S.A. Molecular pathway analysis indicates a distinct metabolic phenotype in women with right-sided colon cancer. Transl. Oncol. 2020, 13, 42–56. [Google Scholar] [CrossRef]
- Ngameni, B.; Cedric, K.; Mbaveng, A.T.; Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorg. Med. Chem. Lett. 2021, 35, 127827. [Google Scholar] [CrossRef]
- Nardon, C.; Boscutti, G.; Fregona, D. Beyond platinums: Gold complexes as anticancer agents. Anticancer Res. 2014, 34, 487–492. [Google Scholar] [PubMed]
- Evangelou, A.M. Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 249–265. [Google Scholar] [CrossRef]
- Sgarbossa, S.; Diana, E.; Marabello, D.; Deagostino, A.; Cadamuro, S.; Barge, A.; Laurenti, E.; Gallicchio, M.; Boscaro, V.; Ghibaudi, E. Synthesis, characterization and cell viability test of six vanadyl complexes with acetylacetonate derivatives. J. Inorg. Biochem. 2013, 128, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Sochor, V.; McCaffrey, V.; Rabquer, B. Vanadium complexes inhibit the growth of HT-29 and MCF-7 cancer cell lines. FASEB J. 2015, 29, 978.7. [Google Scholar] [CrossRef]
- Kostova, I. Titanium and vanadium complexes as anticancer agents. Anti Cancer Agents Med. Chem. 2009, 9, 827–842. [Google Scholar] [CrossRef]
- Banerjee, A.; Dash, S.P.; Mohanty, M.; Sanna, D.; Sciortino, G.; Ugone, V.; Garribba, E.; Reuter, H.; Kaminsky, W.; Dinda, R. Chemistry of mixed-ligand oxidovanadium (IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. J. Inorg. Biochem. 2019, 199, 110786. [Google Scholar] [CrossRef]
- Crans, D.C.; Yang, L.; Haase, A.; Yang, X. Health benefits of vanadium and its potential as an anticancer agent. Met. Ions Life Sci. 2018, 18, 251–279. [Google Scholar]
- Naglah, A.M.; Refat, M.S.; Al-Omar, M.A.; Bhat, M.A.; AlKahtani, H.M.; Al-Wasidi, A.S. Synthesis of a vanadyl (IV) folate complex for the treatment of diabetes: Spectroscopic, structural, and biological characterization. Drug Des. Dev. Ther. 2019, 13, 1409. [Google Scholar] [CrossRef] [Green Version]
- Warra, A. Transition metal complexes and their application in drugs and cosmetics-a Review. J. Chem. Pharm. Res. 2011, 3, 951–958. [Google Scholar]
- Hariprasath, K.; Deepthi, B.; Babu, I.S.; Venkatesh, P.; Sharfudeen, S.; Soumya, V. Metal complexes in drug research—A review. J. Chem. Pharm. Res. 2010, 2, 496–499. [Google Scholar]
- Sharfalddin, A.A.; Emwas, A.-H.M.; Jaremko, M.; Abdulala, M.A. Practical and Computational studies of Bivalence Metal Complexes of Sulfaclozine and Biological Studies. Front. Chem. 2021. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Hussien, M.A. Bivalence Metal Complexes of Antithyroid Drug Carbimazole; Synthesis, Characterization, Computational simulation, and Biological Studies. J. Mol. Struct. 2020, 1228, 129725. [Google Scholar] [CrossRef]
- Biswal, D.; Pramanik, N.R.; Chakrabarti, S.; Drew, M.G.; Acharya, K.; Chandra, S. Syntheses, crystal structures, DFT calculations, protein interaction and anticancer activities of water soluble dipicolinic acid-imidazole based oxidovanadium (iv) complexes. Dalton Trans. 2017, 46, 16682–16702. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol. 2018, 16, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeniji, S.E.; Uba, S.; Uzairu, A. Multi-linear regression model, molecular binding interactions and ligand-based design of some prominent compounds against Mycobacterium tuberculosis. Netw. Model. Anal. Health Inform. Bioinform. 2020, 9, 8. [Google Scholar] [CrossRef]
- Ponzoni, I.; Sebastián-Pérez, V.; Martínez, M.J.; Roca, C.; De la Cruz Pérez, C.; Cravero, F.; Vazquez, G.E.; Páez, J.A.; Díaz, M.F.; Campillo, N.E. QSAR classification models for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer’s disease. Sci. Rep. 2019, 9, 9102. [Google Scholar] [CrossRef] [Green Version]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol. 2018, 9, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design-A review. Curr. Top. Med. Chem. 2010, 10, 95–115. [Google Scholar] [CrossRef]
