Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure of the Products 6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Electronic Supplementary Information (ESI) Available
References
- Mellah, M.; Voituriez, A.; Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 2007, 107, 5133–5209. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tang, B.; Liang, S.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, J.T. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J. Biol. Chem. 2015, 290, 3972–3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrovidov, S.; Franck, P.; Joseph, D.; Martarello, L.; Kirsch, G.; Belleville, F.; Nabet, P.; Dousset, B. Screening of new antioxidant molecules using flow cytometry. J. Med. Chem. 2000, 43, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev. 2011, 255, 2968–2990. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol. 2011, 85, 1313–1359. [Google Scholar] [CrossRef]
- Guan, Q.; Han, C.M.; Zuo, D.Y.; Zhai, M.A.; Li, Z.Q.; Zhang, Q.; Zhai, Y.P.; Jiang, X.W.; Bao, K.; Wu, Y.L.; et al. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur. J. Med. Chem. 2014, 87, 306–315. [Google Scholar] [CrossRef]
- La Regina, G.; Edler, M.C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J.F.; et al. Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies. J. Med. Chem. 2007, 50, 2865–2874. [Google Scholar] [CrossRef]
- Avis, I.; Martinez, A.; Tauler, J.; Zudaire, E.; Mayburd, A.; Abu-Ghazaleh, R.; Ondrey, F.; Mulshine, J.L. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res. 2005, 65, 4181–4190. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X.; Yin, S. Design, synthesis, and biological evaluation of novel selenium-containing iso combretastatins and phenstatins as antitumor agents. J. Med. Chem. 2017, 60, 7300–7314. [Google Scholar] [CrossRef]
- Plano, D.; Karelia, D.N.; Pandey, M.K.; Spallholz, J.E.; Amin, S.; Sharma, A.K. Design, synthesis, and biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J. Med. Chem. 2016, 59, 1946–1959. [Google Scholar] [CrossRef] [PubMed]
- Nedel, F.; Campos, V.F.; Alves, D.; McBride, A.J.A.; Dellagostin, O.A.; Collares, T.; Savegnago, L.; Seixas, F.K. Substituted diaryl diselenides: Cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci. 2012, 91, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Gatti, V.; Maga, G.; Samuele, A.; Pannecouque, C.; Schols, D.; Balzarini, J.; et al. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: New cyclic substituents at indole-2-carboxamide. J. Med. Chem. 2011, 54, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem. 2015, 58, 9601–9614. [Google Scholar] [CrossRef]
- Ragno, R.; Coluccia, A.; La Regina, G.; De Martino, G.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; et al. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide. J. Med. Chem. 2006, 49, 3172–3184. [Google Scholar] [CrossRef]
- De Martino, G.; Edler, M.C.; La Regina, G.; Coluccia, A.; Barbera, M.C.; Barrow, D.; Nicholson, R.I.; Chiosis, G.; Brancale, A.; Hamel, E.; et al. New arylthioindoles: Potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies. J. Med. Chem. 2006, 49, 947–954. [Google Scholar] [CrossRef]
- Funk, C.D. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat. Rev. Drug Discov. 2005, 4, 664–672. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015, 89, 421–441. [Google Scholar] [CrossRef]
