Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review
Abstract
:1. Introduction
2. Typical Properties of CFs
3. Fiber-Reinforced Geopolymer Composites
3.1. The Polymerization Mechanism of Geopolymer
3.2. Fiber Matrix Interface Bonding Mechanisms
4. Research Status of the Durability of CFGCs
4.1. The Alkaline Degradation Mechanism of CFs
4.2. Crack Resistance and Toughness of CFGCs
4.2.1. The Effect of Bast Fiber on the Toughness of CFGCs
4.2.2. The Effect of Leaf Fiber on the Toughness of CFGCs
4.2.3. The Effect of Seed Fiber on the Toughness of CFGCs
4.2.4. The Effect of Fruit Fiber on the Toughness of CFGCs
4.2.5. The Effect of Stem Fiber on the Toughness of CFGCs
4.2.6. The Effect of Grass/Reeds Fiber on the Toughness of CFGCs
4.3. Resistance to Sulfate Attack of CFGCs
4.4. Resistance to Chloride Ion Penetration of CFGCs
4.5. Performance of CFGCs against Wetting/Drying Cycles
4.6. High Temperature Tolerance of CFGCs
5. Other Factors Affecting the Durability of CFGCs
5.1. The Effect of Nanomaterial Addition on the Durability of CFGCs
5.2. The Effect of Fiber Modification on the Durability of CFGCs
6. Conclusions
- All types of natural cellulose fibers can be used to reinforce geopolymers. Among the bast fibers, hemp, flax and jute, and leaf fiber sisal are the most widely used, and there is also more related research;
- An appropriate amount of plant fiber has a beneficial effect on the mechanical properties of the geopolymer, toughening and cracking resistance, and other types of durability. Too much mixing will have a negative effect. In CFGCs, the CF content range is mostly 0.1–10%, and the best content is usually 2–4% volume content;
- The alkaline degradation of CF in the geopolymer matrix has an adverse effect on the mechanical properties of the composites. Chemical modification and self-modification can be used to adjust the adhesion state of the fiber and matrix interface and optimize the properties of the interface layer between the fiber and matrix to achieve the best properties of the geopolymer;
- Nanomaterials can improve the microstructure of CFGCs, make the material matrix more compact, reduce the degradation rate of CF and improve the durability of CFGCs;
- CFGCs have good properties of resistance to sulfate and chloride ion erosion and can prevent degradation of fibers at high temperatures. However, the sugar precipitated from CFs in alkaline environment reduces the compactness of geopolymer gel and has a negative effect on its durability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parathi, S.; Nagarajan, P.; Pallikkara, S.A. Ecofriendly geopolymer concrete: A comprehensive review. Clean Technol. Environ. Policy 2021, 23, 1701–1713. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef] [PubMed]
- Francesco, C.; Ilenia, F.; Marta, T.; Cinzia, S.; Raffaele, C.; Antonella, P. Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA. J. Clean. Prod. 2021, 312, 127777. [Google Scholar]
- Buchwald, A. What are geopolymers? Current state of research and technology, the opportunities they offer and their significance for the precast industry. Betonw. Und Fert.-Tech. 2006, 72, 42–49. [Google Scholar]
