Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fungal Growth and Enzyme Activity in Static and Shaken Cultures
2.2. Growth at Different pHs and Salinities
2.3. Biomass and Chitinolytic Enzyme Production in Polyextremophilic Conditions by RSM
2.4. Activity of the Crude Enzyme Extract in Polyextremophilic Conditions
3. Materials and Methods
3.1. Microorganism
3.2. Fungal Growth and Enzyme Activity in Liquid Static and Shaken Cultures
3.3. Growth Tolerance at Different pHs and Salinities
3.4. Biomass Production and Chitinolytic Activity in Polyextremophilic Conditions by RSM Factorial Design
Experiment | pH | Salinity (‰) |
---|---|---|
N1, N17 | 3.0 | 0 |
N2, N18 | 12.0 | 0 |
N3, N19 | 3.0 | 120 |
N4, N20 | 12.0 | 120 |
N5 | 3.0 | 60 |
N6 | 12.0 | 60 |
N7 | 7.5 | 0 |
N8 | 7.5 | 120 |
N9, N13 | 7.5 | 40 |
N10, N11 | 7.5 | 60 |
N12 | 10.0 | 40 |
N14 | 3.0 | 40 |
N15 | 7.5 | 80 |
N16 | 12.0 | 40 |
3.5. Activity of the Crude Extract in Polyextremophilic Conditions
Experiment | pH | Salinity (‰) | Experiment | pH | Salinity (‰) |
---|---|---|---|---|---|
N1 | 9.4 | 120 | N12 | 3.18 | 0 |
N2 | 10.0 | 60 | N13 | 3.5 | 0 |
N3 | 10.2 | 40 | N14 | 3.64 | 120 |
N4 | 11.6 | 0 | N15 | 4.13 | 120 |
N5 | 9.4 | 60 | N16 | 2.0 | 60 |
N6 | 8.0 | 60 | N17 | 13.3 | 60 |
N7 | 7.2 | 0 | N18 | 12.93 | 0 |
N8 | 7.4 | 120 | N19 | 13.01 | 120 |
N9 | 7.6 | 40 | N20 | 2.3 | 40 |
N10 | 8.2 | 60 | N21 | 2.4 | 60 |
N11 | 6.0 | 40 | N22 | 2.52 | 40 |
3.6. Analytical Methods
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Barghini, P.; Pasqualetti, M.; Gorrasi, S.; Fenice, M. Bacteria from the “Saline di Tarquinia” marine salterns reveal very atypical growth profiles with regards to salinity and temperature. Mediterr. Mar. Sci. 2018, 19, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Gorrasi, S.; Pesciaroli, C.; Barghini, P.; Pasqualetti, M.; Fenice, M. Structure and diversity of the bacterial community of an Arctic estuarine system (Kandalaksha Bay) subject to intense tidal currents. J. Mar. Syst. 2019, 196, 77–85. [Google Scholar] [CrossRef]
- Gorrasi, S.; Franzetti, A.; Ambrosini, R.; Pittino, F.; Pasqualetti, M.; Fenice, M. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 2021, 26, 1338. [Google Scholar] [CrossRef] [PubMed]
- Fenice, M.; Gallo, A.M.; Juarez-Jimenez, B.; Gonzalez-Lopez, J. Screening for extracellular enzyme activities by bacteria isolated from samples collected in the Tyrrhenian Sea. Ann. Microbiol. 2007, 57, 93–99. [Google Scholar] [CrossRef]
- Trincone, A. Marine biocatalysts: Enzymatic features and applications. Mar. Drugs. 2011, 9, 478–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonugli-Santos, R.C.; Dos Santos Vasconcelos, M.R.; Passarini, M.R.; Vieira, G.A.; Lopes, V.C.; Mainardi, P.H.; Feitosa, V.A. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. 2015, 6, 269. [Google Scholar] [CrossRef]
- Awad, H.M.; El-Enshasy, H.A.; Hanapi, S.Z.; Hamed, E.R.; Rosidi, B. A new chitinase-producer strain Streptomyces glauciniger WICC-A03: Isolation and identification as a biocontrol agent for plants phytopathogenic fungi. Nat. Prod. Res. 2014, 28, 2273–2277. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Manjrekar, S.; Wadekar, T.; Sumant, O. Enzymes Market Type (Protease, Carbohydrase, Lipase, Polymerase and Nuclease, and Other Types), Source (Microorganisms, Plants, and Animals), Reaction Type (Hydrolase, Oxidoreductase, Transferase, Lyase, and Other Reaction Types), and Application (Food and Beverages, Household Care, Bioenergy, Pharmaceutical and Biotechnology, Feed, and Other Applications)—Global Opportunity Analysis and Industry Forecast, 2017–2024. Available online: https://www.alliedmarketresearch.com/enzymes-market (accessed on 1 March 2021).