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol. 2019, 7, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, P.H.; Sodero, A.C.; Jofily, P.; Silva, F.P., Jr. Key topics in molecular docking for drug design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Wani, W.A.; Saleem, K. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2013, 43, 1162–1170. [Google Scholar] [CrossRef]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Tirmizi, S.A.; Wattoo, F.; Sarwar, S.; Anwar, W.; Wattoo, F.H.; Memon, A.N.; Iqbal, J. Spectrophotometric study of stability constants of famotidine-Cu (II) complex at different temperatures. Arab. J. Sci. Eng. 2009, 34, 43–48. [Google Scholar]
- Ashafaq, M.; Khalid, M.; Raizada, M.; Ahmad, M.S.; Khan, M.S.; Shahid, M.; Ahmad, M. A Zn-based fluorescent coordination polymer as bifunctional sensor: Sensitive and selective aqueous-phase detection of picric acid and heavy metal ion. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4496–4509. [Google Scholar] [CrossRef]
- Iqbal, M.; Karim, A.; Ullah, I.; Haleem, M.A.; Ali, S.; Tahir, M.N.; Abbas, S.M. Synthesis, characterization, structural description, TGA, micellization behavior, DNA-binding and antioxidant activity of mono-, di-and tri-nuclear Cu (II) and Zn (II) carboxylate complexes. J. Coord. Chem. 2021, 74, 762–778. [Google Scholar] [CrossRef]
- Iftikhar, S.H.; Gilani, S.R.; Taj, B.M.; Raheel, A.; Termizi, S.A.; Al-Shakban, M.; Ali, H.M. Design, synthesis and biological evaluation of organotin (IV) complexes of flumequine and cetirizine. J. Serb. Chem. Soc. 2018, 83, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Jin, Q.; Tan, L.; Wu, P.; Yan, F. Trace of the interesting “V”-shaped Dynamic Mechanism of Interactions between Water and Ionic Liquids. J. Phys. Chem. B 2008, 112, 14251–14259. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Piro, O.E.; Echeverría, G.A.; Pastoriza, A.C.; Sgariglia, M.A.; Soberón, J.R.; Gil, D.M. Co (II), Ni (II) and Cu (II) ternary complexes with sulfadiazine and dimethylformamide: Synthesis, spectroscopic characterization, crystallographic study and antibacterial activity. J. Mol. Struct. 2019, 1176, 605–613. [Google Scholar] [CrossRef]
- Jone Kirubavathy, S.; Velmurugan, R.; Tamilarasan, B.; Karvembu, R.; Bhuvanesh, N.; Chitra, S. Synthesis, Characterization, Single-Crystal XRD, and Biological Evaluation of Nickel (II) Salen Sulfadiazine Complex. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2016, 46, 1751–1758. [Google Scholar] [CrossRef]
- Borge, V.V.; Patil, R.M. Stability of Vanadium Chalcone Complexes. In Stability and Applications of Coordination Compounds; IntechOpen: London, UK, 2020. [Google Scholar]
- Santoni, G.; Rehder, D. Structural models for the reduced form of vanadate-dependent peroxidases: Vanadyl complexes with bidentate chiral Schiff base ligands. J. Inorg. Biochem. 2004, 98, 758–764. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Watanabe, S.; Matsumura, Y.; Tokuoka, Y.; Yokoyama, A. Oxovanadium complexes with quinoline and pyridinone ligands: Syntheses of the complexes and effect of alkyl chains on their apoptosis-inducing activity in leukemia cells. Bioorg. Med. Chem. 2012, 20, 3058–3064. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Zaitone, S.A.; Ammar, A.M.; Sallam, S.A. Synthesis, spectral, thermal and insulin-enhancing properties of oxovanadium (IV) complexes of metformin Schiff-bases. J. Therm. Anal. Calorim. 2017, 128, 957–969. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Emwas, A.-H.; Jaremko, M.; Hussien, M.A. Complexation of uranyl (UO2)2+ with bidentate ligands: XRD, spectroscopic, computational, and biological studies. PLoS ONE 2021, 16, e0256186. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M. Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polym. Compos. 2014, 35, 1935–1942. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Emwas, A.H.; Jaremko, M.; Hussien, M.A. Synthesis and Theoretical Calculations of Metal–Antibiotic Chelation with Thiamphenicol; In vitro DNA and HSA Binding, Molecular Docking, and Cytotoxic Studies. New J. Chem. 2021, 45, 9598–9613. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Wachs, I.E. Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 1991, 95, 5031–5041. [Google Scholar] [CrossRef]