- Favier, A.; Hot, J.; Habert, G.; Roussela, N.; Lacaillerie, J. Flow properties of mk-based geopolymer pastes. a comparative study with standard portland cement pastes. Soft Matter 2013, 10, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gong, L.; Pan, Y.; Li, C.; Zhou, T.; Cheng, X. Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC Adv. 2018, 8, 2350–2356. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Kozub, B.; Bazan, P.; Mierzwiński, D.; Korniejenko, K. Fly-ash-based geopolymers reinforced by melamine fibers. Materials 2021, 14, 400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Ling, Y. Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. J. Clean. Prod. 2021, 294, 126193. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Mackenzie, K.J.; Melo, U.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011, 37, 3011–3018. [Google Scholar] [CrossRef]
- Mahesh, K.; Komal, K.; Manjunath, G.S. Workability and strength study on fiber reinforced geopolymer concrete. IUP J. Struct. Eng. 2018, 11, 41–57. [Google Scholar]
- Yan, S.; Sagoe-Crentsil, K. Properties of wastepaper sludge in geopolymer mortars for masonry applications. J. Environ. Manag. 2012, 112, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Gábor, M.; Ágnes, S.; Sándor, N. Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire. J. Clean. Prod. 2018, 178, 429–440. [Google Scholar]
- Saloni; Parveen; Pham, T.M. Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Constr. Build. Mater. 2020, 245, 118422. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, W.; Zhao, X.; Bu, M.; Niu, D. The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceram. Int. 2021, 47, 29550–29566. [Google Scholar] [CrossRef]
- Rashad, A.M. The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater. Sci. Technol. 2019, 35, 127–146. [Google Scholar] [CrossRef]
- Manfaluthy, M.L.; Ekaputri, J.J. The application of PVA fiber to improve the mechanical properties of geopolymer concrete. MATEC Web Conf. 2017, 138, 1020. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Chen, L.; Komarneni, S.; Zhou, C.; Tong, D.; Yang, H.; Yu, W.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Ganesan, N.; Abraham, R.; Raj, S.D. Durability characteristics of steel fibre reinforced geopolymer concrete. Constr. Build. Mater. 2015, 93, 471–476. [Google Scholar] [CrossRef]
- Annalisa, N.; Valentina, M.; Elena, L. Production and thermomechanical characterization of wool-geopolymer composites. J. Am. Ceram. Soc. 2017, 100, 2822–2831. [Google Scholar]
- Rabiaa, E.; Mohamed, R.A.S.; Sofi, W.H.; Taher, A.T. Developing geopolymer concrete properties by using nanomaterials and steel fibers. Adv. Mater. Sci. Eng. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Ibraheem, M.; Butt, F.; Waqas, R.M.; Hussain, K.; Tufail, R.F.; Ahmad, N.; Usanova, K.; Musarat, M.A. Mechanical and Microstructural Characterization of Quarry Rock Dust Incorporated Steel Fiber Reinforced Geopolymer Concrete and Residual Properties after Exposure to Elevated Temperatures. Materials 2021, 14, 6890. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Xin, M.; Zhang, Y.; Ge, S.; Wang, D.; Jiang, C.; Zhang, L.; Cheng, X. Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement. RSC Adv. 2021, 11, 18818–18826. [Google Scholar] [CrossRef]
- Al-mashhadani Mukhallad, M.; Orhan, C.; Yurdakul, A.; Mucteba, U.; Savaş, E. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, G. Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Constr. Build. Mater. 2021, 269, 121326. [Google Scholar] [CrossRef]
- Aygrmez, Y.; Canpolat, O.; Al-Mashhadani, M.M. Assessment of geopolymer composites durability at one year age. J. Build. Eng. 2020, 32, 101453. [Google Scholar] [CrossRef]