- Nuth, M.; Guan, H.C.; Zhukovskaya, N.; Saw, Y.L.; Ricciardi, R.P. Design of potent poxvirus inhibitors of the heterodimeric processivity factor required for viral replication. J. Med. Chem. 2013, 56, 3235–3246. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Xu, J.W.; Wang, Z.W.; Qi, H.; Xu, Q.L.; Bai, Z.S.; Zhang, Q.; Bao, K.; Wu, Y.L.; Zhang, W.G. 3-(3,4,5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: Microwave-assisted synthesis and biological evaluation. Eur. J. Med. Chem. 2015, 90, 184–194. [Google Scholar] [CrossRef]
- Sahu, P.K.; Umme, T.; Yu, J.; Nayak, A.; Kim, G.; Noh, M.; Lee, J.-Y.; Kim, D.-D.; Jeong, L.S. Selenoacyclovir and selenoganciclovir: Discovery of a new template for antiviral agents. J. Med. Chem. 2015, 58, 8734–8738. [Google Scholar] [CrossRef]
- Chen, H.X.; Olatunji, O.J.; Zhou, Y.F. Anti-oxidative, anti-secretory and anti-inflammatory activities of the extract from the root bark of Lycium chinense (Cortex Lycii) against gastric ulcer in mice. J. Nat. Med. 2016, 70, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.L.; Tian, S.K. Iodine-catalyzed regioselective sulfenylation of indoles with sulfonyl hydrazides. Angew. Chem. Int. Ed. 2013, 52, 4929–4932. [Google Scholar] [CrossRef] [PubMed]
- Thurow, S.; Penteado, F.; Perin, G.; Alves, D.; Santi, C.; Monti, B.; Schiesser, C.H.; Barcellos, T.; Lenardão, E.J. Selenium dioxide-promoted selective synthesis of mono- and bis-sulfenylindoles. Org. Chem. Front. 2018, 5, 1983–1991. [Google Scholar] [CrossRef]
- Azeredo, J.B.; Godoi, M.; Martins, G.M.; Silveira, C.C.; Braga, A.L. A solvent- and metal-free synthesis of 3-chacogenyl-indoles employing DMSO/I2 as an eco-friendly catalytic oxidation system. J. Org. Chem. 2014, 79, 4125–4130. [Google Scholar] [CrossRef]
- Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. Vanadium-catalyzed sulfenylation of indoles and 2-naphthols with thiols under molecular oxygen. J. Org. Chem. 2004, 69, 7688–7693. [Google Scholar] [CrossRef]
- Prasad, C.D.; Kumar, S.; Sattar, M.; Adhikary, A.; Kumar, S. Metal free sulfenylation and bis-sulfenylation of indoles: Persulfate mediated synthesis. Org. Biomol. Chem. 2013, 11, 8036–8040. [Google Scholar] [CrossRef]
- Rafique, J.; Saba, S.; Franco, M.S.; Bettanin, L.; Schneider, A.R.; Silva, L.T.; Braga, A.L. Direct, meta-free C(sp2)-H chalcogenation of indoles and imidazopyridines with dichalcogenides catalysed by KIO3. Chem. Eur. J. 2018, 24, 4173–4180. [Google Scholar] [CrossRef]
- Rathore, V.; Kumar, S. Visible-light-induced metal and reagent-free oxidative coupling of sp2 C–H bonds with organo-dichalcogenides: Synthesis of 3-organochalcogenyl indoles. Green Chem. 2019, 21, 2670–2676. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, J.; Liu, F.M.; Jiang, L.Q.; Yi, W.B. Copper-catalyzed direct and odorless selenylation with a sodium selenite-based reagent. Org. Chem. Front. 2019, 6, 825–829. [Google Scholar] [CrossRef]
- Luo, D.P.; Wu, G.; Yang, H.; Liu, M.C.; Gao, W.X.; Huang, X.B.; Chen, J.X.; Wu, H.Y. Copper-catalyzed three-component reaction for regioselective aryl- and heteroarylselenation of indoles using selenium powder. J. Org. Chem. 2016, 81, 4485–4493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.G.; Jiang, H.; Sun, L.H. Convenient synthesis of selenyl-indoles via iodide ion-catalyzed electrochemical C-H selenation. Chem. Commun. 2018, 54, 8781–8784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.B.; Ban, Y.L.; Yuan, P.F.; Peng, S.J.; Fang, J.G.; Wu, L.Z.; Liu, Q. Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chem. 2017, 19, 5559–5563. [Google Scholar] [CrossRef]