- Thalluri, S.M.; Martinez Suarez, C.; Hussain, M.; Hernandez, S.; Virga, A.; Saracco, G.; Russo, N. Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind. Eng. Chem. Res. 2013, 52, 17414–17418. [Google Scholar] [CrossRef]
- Sahu, V.; Sharma, P.; Kumar, A. Impact of Global and Local Reactivity Descriptors on the Hetero-Diels-Alder Reaction of Enaminothione with Various Electrophiles. J. Chil. Chem. Soc. 2014, 59, 2327–2334. [Google Scholar] [CrossRef] [Green Version]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013, 124, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ponya Utthra, P.; Kumaravel, G.; Senthilkumar, R.; Raman, N. Heteroleptic Schiff base complexes containing terpyridine as chemical nucleases and their biological potential: A study of DNA binding and cleaving, antimicrobial and cytotoxic tendencies. Appl. Organomet. Chem. 2017, 31, e3629. [Google Scholar] [CrossRef]
- Howsaui, H.B.; Basaleh, A.S.; Abdellattif, M.H.; Hassan, W.M.; Hussien, M.A. Synthesis, Structural Investigations, Molecular Docking, and Anticancer Activity of Some Novel Schiff Bases and Their Uranyl Complexes. Biomolecules 2021, 11, 1138. [Google Scholar] [CrossRef]
- Phadte, A.A.; Banerjee, S.; Mate, N.A.; Banerjee, A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem. Biophys. Rep. 2019, 18, 100629. [Google Scholar] [CrossRef] [PubMed]
- Kholod, Y.; Hoag, E.; Muratore, K.; Kosenkov, D. Computer-Aided Drug Discovery: Molecular Docking of Diminazene Ligands to DNA Minor Groove. J. Chem. Educ. 2018, 95, 882–887. [Google Scholar] [CrossRef]
- Pratviel, G.; Bernadou, J.; Meunier, B. DNA and RNA cleavage by metal complexes. In Advances in Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1998; Volume 45, pp. 251–312. [Google Scholar]
- Bao, Z.; Lai, D.; Shen, P.; Yu, M.; Kumar, R.; Liu, Y.; Chen, Z.; Liang, H. A new samarium (III) complex of liriodenine: Synthesis, crystal structure, antitumor activity, and DNA binding study. Z. Anorg. Allg. Chem. 2019, 645, 570–579. [Google Scholar] [CrossRef]
- Sankarganesh, M.; Vijay Solomon, R.; Dhaveethu Raja, J. Platinum complex with pyrimidine- and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. J. Biomol. Struct. Dyn. 2021, 39, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rhman, M.H.; Hussien, M.A.; Mahmoud, H.M.; Hosny, N.M. Synthesis, characterization, molecular docking and cytotoxicity studies on N-benzyl-2-isonicotinoylhydrazine-1-carbothioamide and its metal complexes. J. Mol. Struct. 2019, 1196, 417–428. [Google Scholar] [CrossRef]
- Alamri, M.A.; Al-Jahdali, M.; Al-Radadi, N.S.; Hussien, M.A. Biological activity evaluation and computational study of novel triazene derivatives containing benzothiazole rings. J. Mol. Struct. 2020, 1227, 129507. [Google Scholar] [CrossRef]
- Sinha, A.; Banerjee, K.; Banerjee, A.; Sarkar, A.; Ahir, M.; Adhikary, A.; Chatterjee, M.; Choudhuri, S.K. Induction of apoptosis in human colorectal cancer cell line, HCT-116 by a vanadium-Schiff base complex. Biomed. Pharmacother. 2017, 92, 509–518. [Google Scholar] [CrossRef]
- Hussien, M.; Salama, H. Spectrophotometric study of stability constants of Semicarbazone-Cu(II) complex at different temperatures. Pharma Chem. 2016, 8, 44–47. [Google Scholar]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09; Revision d. 01; Gaussian, Inc.: Wallingford, CT, USA, 2009; Volume 201. [Google Scholar]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- MOE (The Molecular Operating Environment). Available online: https://www.chemcomp.com/Products.htm (accessed on 28 December 2021).