- Kheradmand, M.; Mastali, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Experimental and numerical investigations on the flexural performance of geopolymers reinforced with short hybrid polymeric fibres. Compos. Part B Eng. 2017, 126, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B. Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 2017, 168, 402–427. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, F.; Aamer, B.; Nemkumar, B. Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cem. Concr. Compos. 2019, 103, 183–192. [Google Scholar]
- Shaikh, A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lv, C. Research progress on durability of cellulose fiber-reinforced cement-based composites. Int. J. Polym. Sci. 2021, 2021, 1014531. [Google Scholar] [CrossRef]
- Janne, P.S.N.; Michael, A.B.P. Development of abaca fiber-reinforced foamed fly ash geopolymer. MATEC Web Conf. 2018, 156, 5018. [Google Scholar] [CrossRef]
- Sankar, K.; Kriven, W.M. Sodium geopolymer reinforced with jute weave. Ceram. Eng. Sci. Proc. 2014, 35, 5–8. [Google Scholar]
- Ribeiro, M.; Kriven, W.M. A Review of Particle-and Fiber-Reinforced Metakaolin-Based Geopolymer Composites. J. Ceram. Sci. Technol. 2017, 8, 307–322. [Google Scholar]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Camargo, M.M.; Taye, E.A.; Roether, J.A.; Redda, D.T.; Boccaccini, A.R. A review on natural fiber-reinforced geopolymer and cement-based composites. Materials 2020, 13, 4603. [Google Scholar] [CrossRef]
- Bos, H.L.; Oever, M.; Peters, O. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J. Mater. Sci. 2002, 37, 1683–1692. [Google Scholar] [CrossRef]
- Pickering, K.L.; Beckermann, G.W.; Alam, S.N.; Foreman, N.J. Optimising industrial hemp fibre for composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 461. [Google Scholar] [CrossRef]
- Summerscales, J.; Dissanayake, N.; Virk, A.S.; Hall, W. A review of bast fibres and their composites. Part1-fibres as reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.; Abdollah, M.; Shuhimi, F.F.; Ismail, N.; Amiruddin, H.; Umehara, N. Selection and verification of kenaf fibres as an alternative friction material using weighted decision matrix method. Mater. Des. 2015, 67, 577–582. [Google Scholar] [CrossRef]
- Kumar, R.; Obrai, S.; Sharma, A. Chemical modifications of natural fiber for composite material. Chem. Sin. 2011, 2, 219–228. [Google Scholar]
- Haque, M.; Rahman, R.; Islam, N.; Huque, M.; Hasan, M. Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. J. Reinf. Plast. Compos. 2010, 29, 2253–2261. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid) (pla) composites: A comparative study. Compos. Sci. Technol. 2015, 66, 1813–1824. [Google Scholar] [CrossRef]
- Arioza, E.; Ariozb, O.; Mete Kockar, O. An Experimental Study on the Mechanical and Microstructural Properties of Geopolymers. Procedia Eng. 2012, 42, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Sambucci, M.; Sibai, A.; Valente, M. Recent advances in geopolymer technology. A potential eco-friendly solution in the construction materials industry: A review. J. Compos. Sci. 2021, 5, 109. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 2005, 44, 832–839. [Google Scholar] [CrossRef]
- Rao, J.; Zhou, Y.; Fan, M. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers 2018, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Yan, C.; Duan, P.; Zhang, Z.; Li, L.; Yan, Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr. Build. Mater. 2017, 134, 56–66. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Ali, A.A.; Mucteba, U.; Arın, Y.; Al-mashhadani Mukhallad, M.; Orhan, C.; Furkan, Ş.; Yurdakul, A. Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Constr. Build. Mater. 2019, 225, 909–926. [Google Scholar]