- Vieira, B.M.; Thurow, S.; da Costa, M.; Casaril, A.M.; Domingues, M.; Schumacher, R.F.; Perin, G.; Alves, D.; Savegnago, L.; Lenard, E.J. Ultrasound-Assisted Synthesis and antioxidant activity of 3-selanyl-1 H-indole and 3-selanylimidazo[1,2-a]pyridine derivatives. Asian J. Org. Chem. 2017, 6, 1635–1646. [Google Scholar] [CrossRef]
- Luz, E.Q.; Seckler, D.; Araújo, J.S.; Angst, L.; Lima, D.B.; Rios, E.A.M.; Ribeiro, R.R.; Rampon, D.S. Fe(III)-catalyzed direct C3 chalcogenylation of indole: The effect of iodide ions. Tetrahedron 2019, 75, 1258–1266. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Wolf, L.; Martins, G.M. The use of anhydrous CeCl3 as a catalyst for the synthesis of 3-sulfenyl indoles. Tetrahedron Lett. 2010, 51, 2014–2016. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L. Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone. Tetrahedron Lett. 2005, 46, 5831–5834. [Google Scholar] [CrossRef]
- Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.; Zhang, P.; Huang, K.-W.; Liu, X. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols. J. Org. Chem. 2011, 76, 8999–9007. [Google Scholar] [CrossRef]
- Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G.R. Development of a novel, highly efficient halide-catalyzed sulfenylation of indoles. Org. Lett. 2006, 8, 565–568. [Google Scholar] [CrossRef]
- Khazaei, A.; Zolfigol, M.A.; Mokhlesi, M.; Panah, F.D.; Sajjadifar, S. Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media. Helv. Chim. Acta 2012, 95, 106–114. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Wolf, L.; Martins, G.M.; von Mühlen, L. Efficient synthesis of 3-selanyl- and 3-sulfanylindoles employing trichloroisocyanuric acid and dichalcogenides. Tetrahedron 2012, 68, 10464–10469. [Google Scholar] [CrossRef]
- Rahaman, R.; Devi, N.; Bhagawati, J.R.; Barman, P. Microwave-assisted regioselective sulfenylation of indoles under solvent- and metal-free conditions. RSC Adv. 2016, 6, 18929–18935. [Google Scholar] [CrossRef]
- Chen, M.; Huang, Z.T.; Zheng, Q.Y. Visible light-induced 3-sulfenylation of N-methylindoles with arylsulfonyl chlorides. Chem. Commun. 2012, 48, 11686–11688. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem. Commun. 2011, 47, 9188–9190. [Google Scholar] [CrossRef]
- Tocco, G.; Begala, M.; Esposito, F.; Caboni, P.; Cannas, V.; Tramontano, E. ZnO-mediated regioselective C-arylsulfonylation of indoles: A facile solvent-free synthesis of 2- and 3-sulfonylindoles and preliminary evaluation of their activity against drug-resistant mutant HIV-1 reverse transcriptases (RTs). Tetrahedron Lett. 2013, 54, 6237–6241. [Google Scholar] [CrossRef]
- Nalbandian, C.J.; Miller, E.M.; Toenjes, S.T.; Gustafson, J.L. A conjugate Lewis base-Brønsted acid catalyst for the sulfenylation of nitrogen containing heterocycles under mild conditions. Chem. Commun. 2017, 53, 1494–1497. [Google Scholar] [CrossRef]
- Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D.G.; Cossy, J. TFA-promoted direct C-H sulfenylation at the C2 position of non-protected indoles. Chem. Commun. 2015, 51, 13898–13901. [Google Scholar] [CrossRef]
- Wang, F.X.; Zhou, S.D.; Wang, C.; Tian, S.K. N-Hydroxy sulfonamides as new sulfenylating agents for the functionalization of aromatic compounds. Org. Biomol. Chem. 2017, 15, 5284–5288. [Google Scholar] [CrossRef]