- Alma’abadi, A.D.; Gojobori, T.; Mineta, K. Marine metagenome as a resource for novel enzymes. Genom. Proteom. Bioinform. 2015, 13, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Debashish, G.; Malay, S.; Barindra, S.; Joydeep, M. Marine enzymes. In Marine Biotechnology I. Advances in Biochemical Engineering/Biotechnology; Ulber, R., Le Gal, Y., Eds.; Springer: Heidelberg/Berlin, Germany, 2005; pp. 189–218. [Google Scholar]
- Jin, M.; Gai, Y.; Guo, X.; Hou, Y.; Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Mar. Drugs. 2019, 17, 656. [Google Scholar] [CrossRef] [Green Version]
- Birolli, W.G.; Lima, R.N.; Porto, A.L. Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front. Microbiol. 2019, 10, 1453. [Google Scholar] [CrossRef]
- Atalla, M.M.; Zeinab, H.K.; Eman, R.H.; Amani, A.Y.; Abeer, A.A.E.A. Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agric. Biol. J. N. Am. 2010, 1, 591–599. [Google Scholar]
- Thirunavukkarasu, N.; Jahnes, B.; Broadstock, A.; Rajulu, M.G.; Murali, T.S.; Gopalan, V.; Suryanarayanan, T.S. Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr. Sci. 2015, 109, 112–120. [Google Scholar]
- Fenice, M. The psychrotolerant Antarctic fungus Lecanicillium muscarium CCFEE 5003: A powerful producer of cold-tolerant chitinolytic enzymes. Molecules 2016, 21, 447. [Google Scholar] [CrossRef] [Green Version]
- Fenice, M.; Di Giambattista, R.; Leuba, J.L.; Federici, F. Inactivation of Mucor plumbeus by the combined actions of chitinase and high hydrostatic pressure. Int. J. Food. Microbiol. 1999, 52, 109–113. [Google Scholar] [CrossRef]
- Barghini, P.; Esti, M.; Pasqualetti, M.; Silvi, S.; Aquilanti, A.; Fenice, M. Crude cell wall degrading enzymes, by the Antarctic fungus Lecanicillium muscarium CCFEE 5003, inhibits the Ochratoxin-A producer Aspergillus carbonarius on white and red grapes. J. Environ. Prot. Ecol. 2013, 14, 1673–1679. [Google Scholar]
- Le, B.; Yang, S.H. Microbial chitinases: Properties, current state and biotechnological applications. World J. Microbiol. Biotechnol. 2019, 35, 144. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, S.K.; Singh, M.; Sharma, I.; Sharma, P.; Kamboj, P.; Saini, A.; Voraha, R.; Sharma, A.K.; Upadhyay, T.K.; et al. Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res. Appl. Chem. 2021, 11, 9985–10005. [Google Scholar] [CrossRef]
- Fenice, M.; Selbmann, L.; Di Giambattista, R.; Federici, F. Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium cfr. lecanii. Res. Microbiol. 1998, 149, 289–300. [Google Scholar] [CrossRef]
- Antal, Z.; Manczinger, L.; Szakacs, G.; Tengerdy, R.P.; Ferenczy, L. Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycol. Res. 2000, 104, 545–549. [Google Scholar] [CrossRef]
- Juarez-Jimenez, B.; Rodelas, B.; Martinez-Toledo, M.V.; Gonzalez-Lopez, J.; Crognale, S.; Gallo, A.M.; Pesciaroli, C.; Fenice, M. Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the East Sector of Central Tyrrhenian Sea. Int. J. Biol. Macr. 2008, 43, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Essghaier, B.; Hedi, A.; Bejji, M.; Jijakli, H.; Boudabous, A.; Sadfi-Zouaoui, N. Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Ann. Microbiol. 2012, 62, 835–841. [Google Scholar] [CrossRef]