- Tan, J.; Lu, W.; Huang, Y.; Wei, S.; Xuan, X.; Liu, L. Preliminary study on compatibility of metakaolin-based geopolymer paste with plant fibers. Constr. Build. Mater. 2019, 225, 772–775. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem. Concr. Res. 2015, 73, 1–16. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, Y.; Yu, Z. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2018, 173, 10–16. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater. Des. 2015, 71, 17–25. [Google Scholar] [CrossRef]
- Correia, V.D.C.; Ardanuy, M.; Claramunt, J.; Savastano, H. Assessment of chemical and mechanical behavior of bamboo pulp and nanofibrillated cellulose exposed to alkaline environments. Cellulose 2019, 26, 9269–9285. [Google Scholar] [CrossRef]
- Olayiwola, H.O.; Amiandamhen, S.O.; Meincken, M. Investigating the suitability of fly ash/metakaolin-based geopolymers reinforced with South African alien invasive wood and sugarcane bagasse residues for use in outdoor conditions. Eur. J. Wood Prod. 2021, 79, 611–627. [Google Scholar] [CrossRef]
- Eyerusalem, A.; Judith, A.; Dirk, W.; Daniel, T.; Aldo, R. Hemp fiber reinforced red mud/fly ash geopolymer composite materials: Effect of fiber content on mechanical strength. Materials 2021, 14, 14030511. [Google Scholar]
- Poletanovic, B.; Dragas, J.; Ignjatovic, I.; Komljenovic, M.; Merta, I. Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars. Constr. Build. Mater. 2020, 259, 119677. [Google Scholar] [CrossRef]
- Trindade, A.C.; Arêas, I.O.; Almeida, D.C.; Alcamand, H.A.; Borges, P.H.; Silva, F.A. Mechanical behavior of geopolymeric composites reinforced with natural fibers. In International Conference on Strain-Hardening Cement-Based Composites; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2017; Volume 15. [Google Scholar]
- Sáez-Pérez, M.; Brümmer, M.; Durán-Suárez, A. Effect of the state of conservation of the hemp used in geopolymer and hydraulic lime concretes. Constr. Build. Mater. 2021, 285, 122853. [Google Scholar] [CrossRef]
- Na, Z.; Hya, B.; Dpa, B.; Yang, Z. Effects of alkali-treated kenaf fiber on environmentally friendly geopolymer-kenaf composites: Black liquid as the regenerated activator of the geopolymer. Constr. Build. Mater. 2021, 297, 123787. [Google Scholar]
- Assaedi, H.; Alomayri, T.; Shaikh, F.U.A.; Low, I. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. J. Adv. Ceram. 2015, 4, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Korniejenko, K.; Łach, M.; Hebdowska-Krupa, M.; Mikuła, E.J. The mechanical properties of flax and hemp fibres reinforced geopolymer composites. In IOP Conference Series: Materials Science and Engineering, International Conference Building Materials, Products and Technologies; IOP: Bristol, UK, 2018; Volume 379. [Google Scholar]
- Ampol, W.; Ronnakrit, K.; Sakchai, N.; Vanchai, S.; Prinya, C. Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 2020, 241, 118143. [Google Scholar]
- Zulfiati, R.; Saloma; Idris, Y. Mechanical properties of fly ash-based geopolymer with natural fiber. J. Phys. Conf. Ser. 2019, 1198, 082021. [Google Scholar] [CrossRef]
- Low, I.; Alomayri, T.; Hasan, A. Cotton and Flax Fibre-Reinforced Geopolymer Composites: Synthesis, Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Korniejenko, K.; Frczek, E.; Pytlak, E.; Adamski, M. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Eng. 2016, 151, 388–393. [Google Scholar] [CrossRef]
- Kornejenko, K.; Ach, M.; Salamtmur, N.D.; Furtos, G.; Mkua, J. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environ. Res. Technol. 2020, 3, 21–32. [Google Scholar] [CrossRef]
