Chemi-Inspired Silicon Allotropes—Experimentally Accessible Si9 Cages as Proposed Building Block for 1D Polymers, 2D Sheets, Single-Walled Nanotubes, and Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reinvestigation of Silicene
2.2. The Nido-[Si9]4– Cage and Oligomeric Species
2.3. Spherical Nanoparticles
2.4. Polymers
2.5. Si Allotropes with Two-Dimensional Structure
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, K.; Shen, S.; Liang, Y.; Burrows, P.E.; Mao, S.S.; Wang, D. Enabling Silicon for Solar-Fuel Production. Chem. Rev. 2014, 114, 8662–8719. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-P.; Cao, J.; Xiong, S.-J. Stable Porous Crystalline Silicon with Nanotubular Structure: A Predicted Allotrope with Direct Band Gap. Phys. B Condens. Matter 2015, 466–467, 59–63. [Google Scholar] [CrossRef]
- Mujica, A.; Pickard, C.J.; Needs, R.J. Low-Energy Tetrahedral Polymorphs of Carbon, Silicon, and Germanium. Phys. Rev. B 2015, 91, 214104. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral Tunnelling and the Klein Paradox in Graphene. Nat. Phys. 2006, 2, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Jiang, Z.; Zhang, Y.; Morozov, S.V.; Stormer, H.L.; Zeitler, U.; Maan, J.C.; Boebinger, G.S.; Kim, P.; Geim, A.K. Room-Temperature Quantum Hall Effect in Graphene. Science 2007, 315, 1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Verri, G.G.; Lew Yan Voon, L.C. Electronic Structure of Silicon-Based Nanostructures. Phys. Rev. B 2007, 76, 075131. [Google Scholar] [CrossRef] [Green Version]
- Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [Green Version]
- Bechstedt, F.; Matthes, L.; Gori, P.; Pulci, O. Infrared Absorbance of Silicene and Germanene. Appl. Phys. Lett. 2012, 100, 261906. [Google Scholar] [CrossRef] [Green Version]
- Matthes, L.; Pulci, O.; Bechstedt, F. Massive Dirac Quasiparticles in the Optical Absorbance of Graphene, Silicene, Germanene, and Tinene. J. Phys. Condens. Matter 2013, 25, 395305. [Google Scholar] [CrossRef]
- Matthes, L.; Gori, P.; Pulci, O.; Bechstedt, F. Universal Infrared Absorbance of Two-Dimensional Honeycomb Group-IV Crystals. Phys. Rev. B 2013, 87, 035438. [Google Scholar] [CrossRef]
- Matusalem, F.; Marques, M.; Teles, L.K.; Bechstedt, F. Stability and Electronic Structure of Two-Dimensional Allotropes of Group-IV Materials. Phys. Rev. B 2015, 92, 045436. [Google Scholar] [CrossRef]
- Kaltsas, D.; Tsetseris, L. Stability and Electronic Properties of Ultrathin Films of Silicon and Germanium. Phys. Chem. Chem. Phys. 2013, 15, 9710. [Google Scholar] [CrossRef]
- Özçelik, V.O.; Ciraci, S. Size Dependence in the Stabilities and Electronic Properties of α-Graphyne and Its Boron Nitride Analogue. J. Phys. Chem. C 2013, 117, 2175–2182. [Google Scholar] [CrossRef]
- Gimbert, F.; Lee, C.-C.; Friedlein, R.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T. Diverse Forms of Bonding in Two-Dimensional Si Allotropes: Nematic Orbitals in the MoS 2 Structure. Phys. Rev. B 2014, 90, 165423. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef] [PubMed]
- Kaloni, T.P.; Schreckenbach, G.; Freund, M.S.; Schwingenschlögl, U. Current Developments in Silicene and Germanene. Phys. Status Solidi RRL 2016, 10, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Xu, X.; Feng, H.; Li, Z.; Wang, X.; Du, Y. Honeycomb Silicon: A Review of Silicene. Sci. Bull. 2015, 60, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Lew Yan Voon, L.C.; Zhu, J.; Schwingenschlögl, U. Silicene: Recent Theoretical Advances. Appl. Phys. Rev. 2016, 3, 040802. [Google Scholar] [CrossRef] [Green Version]
- Dávila, M.E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A Novel Two-Dimensional Germanium Allotrope Akin to Graphene and Silicene. New J. Phys. 2014, 16, 095002. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Fagan, S.B.; Baierle, R.J.; Mota, R.; da Silva, A.J.R.; Fazzio, A. Ab Initio Calculations for a Hypothetical Material: Silicon Nanotubes. Phys. Rev. B 2000, 61, 9994–9996. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lee, H.-L.; Li, W.-K.; Teo, B.K. Investigation of Possible Structures of Silicon Nanotubes via Density-Functional Tight-Binding Molecular Dynamics Simulations and Ab Initio Calculations. J. Phys. Chem. B 2005, 109, 8605–8612. [Google Scholar] [CrossRef]