- Ravi, C.; Joshi, A.; Adimurthy, S. C3 sulfenylation of N-heteroarenes in water under catalyst-free conditions. Eur. J. Org. Chem. 2017, 2017, 3646–3651. [Google Scholar] [CrossRef]
- Sang, P.; Chen, Z.; Zou, J. K2CO3 promoted direct sulfenylation of indoles: A facile approach towards 3-sulfenylindoles. Green Chem. 2013, 15, 2096–2100. [Google Scholar] [CrossRef]
- Shi, Q.; Li, P.; Zhang, Y.; Wang, L. Visible light-induced tandem oxidative cyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Org. Chem. Front. 2017, 4, 1322–1330. [Google Scholar] [CrossRef]
- Yi, S.; Li, M.; Mo, W.; Hu, X.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. Metal-free, iodine-catalyzed regioselective sulfenylation of indoles with thiols. Tetrahedron Lett. 2016, 57, 1912–1916. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Catalyst-free thiolation of indoles with sulfonyl hydrazides for the synthesis of 3-sulfenylindoles in water. Green Chem. 2016, 18, 2609–2613. [Google Scholar] [CrossRef]
- Qiu, J.K.; Hao, W.J.; Wang, D.C.; Wei, P.; Sun, J.; Jiang, B.; Tu, S.J. Selective sulfonylation and diazotization of indoles. Chem. Commun. 2014, 50, 14782–14785. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Copper-catalyzed aerobic oxidative N-S bond functionalization for C-S Bond formation: Regio- and stereoselective synthesis of sulfones and thioethers. Chem.-Eur. J. 2014, 20, 7911–7915. [Google Scholar] [CrossRef]
- Nookaraju, U.; Begari, E.; Yetra, R.R.; Kumar, P. CeCl3⋅7H2O-NaI promoted regioselective sulfenylation of indoles with sulfonylhydrazides. Chem. Select 2016, 1, 81–85. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Claremon, D.A.; Barnette, W.E.; Seitz, S.P. N-Phenylselenophthalimide (N-PSP) and N-phenylselenosuccinimide (N-PSS). Two versatile carriers of the phenylseleno group. Oxyselenation of olefins and a selenium-based macrolide synthesis. J. Am. Chem. Soc. 1979, 101, 3704–3706. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Z.; Xu, T.; Wu, P. Novel Brønsted acid catalyzed three-component alkylations of indoles with N-phenylselenophthalimide and styrenes. Org. Lett. 2007, 9, 5263–5266. [Google Scholar] [CrossRef]
- Mohan, B.; Yoon, C.; Jang, S.; Park, K.H. Copper nanoparticles catalyzed Se(Te)-Se(Te) bond activation: A straightforward route towards unsymmetrical organochalcogenides from boronic acids. ChemCatChem 2015, 7, 405–412. [Google Scholar] [CrossRef]
- Saba, S.; Rafique, J.; Braga, A.L. Synthesis of unsymmetrical diorganyl chalcogenides under greener conditions: Use of an iodine/DMSO system, solvent- and metal-free approach. Adv. Synth. Catal. 2015, 357, 1446–1452. [Google Scholar] [CrossRef]
- Chatterjee, T.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem. 2013, 78, 7145–7153. [Google Scholar] [CrossRef] [PubMed]
- Becht, J.-M.; Le Drian, C. Formation of carbon-sulfur and carbon-selenium bonds by palladium-catalyzed decarboxylative cross-couplings of hindered 2,6-dialkoxybenzoic acids. J. Org. Chem. 2011, 76, 6327–6330. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett. 2009, 11, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.J.; Xu, X.Y.; Liu, Q.; Liu, L.X. Graphene oxide and its derivatives: Their synthesis and use in organic synthesis. Curr. Org. Chem. 2019, 23, 188–204. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Carbocatalysis: The state of “metal-free” catalysis. Chem. Eur. J. 2015, 21, 12550–12562. [Google Scholar] [CrossRef] [PubMed]
- Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014, 114, 6179–6212. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-L.; Loh, K.-P. Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 2013, 46, 2275–2285. [Google Scholar] [CrossRef]
- Coraux, J.; Marty, L.; Bendiab, N.; Bouchiat, V. Functional hybrid systems based on large-area high-quality graphene. Acc. Chem. Res. 2013, 46, 2193–2201. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Bielawski, C.W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2011, 2, 1233–1240. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in inert C-H bond functionalization. Chem. Rev. 2017, 117, 9433–9520. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef] [PubMed]
- Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016, 116, 10035–10074. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 2008, 108, 1052–1103. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Varma, R.S.; Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 2017, 46, 6675–6686. [Google Scholar] [CrossRef]
- Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102–113. [Google Scholar] [CrossRef]
- Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar] [CrossRef]
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed. 2009, 48, 9785–9789. [Google Scholar] [CrossRef]
- Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 2010, 20, 2255–2262. [Google Scholar] [CrossRef]
- Pan, Y.H.; Wang, S.; Kee, C.W.; Dubuisson, E.; Yang, Y.Y.; Loh, K.P.; Tan, C.H. Graphene oxide and Rose Bengal: Oxidative C–H functionalisation of tertiary amines using visible light. Green Chem. 2011, 13, 3341–3344. [Google Scholar] [CrossRef]
- Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.T.; Wu, Y. Graphene oxide mediated thiolation of indoles in water: A green and sustainable approach to synthesize 3-sulfenylindoles. Org. Chem. Front. 2019, 6, 116–120. [Google Scholar] [CrossRef]
- Liu, C.P.; Peng, X.J.; Hu, D.; Shi, F.; Huang, P.P.; Luo, J.J.; Liu, Q.; Liu, L.X. Direct C3 chalcogenylation of indolines using a graphene oxide-promoted and visible-light-induced synergistic effect. N. J. Chem. 2020, 44, 17245–17251. [Google Scholar] [CrossRef]
- Liao, H.W.; Peng, X.J.; Hu, D.; Xu, X.Y.; Huang, P.P.; Liu, Q.; Liu, L.X. CoCl2-promoted TEMPO oxidative homocoupling of indoles: Access to tryptanthrin derivatives. Org. Biomol. Chem. 2018, 16, 5699–5706. [Google Scholar] [CrossRef]
- Huang, P.P.; Peng, X.J.; Hu, D.; Liao, H.W.; Tang, S.B.; Liu, L.X. Regioselective synthesis of 2,3’-biindoles mediated by an NBS-induced homo-coupling of indoles. Org. Biomol. Chem. 2017, 15, 9622–9629. [Google Scholar] [CrossRef]
- Yin, B.; Huang, P.P.; Lu, Y.B.; Liu, L.X. TEMPO-catalyzed oxidative homocoupling route to 3,2’-biindolin-2-ones via an indolin-3-one intermediate. RSC Adv. 2017, 7, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.F.; Peng, X.J.; Huang, P.P.; Jiang, L.L.; Ye, D.N.; Liu, L.X. A multifunctionalized strategy of indoles to C2-quaternary indolin-3-ones via a TEMPO/Pd-catalyzed cascade process. Org. Biomol. Chem. 2017, 15, 442–448. [Google Scholar] [CrossRef]
- Jiang, L.L.; Peng, X.J.; Huang, P.P.; Chen, Z.W.; Liu, L.X. TEMPO-catalyzed oxidative dimerization and cyanation of indoles for the synthesis of 2-(1H-indol-3-yl)-3-oxoindoline-2-carbonitriles. Tetrahedron 2017, 73, 1389–1396. [Google Scholar] [CrossRef]
- Lin, F.; Chen, Y.; Wang, B.S.; Qin, W.B.; Liu, L.X. Silver-catalyzed TEMPO oxidative homocoupling of indoles for the synthesis of 3,3’-biindolin-2-ones. RSC Adv. 2015, 5, 37018–37022. [Google Scholar] [CrossRef]