- Singh, S.P.; Nongalleima, K.; Singh, N.I.; Doley, P.; Singh, C.B.; Singh, T.R.; Sahoo, D. Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha. Sci. Rep. 2018, 8, 4090. [Google Scholar] [CrossRef] [Green Version]
- Abdellattif MH, H.M.a.A.E. New approaches of 4-aryl-2-hydrazinothiazole derivatives synthesis, molecular docking, and biological evaluations. Int. J. Pharm. Sci. Res. 2017, 9, 5060–5078. [Google Scholar] [CrossRef]
- Al-Khathami, N.D.; Al-Rashdi, K.S.; Babgi, B.A.; Hussien, M.A.; Nadeem Arshad, M.; Eltayeb, N.E.; Elsilk, S.E.; Lasri, J.; Basaleh, A.S.; Al-Jahdali, M. Spectroscopic and biological properties of platinum complexes derived from 2-pyridyl Schiff bases. J. Saudi Chem. Soc. 2019, 23, 903–915. [Google Scholar] [CrossRef]
- Mashat, K.H.; Babgi, B.A.; Hussien, M.A.; Nadeem Arshad, M.; Abdellattif, M.H. Synthesis, structures, DNA-binding and anticancer activities of some copper(I)-phosphine complexes. Polyhedron 2019, 158, 164–172. [Google Scholar] [CrossRef]
Complex | M.wt. (g mol−1) | Color | M.P. (°C) | % Found (calc.) | Λm (Ω−1 mol−1 cm2) | ||
---|---|---|---|---|---|---|---|
C | H | N | |||||
CBZ | 185.2 | White | 113 | 45.15 | 5.41 | 15.04 | 1 |
[VO(SO4)(CBZ)] 8H2O | 493.3 | Green | 125 | 17.04 (17.25) | 5.31 (5.32) | 5.68 (5.60) | 7.47 |
CTZ | 461.8 | White | 140 | 54.62 | 5.89 | 6.07 | 5.23 |
[VO(CTZ)2] 2H2O | 878.7 | Heavy blue | 134 | 57.41 (57.43) | 5.96 (5.97) | 6.38 (6.41) | 8.85 |
LOR | 371.8 | Yellow | 225 | 42.00 | 2.71 | 11.30 | 4.00 |
[VO(LOR)2] SO4 | 906.6 | Brown | 124 | 35.71 (35.73) | 2.31 (2.30) | 9.61 (9.54) | 68.85 |
SCZ | 250.1 | White | 130 | 42.19 | 3.19 | 19.68 | 1.3 |
[VO(SO4)(SCZ)] 7H2O | 573.8 | Green | 209 | 20.93 (30.10) | 4.04 (4.13) | 9.76 (9.98) | 17.50 |
Compound | ν(C=O) | ν(C=N) | ν(C=S) | ν(S=O) | ν(V-O) | ν(V-N) | ν(V-S) | νasym, νsym (SO4) |
---|---|---|---|---|---|---|---|---|
CBZ | 1677 | - | 1271 | - | - | - | - | - |
VO(SO4)(CBZ)] 8H2O | 1677 | - | 1279 | - | 596 | 422 | - | 1310–1035 |
CTZ | 1739 | - | - | - | - | - | - | - |
[VO(CTZ)2] 2H2O | 1599, 1409 | - | - | - | 544 | - | ||
LOR | 1647 | 1591 | - | - | - | - | - | |
[VO(LOR)2] SO4 | 1668 | 1621 | - | - | 521 | 496 | ||