- Le, B.; Chung, G.; Yang, S.H. Chitinase-producing Salinivibrio bacteria isolated from salt-fermented shrimp with antimicrobial and safety assessments. J. Appl. Biol. Chem. 2018, 61, 233–238. [Google Scholar] [CrossRef]
- Dukariya, G.; Kumar, A. Distribution and biotechnological applications of chitinase: A review. Int. J. Biochem. Biophys. 2020, 8, 17–29. [Google Scholar] [CrossRef]
- Kumar, M.; Rajput, M.; Soni, T.; Vivekanand, V.; Pareek, N. Chemoenzymatic Production and Engineering of Chitooligosaccharides and N-acetyl Glucosamine for Refining Biological Activities. Front. Chem. 2020, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, S.T.; Barzkar, N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int. J. Biol. Macr. 2018, 120, 2147–2154. [Google Scholar] [CrossRef]
- Giovannini, V.; Barghini, P.; Gorrasi, S.; Fenice, M.; Pasqualetti, M. Marine fungi: A potential source of novel enzymes for environmental and biotechnological applications. J. Environ. Prot. Ecol. 2019, 20, 1214–1222. [Google Scholar]
- Chung, D.; Baek, K.; Bae, S.S.; Jung, J. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J. Microbiol. 2019, 57, 372–380. [Google Scholar] [CrossRef]
- Atalla, S.M.; Gamal, N.G.E.; Awad, H.M. Chitinase of marine Penicillium chrysogenum MH745129: Isolation, identification, production and characterization as controller for citrus fruits postharvest pathogens. Jordan. J. Biol. Sci. 2020, 13, 19–28. [Google Scholar]
- Pasqualetti, M.; Giovannini, V.; Barghini, P.; Gorrasi, S.; Fenice, M. Diversity and ecology of culturable marine fungi associated with Posidonia oceanica leaves and their epiphytic algae Dictyota dichotoma and Sphaerococcus coronopifolius. Fungal. Ecol. 2020, 44, 100906. [Google Scholar] [CrossRef]
- Agusti, S.; Martinez-Ayala, J.; Regaudie-de-Gioux, A.; Duarte, C.M. Oligotrophication and metabolic slowing-down of a NW Mediterranean coastal ecosystem. Front. Mar. Sci. 2017, 4, 432. [Google Scholar] [CrossRef] [Green Version]
- Poulicek, M.; Machiroux, R.; Toussaint, C. Chitin diagenesis in deep-water sediments. In Chitin in Nature and Technology; Springer: Boston, MA, USA, 1986; pp. 523–530. [Google Scholar]
- Keyhani, N.O.; Roseman, S. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta. Gen. Subj. 1999, 1473, 108–122. [Google Scholar] [CrossRef]
- Souza, C.P.; Almeida, B.C.; Colwell, R.R.; Rivera, I.N. The importance of chitin in the marine environment. Mar. Biotechnol. 2011, 13, 823. [Google Scholar] [CrossRef] [PubMed]
- Clipson, N.; Otte, M.; Landy, E. Biogeochemical roles of fungi in marine and estuarine habitats. In Fungi in Biogeochemical Cycles; Gadd, Ed.; Cambridge University Press: Cambridge, UK, 2006; pp. 436–444. [Google Scholar]
- Poria, V.; Rana, A.; Kumari, A.; Grewal, J.; Pranaw, K.; Singh, S. Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. Biology 2021, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, K.M.; Al-Garni, S.M.; Al-Makishah, N.H. Statistical optimization of cultural conditions for chitinase production from fish scales waste by Aspergillus terreus. Afr. J. Biotechnol. 2010, 9, 5135–5146. [Google Scholar]
