Comparative Thermal Research on Energetic Molecular Perovskite Structures
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zlotin, S.G.; Churakov, A.M.; Egorov, M.P.; Fershtat, L.L.; Klenov, M.S.; Kuchurov, I.V.; Makhova, N.N.; Smirnov, G.A.; Tomilov, Y.V.; Tartakovsky, V.A. Advanced energetic materials: Novel strategies and versatile applications. Mendeleev Commun. 2021, 31, 731–749. [Google Scholar] [CrossRef]
- Viswanath, D.S.; Ghosh, T.K.; Boddu, V.M. (Eds.) Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Shukla, M.K.; Boddu, V.M.; Steevens, J.A.; Damavarapu, R.; Leszczynski, J. (Eds.) Energetic Materials: From Cradle to Grave; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.L.; Wang, B.Z.; Qiu, L.L.; Xu, R.Q.; Sheremetev, A.B. Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures? FirePhysChem 2022. [Google Scholar] [CrossRef]
- Tian, J.J.; Zhang, Q.H.; Li, J.S. Recent advances in energetic molecule synthesis. Chin. J. Energ. Mater. 2016, 24, 1–9. [Google Scholar] [CrossRef]
- Chang, J.J.; Zhao, G.; Zhao, X.Y.; He, C.L.; Pang, S.P.; Shreeve, J.M. New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents. Acc. Chem. Res. 2021, 54, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Sun, L.Y.; Ye, Z.M.; Chen, S.L.; Zhang, W.X.; Chen, X.M. Phase transition and thermal expansion of molecular perovskite energetic crystal (C6N2H14)(NH4)(ClO4)3 (DAP-4). FirePhysChem. 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, L.S.; Gong, S.; Guang, C.Y.; Li, L.Q.; Hu, S.Q.; Deng, P. Study of Ammonium Perchlorate-based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Cent. Eur. J. Energ. Mater. 2020, 17, 451–469. [Google Scholar] [CrossRef]
- Fang, H.; Guo, X.Y.; Wang, W.; Nie, J.X.; Han, K.H.; Wu, C.C.; Wang, S.J.; Wang, D.; Deng, P. The Thermal catalytic effects of CoFe-Layered double hydroxide derivative on the molecular perovskite energetic material (DAP-4). Vacuum 2021, 193, 110503. [Google Scholar] [CrossRef]
- Deng, P.; Wang, H.X.; Yang, X.B.; Ren, H.; Jiao, Q.J. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. J. Alloys Compd. 2020, 827, 154257. [Google Scholar] [CrossRef]
- Shang, Y.; Yu, Z.H.; Huang, R.K.; Chen, S.L.; Liu, D.X.; Chen, X.X.; Zhang, W.X.; Chen, X.M. Metal-Free Hexagonal Perovskite High-Energetic Materials with NH3OH+/NH2NH3+ as B-Site Cations. Engineering 2020, 6, 1013–1018. [Google Scholar] [CrossRef]
- Zhang, J.L.; Huo, H.; Yu, T.; Zhou, J.; Wang, Z.J.; Wang, B.Z. Comparative thermal research on chlorodinitromethyl and fluorodinitromethyl explosophoric groups based insensitive energetic materials. FirePhysChem 2021, 1, 54–60. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Q.; Duan, B.H.; Lu, X.M.; Bai, X.; Yan, Q.L. Comparative study on thermal behavior of three highly thermostable energetic materials: z-TACOT, PYX, and TNBP. FirePhysChem 2021, 1, 61–69. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, L.; Zhao, F.Q.; Wang, B.Z.; Zhang, J.L. Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3]. Chin. Chem. Lett. 2020, 31, 554–558. [Google Scholar] [CrossRef]
- Shang, Y.; Huang, S.K.; Chen, S.L.; He, C.T.; Yu, Z.H.; Ye, Z.M.; Zhang, W.X.; Chen, X.M. Metal-free molecular perovskite high-energetic materials. Cryst. Growth Des. 2020, 20, 1891–1897. [Google Scholar] [CrossRef]
- Liu, Z.R. Review and prospect of thermal analysis technology applied to study thermal properties of energetic materials. FirePhysChem 2021, 1, 129–138. [Google Scholar] [CrossRef]
- Chen, S.L.; Yang, Z.R.; Wang, B.J.; Shang, Y.; Sun, L.Y.; He, C.T.; Zhou, H.L.; Zhang, W.X.; Chen, X.M. Molecular perovskite high-energetic materials. Sci. China Mater. 2018, 61, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.L.; Shang, Y.; He, C.T.; Sun, L.Y.; Ye, Z.M.; Zhang, W.X.; Chen, X.M. Optimizing the oxygen balance by changing the A-site cations in molecular perovskite high-energetic materials. CrystEngComm 2018, 20, 7458–7463. [Google Scholar] [CrossRef]
- Zhai, P.F.; Shi, C.Y.; Zhao, S.X.; Liu, W.B.; Wang, W.X.; Yao, L.N. Thermal decomposition of ammonium perchlorate-based molecular perovskite from TG-DSC-FTIR-MS and ab initio molecular dynamics. RSC Adv. 2021, 11, 16388–16395. [Google Scholar] [CrossRef]