SCZ | - | 1670 | - | 1271 | - | - | - | |
[VO(SO4)(SCZ)] 7H2O | - | 1671 | - | 1033 | 589 | - | 424 | 1280–1011 |
Compound | π–π* | n–π* | µeff. (B.M.) | d-d (broad) |
---|---|---|---|---|
CBZ | 266 | - | - | |
[VO(SO4)(CBZ)] 8H2O | 273 | - | 1.74 | 850 |
CTZ | 262 | 280 | - | |
[VO(CTZ)2] 2H2O | 260 | 331 | 1.75 | 900 |
LOR | 274 | 394 | - | |
[VO(LOR)2] SO4 | 263 | 311 | 1.76 | 850 |
SCZ | 262 | 275 | - | |
[VO(SO4)(SCZ)] 7H2O | 282 | 373 | 1.75 | 870 |
Complex | g | A |
---|---|---|
[VO(SO4)(CBZ)] 8H2O | 1.992 | 96 |
[VO(CTZ)2] 2H2O | 1.980 | 106 |
[VO(LOR)2] SO4 | 1.982 | 105 |
[VO(SO4)(SCZ)] 7H2O | 1.984 | 108 |
Compound | Optimized Geometry |
[VO(SO4)(CBZ)] 8H2O | |
[VO(CTZ)2] 2H2O | |
[VO(LOR)2]SO4 | |
[VO(SO4)(SCZ)] 7H2O |
Complex | ν(V=O) | V=O Radius | ||
---|---|---|---|---|
Exp | DFT | Exp | DFT | |
[VO(SO4)(CBZ)] 8H2O | 980 | 1037 | 1.607 | 1.599 |
[VO(CTZ)2] 2H2O | 963 | 1068 | 1.616 | 1.579 |
[VO(LOR)2]SO4 | 968 | 1075 | 1.613 | 1.576 |
[VO(SO4)(SCZ)] 7H2O | 987 | 1047 | 1.603 | 1.596 |
Compound | HUMO | LUMO | ∆E | x | η | σ | Pi | σ | S | ω | ΔN Max |
---|---|---|---|---|---|---|---|---|---|---|---|
CBZ | −5.55 | −1.00 | 4.55 | 3.28 | 2.28 | 0.44 | −3.28 | 0.44 | 1.14 | 2.36 | 1.44 |
VO-CBZ | −7.09 | −3.27 | 3.83 | 5.18 | 1.91 | 0.52 | −5.18 | 0.96 | 0.96 | 2.59 | 2.71 |
SCZ | −6.75 | −2.78 | 3.97 | 4.77 | 1.99 | 0.50 | −4.77 | 0.99 | 0.99 | 2.38 | 2.40 |
VO-SCZ | −7.41 | −3.64 | 3.77 | 5.53 | 1.89 | 0.53 | −5.53 | 0.94 | 0.94 | 2.76 | 2.93 |
LOR | −3.96 | −1.99 | 1.97 | 2.98 | 0.98 | 1.02 | −2.98 | 0.49 | 0.49 | 1.49 | 3.03 |
VO-LOR | −3.93 | −2.74 | 1.19 | 3.34 | 0.59 | 1.68 | −3.34 | 0.30 | 0.30 | 1.67 | 5.62 |
CTZ | −6.59 | −4.68 | 1.91 | 5.64 | 0.95 | 1.05 | −5.64 | 0.48 | 0.48 | 2.82 | 5.91 |
VO-CTZ | −10.26 | −8.84 | 1.42 | 10.05 | 1.21 | 0.83 | −10.05 | 0.61 | 0.61 | 5.03 | 8.31 |
Compound | Kb (M−1) | λmax Free (nm) | λmax Bound (nm) | Type of Chromism |
---|---|---|---|---|
CBZ | 8.33 × 105 | 261 | 255 | Hyperchromic |
[VO(SO4)(CBZ)] 8H2O | 5.00 × 105 | 265 | 256 | Hyperchromic |
CTZ | 1.00 × 106 | 263 | 263 | Hyperchromic |
[VO(CTZ)2] 2H2O | 1.40 × 106 | 265 | 259 | Hyperchromic |