- Alomayri, T.; Shaikh, F.U.A.; Low, I.M. Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Mater. Des. 2014, 57, 360–365. [Google Scholar] [CrossRef]
- Kroehong, W.; Chai, J.; Pothisiri, T.; Chindaprasirt, P. Effect of oil palm fiber content on the physical and mechanical properties and microstructure of high-calcium fly ash geopolymer paste. Arab. J. Sci. Eng. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Mazen, A.; Abu, M.S.; Juma’a, A.; Yasair, A.; Tarek, F.; Abderrazek, K.; Fernando, R. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre-Reinforced geopolymer composite. Appl. Clay Sci. 2017, 143, 125–133. [Google Scholar]
- Gabriel, F.; Laura, S.; Petru, P.; Codruta, S.; Kinga, K. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. J. Nat. Fibers 2021, 18, 285–296. [Google Scholar]
- Mourak, A.; Hajjaji, M.; Alagui, A. Cured alkali-activated heated clay-cellulose composites: Microstructure, effect of glass addition and performances. Boletín Soc. Española. Cerámica. Vidr. 2021, 20, 62–72. [Google Scholar] [CrossRef]
- Su, Z.; Guo, L.; Zhang, Z.; Duan, P. Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 2019, 203, 525–540. [Google Scholar] [CrossRef]
- Chen, R.; Ahmari, S.; Zhang, L. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 2014, 49, 2548–2558. [Google Scholar] [CrossRef]
- Kaushik, S.; Sá Ribeiro Ruy, A.; Sá Ribeiro Marilene, G.; Kriven Waltraud, M.; Colombo, P. Potassium-based geopolymer composites reinforced with chopped bamboo fibers. J. Am. Ceram. Soc. 2017, 100, 49–55. [Google Scholar]
- Gianmarco, T.; Enrico, B.; Ivo, D. Mechanical performance of glass-based geopolymer matrix composites reinforced with cellulose fibers. Materials 2018, 11, 2395. [Google Scholar]
- Amalia, F.; Akifah, N.; Nurfadilla; Subaer. Development of coconut trunk fiber geopolymer hybrid composite for structural engineering materials. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 180, p. 12014. [Google Scholar]
- Fan, J.; Jiang, Y.; Wang, L.; Ding, F.; Guo, L.; Duan, P. Sulfate attack resistance of Sisal-PVA hybrid fiber reinforced geopolymer. Bull. Chin. Ceram. Soc. 2020, 39, 1430–1437, 1443. [Google Scholar]
- Jin, M.; Xia, R.; Sun, Y. Environmental stability of straw-reinforced geopolymer composites. J. Zhejiang Univ. Technol. 2017, 45, 43–46. [Google Scholar]
- Jin, M.; Xia, R.; Zhu, C.; Zheng, Y.; Jin, Z. Resistance of straw-geopolymer materials to acid and alkali attack. Mater. Sci. Forum 2016, 852, 1409–1412. [Google Scholar] [CrossRef]
- Malkawi Ahmad, B.; Maan, H.; Jamal, A.; Yazan, A. Engineering properties of fibre reinforced lightweight geopolymer concrete using palm oil biowastes. Aust. J. Civ. Eng. 2020, 18, 82–92. [Google Scholar] [CrossRef]
- Pasupathy, K.; Cheema, D.S.; Sanjayan, J. Durability performance of fly ash-based geopolymer concrete buried in saline environment for 10 years. Constr. Build. Mater. 2021, 281, 122596. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Ma, G.; Zhao, X.; Zhao, X. Preparation and properties of bio-geopolymer composites with waste cotton stalk materials. J. Clean. Prod. 2019, 245, 118842. [Google Scholar] [CrossRef]
- Ribeiro, M.G.S.; Ribeiro, M.G.S.; Keane, P.F.; Sardela, M.R.; Kriven, W.M.; Ribeiro, R.A.S. Acid resistance of metakaolin-based, bamboo fiber geopolymer composites. Constr. Build. Mater. 2021, 302, 124194. [Google Scholar] [CrossRef]
- Trindade, A.C.C.; Silva, F.A.; Alcamand, H.A.; Borges, P.H.R. On the durability behavior of natural fiber reinforced geopolymer. In Proceedings of the 41st International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings, Daytona Beach, FL, USA, 22–27 January 2017; The American Ceramic Society: Columbus, OH, USA, 2017; Volume 38. [Google Scholar]