- Qin, W.B.; Zhu, J.Y.; Kong, Y.B.; Bao, Y.H.; Chen, Z.W.; Liu, L.X. Metal-free (Boc)2O-mediated C4-selective direct indolation of pyridines using TEMPO. Org. Biomol. Chem. 2014, 12, 4252–4259. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.J.; Zeng, Y.; Liu, Q.; Liu, L.X.; Wang, H.S. Graphene oxide as a green carbon material for cross-coupling of indoles with ethers via oxidation and the Friedel-Crafts reaction. Org. Chem. Front. 2019, 6, 3615–3619. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; García, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 2014, 5, 5291–5299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.L.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C.T.; Hayashi, T.; Loh, K.P. Tandem catalysis of amines using porous graphene oxide. J. Am. Chem. Soc. 2015, 137, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L.J. Synthesis of difluoromethyl thioethers from difluoromethyl trimethylsilane and organothiocyanates generated in situ. Angew. Chem. Int. Ed. 2015, 54, 5753–5756. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liebeskind, L.S. Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of boronic acids. Org. Lett. 2006, 8, 4331–4333. [Google Scholar] [CrossRef]
- Exner, B.; Bayarmagnai, B.; Jia, F.; Goossen, L.J. Iron-catalyzed decarboxylation of trifluoroacetate and its application to the synthesis of trifluoromethyl thioethers. Chem.-Eur. J. 2015, 21, 17220–17223. [Google Scholar] [CrossRef]
- Saba, S.; Rafique, J.; Franco, M.S.; Schneider, A.R.; Espíndola, L.; Silva, D.O.; Braga, A.L. Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: A metal free approach. Org. Biomol. Chem. 2018, 16, 880–885. [Google Scholar] [CrossRef]
- Saima, E.D.; Lavekar, A.G.; Sinha, A.K. Cooperative catalysis by bovine serum albumin-iodine towards cascade oxidative coupling-C(sp2)-H sulfenylation of indoles/hydroxyaryls with thiophenols on water. Org. Biomol. Chem. 2016, 14, 6111–6118. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.Y.; Wu, Y.; Chen, D.; Fan, X.L. Photocatalytic direct C–S bond formation: Facile access to 3-sulfenylindoles via metal-free C-3 sulfenylation of indoles with thiophenols. RSC Adv. 2017, 7, 37739–37742. [Google Scholar] [CrossRef] [Green Version]
- Su, C.L.; Acik, M.; Takai, K.; Lu, J.; Hao, S.J.; Zheng, Y.; Wu, P.P.; Bao, Q.L.; Enoki, T.; Chabal, Y.J.; et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 2012, 3, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.Q.; Wang, H.L.; Yang, Y.G.; Deng, T.S.; Chen, C.M.; Zhu, Y.L.; Hou, X.L. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal. 2015, 5, 5636–5646. [Google Scholar] [CrossRef]
- Kumaraswamy, G.; Rajua, R.; Narayanarao, V. Metal- and base-free syntheses of aryl/alkylthioindoles by the iodine-induced reductive coupling of aryl/alkyl sulfonyl chlorides with indoles. RSC Adv. 2015, 5, 22718–22723. [Google Scholar] [CrossRef]
- Yang, X.Q.; Bao, Y.H.; Dai, Z.H.; Zhou, Q.F.; Yang, F.L. Catalyst-free sulfenylation of indoles with sulfinic esters in ethanol. Green Chem. 2018, 20, 3727–3731. [Google Scholar] [CrossRef]
- Fang, X.L.; Tang, R.Y.; Zhong, P.; Li, J.H. Iron-catalyzed sulfenylation of indoles with disulfides promoted by a catalytic amount of iodine. Synthesis 2009, 24, 4183–4189. [Google Scholar] [CrossRef]