- Jia, Q.; Deng, P.; Li, X.X.; Hu, L.S.; Cao, X. Insight into the thermal decomposition properties of potassium perchlorate (KClO4)-based molecular perovskite. Vacuum 2020, 175, 109257. [Google Scholar] [CrossRef]
- Wang, G.Q.; Yang, L.B.; Lu, H.L.; Zhang, H.Y.; Qu, B. Thermal decomposition of HTPE/CL-20 and HTPE/HMX mixed systems. J. Solid. Rock. Technol. 2017, 40, 70–75. [Google Scholar] [CrossRef]
- EL-Sayed, S.A. Review of thermal decomposition, kinetics parameters and evolved gases during pyrolysis of energetic materials using different techniques. J. Anal. Appl. Pyrolysis 2022, 161, 105364. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, L.; Zhu, Y.; Wang, B.Z.; Zhang, J.L. Comparative thermal research on tetraazapentalene-derived heat-resistant energetic structures. Sci. Rep. 2020, 10, 21757. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ding, L.; Bi, F.Q.; Wang, B.Z.; Zhang, J.L. Research on the thermal behavior of novel heat resistance explosive 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole). J. Anal. Appl. Pyrolysis 2018, 129, 189–194. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.M.; Huo, H.; Zhang, J.L.; Meng, Z.H.; Yu, T.; Liu, Y.Z.; Fu, X.L.; Qiu, L.L.; Wang, B.Z. Comparative Studies on Thermal Decompositions of Dinitropyrazole-Based Energetic Materials. Molecules 2021, 26, 7004. [Google Scholar] [CrossRef] [PubMed]
- Arhangel’skii, I.V.; Dunaev, A.V.; Makarenko, I.V.; Tikhonov, N.A.; Tarasov, A.V. NETZSCH ThermoKinetics Software. In Non-Isothermal Kinetic Methods: Workbook and Laboratory Manual; Max-Planck-Gesellschaft zur Förderung der Wissenschaften: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Keshavarz, M.H. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J. Hazard. Mater. 2009, 162, 1557–1562. [Google Scholar] [CrossRef]
- Xue, Y.D.; Hang, X.X.; Ding, J.W.; Li, B.; Zhu, R.M.; Pang, H.; Xu, Q. Catalysis within coordination cages. Coord. Chem. Rev. 2021, 430, 213656. [Google Scholar] [CrossRef]
- Singh, R.P.; Verma, R.D.; Meshri, D.T.; Shreeve, J.M. Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem. Int. Edit. 2006, 45, 3584–3601. [Google Scholar] [CrossRef]
- Parisi, E.; Landi, A.; Fusco, S.; Manfredi, C.; Peluso, A.; Wahler, S.; Klapötke, T.M.; Centore, R. High-Energy-Density Materials: An Amphoteric N-Rich Bis(triazole) and Salts of Its Cationic and Anionic Species. Inorg. Chem. 2021, 60, 16213–16222. [Google Scholar] [CrossRef]
Dynamic Analysis Model | ||||||
---|---|---|---|---|---|---|
(C6H14N2) [Na(ClO4)3] | Kamal-Sourour autocatalytic model (KS) | |||||
Activation Energy (Ea1, kJ/mol) | LogA | React order n | Activation Energy (Ea2, kJ/mol) | Log(AutocatA) | Autocat Power m | |
173.9 | 12.5 | 2.4 | 218.5 | 4.8 | 1.7 | |
(C6H14N2) [NH4(ClO4)3] | nth order autocatalytic model (Cn) | |||||
Activation Energy (Ea, kJ/mol) | LogA | React order n | Log(AutocatA) | |||
207.5 | 13.8 | 0.6 | 0.5 | |||
(C6H14ON2) [NH4(ClO4)3] | nth order model (Fn) | |||||
Activation Energy (Ea, kJ/mol) | LogA | React order n | ||||
221.7 | 15.6 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhang, J.; Chen, S.; Zhao, F.; Qiu, L.; Meng, Z.; Ding, L.; Wang, B.; Pan, Q. Comparative Thermal Research on Energetic Molecular Perovskite Structures. Molecules 2022, 27, 805. https://doi.org/10.3390/molecules27030805
Zhou J, Zhang J, Chen S, Zhao F, Qiu L, Meng Z, Ding L, Wang B, Pan Q. Comparative Thermal Research on Energetic Molecular Perovskite Structures. Molecules. 2022; 27(3):805. https://doi.org/10.3390/molecules27030805
Chicago/Turabian StyleZhou, Jing, Junlin Zhang, Shaoli Chen, Fengqi Zhao, Lili Qiu, Zihui Meng, Li Ding, Bozhou Wang, and Qing Pan. 2022. "Comparative Thermal Research on Energetic Molecular Perovskite Structures" Molecules 27, no. 3: 805. https://doi.org/10.3390/molecules27030805
APA StyleZhou, J., Zhang, J., Chen, S., Zhao, F., Qiu, L., Meng, Z., Ding, L., Wang, B., & Pan, Q. (2022). Comparative Thermal Research on Energetic Molecular Perovskite Structures. Molecules, 27(3), 805. https://doi.org/10.3390/molecules27030805