- Nkwaju, R.Y.; Djobo, J.N.Y.; Nouping, J.N.F.; Huisken, P.W.M.; Deutou, J.G.N.; Courard, L. Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Appl. Clay Sci. 2019, 183, 105333. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.Z.B.D.; Oliveira, D.P.D.; Filho, J.D.A.M.; Silva, N.M.D. Sustainable geopolymer composite reinforced with sisal fiber: Durability to wetting and drying cycles. J. Build. Eng. 2021, 43, 102568. [Google Scholar] [CrossRef]
- Canpolat, O.; Arslan, A.A.; Uysal, M.; Ylmaz, A.; Aygrmez, Y. Influence of wetting-drying curing system on the performance of fiberreinforced metakaolin-based geopolymer composites. Constr. Build. Mater. 2019, 225, 909–926. [Google Scholar]
- Asante, B.; Schmidt, G.; Teixeira, R.; Krause, A.; Junior, H.S. Influence of wood pretreatment and fly ash particle size on the performance of geopolymer wood composite. Eur. J. Wood Wood Prod. 2021, 79, 597–609. [Google Scholar] [CrossRef]
- Alomayri, T.; Vickers, L.; Shaikh, F.U.A.; Low, I.M. Mechanical properties of cotton fabric reinforced geopolymer composites at 200–1000 °C. J. Adv. Ceram. 2014, 3, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Alomayri, T.; Shaikh, F.U.A.; Low, I.M. Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J. Mater. Sci. 2013, 48, 6746–6752. [Google Scholar] [CrossRef]
- Amalia, N.S.; Haris, A.; Subaer. Physico-mechanics properties of hybrid composite geopolymers-pineapple leaf fiber (PLF). In Proceedings of the AIP Conference Proceedings, Ho Chi Minh, Vietnam, 29 April 2018. [Google Scholar]
- Xuan, X.; Tan, J.; Huang, Y.; Xie, M.; Zheng, G. Preparation and freeze resistance of geopolymer-bagasse fiber composites. Bull. Chin. Ceram. Soc. 2020, 39, 532–536. [Google Scholar]
- Sumesh, M.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.; Alnahhal, M.F. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar-A review. Constr. Build. Mater. 2017, 148, 62–84. [Google Scholar] [CrossRef]
- Assaedi, H.; Alomayri, T.; Shaikh, F.; Low, I.-M. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials 2019, 12, 1459. [Google Scholar] [CrossRef] [Green Version]
- Saulo, R.F.; Neven, U.; Keoma, D.C.S.; Silva, L.E. Effect of microcrystalline cellulose on geopolymer and Portland cement pastes mechanical performance. Constr. Build. Mater. 2021, 288, 123053. [Google Scholar]
- Cut, R.; Sri, A.; Taufiq, S. Current development of geopolymer cement with nanosilica and cellulose nanocrystals. J. Phys. Conf. Ser. 2021, 1783, 012056. [Google Scholar]
- Rahman, A.S.; Shah, C.; Gupta, N. Simultaneous effects of rice husk silica and silicon carbide whiskers on the mechanical properties and morphology of sodium geopolymer. J. Compos. Mater. 2020, 54, 4611–4620. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Compos. Part B Eng. 2016, 95, 412–422. [Google Scholar] [CrossRef]
- Rahmawati, C.; Aprilia, S.; Saidi, T.; Aulia, T.B.; Ahmad, I. Preparation and characterization of cellulose nanocrystals from Typha sp. as a reinforcing agent. J. Nat. Fibers 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Yavna, V. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environ. Technol. Innov. 2020, 20, 101105. [Google Scholar] [CrossRef]
- Maichin, P.; Suwan, T.; Jitsangiam, P. Hemp fiber reinforced geopolymer composites: Effects of NaOH concentration on fiber pre-treatment process. Key Eng. Mater. 2020, 841, 166–170. [Google Scholar] [CrossRef]