- Ackermann, L.; Dell’Acqua, M.; Fenner, S.; Vicente, R.; Sandmann, R. Metal-free direct arylations of indoles and pyrroles with diaryliodonium salts. Org. Lett. 2011, 13, 2358–2360. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.G.; Jiang, H.; Sun, L.H. A low-cost electrochemical thio- and selenocyanation strategy for electron-rich arenes under catalyst- and oxidant-free conditions. RSC Adv. 2018, 8, 22042–22045. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Q.; Long, P.L.; Wu, H.P.; Yin, H.Q.; Chen, F.X. N-Thiocyanato-dibenzenesulfonimide: A new electrophilic thiocyanating reagent with enhanced reactivity. Org. Biomol. Chem. 2019, 17, 7131–7134. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.F.; Yu, W.T.; Tang, X.D.; Li, J.X.; Wu, W.Q. Copper-catalyzed aerobic oxidative regioselective thiocyanation of aromatics and heteroaromatics. J. Org. Chem. 2017, 82, 9312–9320. [Google Scholar] [CrossRef]
- Wu, D.; Qiu, J.S.; Karmaker, P.G.; Yin, H.Q.; Chen, F.X. N-Thiocyanatosaccharin: A “sweet” electrophilic thiocyanation reagent and the synthetic applications. J. Org. Chem. 2018, 83, 1576–1583. [Google Scholar] [CrossRef]
- Yu, Y.Z.; Zhou, Y.; Song, Z.Q.; Liang, G. An efficient t-BuOK promoted C3-chalcogenylation of indoles with dichalcogenides. Org. Biomol. Chem. 2018, 16, 4958–4962. [Google Scholar] [CrossRef]
Entry | GO (wt %) b | Light Source | Solvent | Yield (%) c |
---|---|---|---|---|
1 | 40 | Sunlight | CH3CN | 28 |
2 | 40 | 22 W CWF bulb | CH3CN | 22 |
3 | 40 | 1W Green LED | CH3CN | 7 |
4 | 40 | 3W blue LED | CH3CN | 61 |
5 | 40 | No light | CH3CN | 0 |
6 | 40 | 3W blue LED | THF | 5 |
7 | 40 | 3W blue LED | DMSO | 7 |
8 | 40 | 3W blue LED | Toluene | 34 |
9 | 40 | 3W blue LED | DCE | 78 |
10 | 40 | 3W blue LED | DMF | 0 |
11 | 40 | 3W blue LED | 1,4-Dioxane | 0 |
12 | 20 | 3W blue LED | DCE | 67 |
13 | 30 | 3W blue LED | DCE | 72 |
14 | 50 | 3W blue LED | DCE | 87 |
15 | 60 | 3W blue LED | DCE | 85 |
16 | 0 | 3W blue LED | DCE | 0 |
17 | 50 | No light | DCE | <5 |
Entry | R1 | R2 | R3 | Product | Yield (%) b |
---|---|---|---|---|---|
1 | H | H | H | 6aa | 87 |
2 | 5-I | H | H | 6ba | 83 |
3 | 5-CH3 | H | H | 6ca | 89 |
4 | 5-CN | H | H | 6da | 78 |
5 | 6-OCH3 | H | H | 6ea | 90 |
6 | 7-Cl | H | H | 6fa | 80 |
7 | 7-OBn | H | H | 6ga | 83 |
8 | 4-CH3 | H | H | 6ha | 71 |
9 | 4-CO2CH3 | H | H | 6ia | 67 |
10 | H | H | 2-CH3 | 6ja | 86 |
11 | H | CH3 | H | 6ka | 86 |
12 | 5-CH3 | H | 2-CH3 | 6la | 82 |
13 c | H | H | 3-CH3 | 6ma | 84 |
Entry | R | Product | Yield (%) b |
---|---|---|---|
1 | 4-ClPh | 6ab | 86 |
2 | 4-BrPh | 6ac | 88 |
3 | 4-OCH3Ph | 6ad | 83 |
4 | 4-C2H5Ph | 6ae | 80 |
5 | 2,4-dimethylphenyl | 6af | 82 |
6 | 4-NO2Ph | 6ag | 91 |
7 | Naphthalen-2-yl | 6ah | 78 |
8 c | 4-OCH3Ph | 6ai | 78 |
9 d | 4-CH3 | 6aj | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Peng, X.; Li, H.; He, H.; Liu, L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022, 27, 772. https://doi.org/10.3390/molecules27030772
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules. 2022; 27(3):772. https://doi.org/10.3390/molecules27030772
Chicago/Turabian StyleHuang, Qing, Xiangjun Peng, Hong Li, Haiping He, and Liangxian Liu. 2022. "Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions" Molecules 27, no. 3: 772. https://doi.org/10.3390/molecules27030772
APA StyleHuang, Q., Peng, X., Li, H., He, H., & Liu, L. (2022). Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules, 27(3), 772. https://doi.org/10.3390/molecules27030772