LOR | 8.33 × 105 | 395 | 376 | Hypochromic |
[VO(LOR)2] SO4 | 1.20 × 106 | 281 | 274 | Hyperchromic |
SCZ | 1.00 × 106 | 265 | 257 | Hyperchromic |
[VO(SO4)(SCZ)] 7H2O | 1.25 × 106 | 262 | 256 | Hyperchromic |
Compound | S | rmsd_Refine | E_conf | E_Place | E_Refine |
---|---|---|---|---|---|
CBZ | −5.13 | 0.95 | −16.39 | −50.34 | −27.37 |
[VO(SO4)(CBZ)] 8H2O | −5.95 | 2.88 | −624.55 | −49.81 | −15.08 |
CTZ | −7.60 | 1.41 | 129.88 | −92.44 | −28.38 |
[VO(CTZ)2] 2H2O | −9.81 | 1.86 | −658.30 | −79.50 | −29.23 |
LOR | −6.58 | 1.04 | 2.82 | −87.23 | −36.53 |
[VO(LOR)2] SO4 | −6.83 | 2.35 | −358.53 | −1.13 | −37.58 |
SCZ | −5.83 | 1.93 | −40.53 | −57.04 | −31.67 |
[VO(SO4)(SCZ)] 7H2O | −6.90 | 1.16 | −797.18 | −79.19 | −9.94 |
Compound | 2D Snapshot | 3D Snapshot |
---|---|---|
CBZ | ||
[VO(SO4)(CBZ)] 8H2O | ||
CTZ | ||
[VO(CTZ)2] 2H2O | ||
LOR | ||
[VO(LOR)2]SO4 | ||
SCZ | ||
[VO(SO4)(SCZ)] 7H2O | ||
Compound | Predicted IC50 (µM) |
---|---|
CBZ | 42.43 |
[VO(SO4)(CBZ)] 8H2O | 39.87 |
CTZ | 12.30 |
[VO(CTZ)2] 2H2O | 1.45 |
LOR | 10.26 |
[VO(LOR)2] SO4 | 2.61 |
SCZ | 17.62 |
[VO(SO4)(SCZ)] H2O | 37.06 |
Complex | IC50 ± SD (µM) |
---|---|
[VO(CTZ)2] 2H2O | 2.11 ± 0.02 |
Cisplatin | 2.13 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, F.Y.; Sharfalddin, A.A.; Abdellattif, M.H.; Domyati, D.; Basaleh, A.S.; Hussien, M.A. QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. Molecules 2022, 27, 649. https://doi.org/10.3390/molecules27030649
Alomari FY, Sharfalddin AA, Abdellattif MH, Domyati D, Basaleh AS, Hussien MA. QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. Molecules. 2022; 27(3):649. https://doi.org/10.3390/molecules27030649
Chicago/Turabian StyleAlomari, Fatimah Y., Abeer A. Sharfalddin, Magda H. Abdellattif, Doaa Domyati, Amal S. Basaleh, and Mostafa A. Hussien. 2022. "QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents" Molecules 27, no. 3: 649. https://doi.org/10.3390/molecules27030649
APA StyleAlomari, F. Y., Sharfalddin, A. A., Abdellattif, M. H., Domyati, D., Basaleh, A. S., & Hussien, M. A. (2022). QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. Molecules, 27(3), 649. https://doi.org/10.3390/molecules27030649