- Maichin, P.; Suwan, T.; Jitsangiam, P. Effect of self-treatment process on properties of natural fiber-reinforced geopolymer composites. Mater. Manuf. Processes 2020, 35, 1120–1128. [Google Scholar] [CrossRef]
- Georgy, L.; Anton, K.; Alexander, K.; Vasilii, M.; Victor, Y. Sustainable geopolymer composites reinforced with flax tows. Ceram. Int. 2020, 46, 12870–12875. [Google Scholar]
- Roy, M.; Janne, N.; Michael, P. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials 2017, 10, 579. [Google Scholar]
- Huang, Y.; Tan, J.; Xuan, X.; Liu, L.; Xie, M.; Liu, H.; Yu, S.; Zheng, G. Study on untreated and alkali treated rice straw reinforced geopolymer composites. Mater. Chem. Phys. 2021, 262, 124304. [Google Scholar] [CrossRef]
- Workiye, A.; Woldsenbet, E. Development of maize stalk cellulose fiber reinforced calcined kaolinite clay geopolymer composite. Proc. Eng. Technol. Innov. 2020, 16, 30–38. [Google Scholar] [CrossRef]
- Ribeiro, R.A.S.; Ribeiro, M.G.S.; Sankar, K.; Kriven, W.M. Geopolymer-bamboo composite–A novel sustainable construction material. Constr. Build. Mater. 2016, 123, 501–507. [Google Scholar] [CrossRef]
Fiber Type | Fiber Name | Density/ (g cm−3) | Tensile Strength/MPa | Specific Strength/(S ρ−1) | Tensile Modulus/GPa | Specific Modulus/(E ρ−1) | Elongation at Break/% | Ref. |
---|---|---|---|---|---|---|---|---|
Bast | Flax | 1.5 | 800–1500 | 535–1000 | 27.6–80 | 18.4–53 | 1.2–3.2 | [37] |
Hemp | 1.48 | 550–900 | 372–608 | 70 | 47.3 | 2–4 | [38] | |
Jute | 1.46 | 393–800 | 269–548 | 10–30 | 6.85–20.6 | 1.5–1.8 | [39] | |
Kenaf | 1.45 | 930 | 641 | 53 | 36.55 | 1. 6 | [40] | |
Ramie | 1.5 | 220–938 | 147–625 | 44–128 | 29.3–85 | 2–3.8 | [41] | |
Leaf | Abaca | 1.5 | 400 | 267 | 12 | 8 | 3–10 | [42] |
Sisal | 1.45 | 530–640 | 366–441 | 9.4–22 | 6.5–15.2 | 3–7 | [41] | |
Banana Leaf | 1.35 | 600 | 444 | 17.85 | 13.2 | 3.36 | [41] | |
Coconut leaf | 1.15 | 500 | 435 | 2. 5 | 2.17 | 20 | [43] | |
Seed | cotton | 1.6 | 287–597 | 179–373 | 5.5–12.6 | 3.44–7.9 | 7–8 | [43] |
Grass | bamboo | 1.1 | 500 | 454 | 35.91 | 32.6 | 1.4 | [43] |
Fruit | Coconut shell | 1.2 | 175 | 146 | 4–6 | 3.3–5 | 30 | [41] |
Wood | Soft wood | 1.5 | 1000 | 667 | 40 | 26.67 | 4.4 | [43] |
POC/(%) | OPTF/(%) | Water Reducing Agent/(%) | Tensile/(MPa) | Shear/(MPa) | Flexural/(MPa) | Water Absorption/(%) | Cross-Section Reduction/(%) | Weight Loss/(%) |
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 4.55 | 9.41 | 6.31 | 0.6 | −1.15 | −2.2 |
25 | 0 | 0 | 4.31 | 9.04 | 6.02 | 0.8 | −1.2 | −2.2 |
50 | 0 | 0 | 3.94 | 7.94 | 5.56 | 1.4 | −1.2 | −2.6 |
75 | 0 | 0 | 3.62 | 7.09 | 5.10 | 1.8 | −1.5 | −2.8 |
100 | 0 | 0 | 2.91 | 6.42 | 4.78 | 3.2 | −2 | −3.1 |
100 | 0 | 0.5 | 3.05 | 6.48 | 4.83 | 3 | −1.9 | −3 |
100 | 1 | 0.5 | 4.41 | 7.19 | 6.86 | 4.9 | −2 | −3.4 |
100 | 2 | 0.5 | 3.44 | 6.93 | 5.34 | 7.8 | −2.6 | −3.9 |
100 | 3 | 0.5 | 3.21 | 6.54 | 5.03 | 12.5 | −3.9 | −5.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Lv, C. Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review. Molecules 2022, 27, 796. https://doi.org/10.3390/molecules27030796
Liu J, Lv C. Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review. Molecules. 2022; 27(3):796. https://doi.org/10.3390/molecules27030796
Chicago/Turabian StyleLiu, Jie, and Chun Lv. 2022. "Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review" Molecules 27, no. 3: 796. https://doi.org/10.3390/molecules27030796
APA StyleLiu, J., & Lv, C. (2022). Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review. Molecules, 27(3), 796. https://doi.org/10.3390/molecules27030796