- Ghanem, K.M.; Al-Fassi, F.A.; Farsi, R.M. Statistical optimization of cultural conditions for chitinase production from shrimp shellfish waste by Alternaria alternata. Afr. J. Microbiol Res. 2011, 5, 1649–1659. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007. [Google Scholar]
- Huang, X.; Li, Y.; Su, Y.; Ding, J.; Zhang, K. The influences on conidiophore pleomorphism in Clonostachys rosea and RAPD analysis to the mutant producing only verticillate conidiophores. Ann. Microbiol. 2009, 59, 39–44. [Google Scholar] [CrossRef]
- de Andrade Carvalho, A.L.; de Rezende, L.C.; Costa, L.B.; de Almeida Halfeld-Vieira, B.; Pinto, Z.V.; Morandi, M.A.B.; de Medeiros, F.H.V.; Bettiol, W. Optimizing the mass production of Clonostachys rosea by liquid-state fermentation. Biol. Control. 2018, 118, 16–25. [Google Scholar] [CrossRef]
- You, Y.H.; Park, J.M.; Seo, Y.G.; Lee, W.; Kang, M.S.; Kim, J.G. Distribution, characterization, and diversity of the endophytic fungal communities on Korean seacoasts showing contrasting geographic conditions. Mycobiology 2017, 45, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Barghini, P.; Moscatelli, D.; Garzillo, A.M.V.; Crognale, S.; Fenice, M. High production of cold-tolerant chitinases on shrimp wastes in bench-top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: Bioprocess optimization and characterization of two main enzymes. Enzyme. Microb. Technol. 2013, 53, 331–338. [Google Scholar] [CrossRef]
- Fenice, M.; Barghini, P.; Selbmann, L.; Federici, F. Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003. Microb. Cell. Fact. 2012, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Pasqualetti, M.; Barghini, P.; Giovannini, V.; Fenice, M. High production of chitinolytic activity in halophilic conditions by a new marine strain of Clonostachys rosea. Molecules 2019, 24, 1880. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterton, S.; Punja, Z.K. Chitinase and β-1, 3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Can. J. Microbiol. 2009, 55, 356–367. [Google Scholar] [CrossRef]
- Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.Q.; Quyen, D.T.; Nguyen, S.L.T.; Van Hanh, V.U. An extracellular antifungal chitinase from Lecanicillium lecanii: Purification, properties, and application in biocontrol against plant pathogenic fungi. Turk. J. Biol. 2015, 39, 6–14. [Google Scholar] [CrossRef]
- Kumar, M.; Brar, A.; Vivekanand, V.; Pareek, N. Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int. J. Biol. Macromol. 2018, 116, 931–938. [Google Scholar] [CrossRef]
- Kumar, M.; Madhuprakash, J.; Balan, V.; Singh, A.K.; Vivekanand, V.; Conceptulization, N.P. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase. Bioresour Technol. 2021, 337, 125399. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.R.; Soares, F.E.F.; Giuberti, T.Z.; Lopes, A.D.C.G.; Lacerda, T.; de Hollanda Ayupe, T.; Queiroz, P.V.; de Souza Gouveia, A.; Pinheiro, L.; Araujo, A.L.; et al. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae. Vet. Parasitol. 2015, 212, 214–218. [Google Scholar] [CrossRef]
- Venkatachalam, A.; Govinda Rajulu, M.B.; Thirunavukkarasu, N.; Suryanarayanan, T.S. Endophytic fungi of marine algae and seagrasses: A novel source of chitin modifying enzymes. Mycosphere 2015, 6, 345–355. [Google Scholar] [CrossRef]
- Suresh, P.V.; Chandrasekaran, M. Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation. Process Biochem. 1999, 34, 257–267. [Google Scholar] [CrossRef]
- Brzezinska, M.S.; Jankiewicz, U. Production of antifungal chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Curr. Microbiol. 2012, 65, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachmawaty, R.; Salleh, M.B.M. Characterization of crude chitinase produced by Trichoderma virens in solid state fermentation. In Proceedings of the International Conference on Mathematics, Science, Technology, Education and their Applications, Makassar, Indonesia, 3–4 October 2016; pp. 347–354. [Google Scholar]
- Leger, R.S.; Cooper, R.M.; Charnley, A.K. Characterization of chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 1991, 58, 415–426. [Google Scholar] [CrossRef]
- Binod, P.; Pusztahelyi, T.; Nagy, V.; Sandhya, C.; Szakács, G.; Pócsi, I.; Pandey, A. Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzyme Microb. Technol. 2005, 36, 880–887. [Google Scholar] [CrossRef]
- Fenice, M.; Leuba, J.L.; Federici, F. Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J. Ferment. Bioeng. 1998, 86, 620–623. [Google Scholar] [CrossRef]
- Fenice, M.; Di Giambattista, R.; Raetz, E.; Leuba, J.L.; Federici, F. Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose. J. Biotechnol. 1998, 62, 119–131. [Google Scholar] [CrossRef]
Biomass (mg/mL) | Activity (U/L) | |||||
---|---|---|---|---|---|---|
Coefficient | RC | SE | P | RC | SE | P |
Constant | 6.3549 | 0.1772 | 3.55 × 10−15 | 120.434 | 12.9709 | 1.47 × 10−5 |
pH | −0.0163 | 0.2381 | 0.9463 | 40.0609 | 17.9274 | 0.0559 |
Salinity | −2.3774 | 0.2031 | 1.28 × 10−8 | −188.5 | 11.5727 | 2.03 × 10−7 |
pH*pH | −2.6611 | 0.4219 | 1.93 × 10−5 | −77.5963 | 16.6379 | 1.62 × 10−3 |
Sal*Sal | −1.3177 | 0.2678 | 0.0002 | −101.544 | 13.1646 | 5.67 × 10−5 |
pH*Sal | −0.0168 | 0.2654 | 0.95043 | 25.7179 | 23.5271 | 0.3063 |
ANOVA table | ||||||
F value | 103.227 | p = 0.000 | 93.59 | p = 0.000 | ||
Q2 | 0.955 | 0.930 | ||||
R2 | 0.974 | 0.983 | ||||
R2-adjusted | 0.964 | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualetti, M.; Gorrasi, S.; Giovannini, V.; Braconcini, M.; Fenice, M. Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. Molecules 2022, 27, 688. https://doi.org/10.3390/molecules27030688
Pasqualetti M, Gorrasi S, Giovannini V, Braconcini M, Fenice M. Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. Molecules. 2022; 27(3):688. https://doi.org/10.3390/molecules27030688
Chicago/Turabian StylePasqualetti, Marcella, Susanna Gorrasi, Valeria Giovannini, Martina Braconcini, and Massimiliano Fenice. 2022. "Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea" Molecules 27, no. 3: 688. https://doi.org/10.3390/molecules27030688
APA StylePasqualetti, M., Gorrasi, S., Giovannini, V., Braconcini, M., & Fenice, M. (2022). Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. Molecules, 27(3), 688. https://doi.org/10.3390/molecules27030688