- Seifert, G.; Köhler, T.; Urbassek, H.M.; Hernández, E.; Frauenheim, T. Tubular Structures of Silicon. Phys. Rev. B 2001, 63, 193409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Su, Z.; Chen, G. Structure-Dependent Optical Properties of Single-Walled Silicon Nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 4695. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Adhikari, K.; Ray, A.K. An Ab Initio Study of Atomic Hydrogen and Oxygen Adsorptions on Armchair Silicon Nanotubes. J. Comput. Theor. Nanosci. 2012, 9, 495–504. [Google Scholar] [CrossRef]
- Ma, T.; Wen, S.; Yan, L.; Wu, C.; Zhang, C.; Zhang, M.; Su, Z. The Transport Properties of Silicon and Carbon Nanotubes at the Atomic Scale: A First-Principles Study. Phys. Chem. Chem. Phys. 2016, 18, 23643–23650. [Google Scholar] [CrossRef] [PubMed]
- Perepichka, D.F.; Rosei, F. Silicon Nanotubes. Small 2006, 2, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Wang, Y.; Huang, W. Electronic Transport Characteristics in Silicon Nanotube Field-Effect Transistors. Phys. E Low-Dimens. Syst. Nanostructures 2011, 43, 1655–1658. [Google Scholar] [CrossRef]
- Driscoll, J.A.; Bubin, S.; French, W.R.; Varga, K. Time-Dependent Density Functional Study of Field Emission from Nanotubes Composed of C, BN, SiC, Si, and GaN. Nanotechnology 2011, 22, 285702. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, O.G.; Eberl, K. Thin Solid Films Roll up into Nanotubes. Nature 2001, 410, 168. [Google Scholar] [CrossRef]
- Sha, J.; Niu, J.; Ma, X.; Xu, J.; Zhang, X.; Yang, Q.; Yang, D. Silicon Nanotubes. Adv. Mater. 2002, 14, 1219–1221. [Google Scholar] [CrossRef]
- De Crescenzi, M.; Castrucci, P.; Scarselli, M.; Diociaiuti, M.; Chaudhari, P.S.; Balasubramanian, C.; Bhave, T.M.; Bhoraskar, S.V. Experimental Imaging of Silicon Nanotubes. Appl. Phys. Lett. 2005, 86, 231901. [Google Scholar] [CrossRef]
- Tang, Y.H.; Pei, L.Z.; Chen, Y.W.; Guo, C. Self-Assembled Silicon Nanotubes under Supercritically Hydrothermal Conditions. Phys. Rev. Lett. 2005, 95, 116102. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Tang, Y.-H.; Pei, L.-Z.; Guo, C. Self-Assembled Silicon Nanotubes Grown from Silicon Monoxide. Adv. Mater. 2005, 17, 564–567. [Google Scholar] [CrossRef]
- Rurali, R. Colloquium: Structural, Electronic, and Transport Properties of Silicon Nanowires. Rev. Mod. Phys. 2010, 82, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ouyang, M.; Yang, P.; Lieber, C.M. Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires. Nature 1999, 399, 48–51. [Google Scholar] [CrossRef]
- Ma, D.D.D.; Lee, C.S.; Au, F.C.K.; Tong, S.Y.; Lee, S.T. Small-Diameter Silicon Nanowire Surfaces. Science 2003, 299, 1874–1877. [Google Scholar] [CrossRef] [PubMed]
- Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical Gain in Silicon Nanocrystals. Nature 2000, 408, 440–444. [Google Scholar] [CrossRef]
- Song, B.; Zhong, Y.; Wu, S.; Chu, B.; Su, Y.; He, Y. One-Dimensional Fluorescent Silicon Nanorods Featuring Ultrahigh Photostability, Favorable Biocompatibility, and Excitation Wavelength-Dependent Emission Spectra. J. Am. Chem. Soc. 2016, 138, 4824–4831. [Google Scholar] [CrossRef]
- Park, J.-H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications. Nat. Mater. 2009, 8, 331–336. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Chen, Z.; Jiao, H.; Seifert, G.; Horn, A.H.C.; Yu, D.; Clark, T.; Thiel, W.; Von Ragué Schleyer, P. The Structure and Stability of Si60 and Ge60 Cages: A Computational Study. J. Comput. Chem. 2003, 24, 948–953. [Google Scholar] [CrossRef]
- Yu, D.K.; Zhang, R.Q.; Lee, S.T. Structural Transition in Nanosized Silicon Clusters. Phys. Rev. B 2002, 65, 245417. [Google Scholar] [CrossRef]
- Kim, J.M.; Guccini, V.; Seong, K.; Oh, J.; Salazar-Alvarez, G.; Piao, Y. Extensively Interconnected Silicon Nanoparticles via Carbon Network Derived from Ultrathin Cellulose Nanofibers as High Performance Lithium Ion Battery Anodes. Carbon 2017, 118, 8–17. [Google Scholar] [CrossRef]
- Jantke, L.-A.; Stegmaier, S.; Karttunen, A.J.; Fässler, T.F. Slicing Diamond—A Guide to Deriving Sp3-Si Allotropes. Chem. Eur. J. 2017, 23, 2734–2747. [Google Scholar] [CrossRef] [PubMed]
- Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T.F. Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angew. Chem. Int. Ed. 2011, 50, 3630–3670. [Google Scholar] [CrossRef] [PubMed]
- Nolan, B.M.; Henneberger, T.; Waibel, M.; Fässler, T.F.; Kauzlarich, S.M. Silicon Nanoparticles by the Oxidation of [Si4]4– and [Si9]4–-Containing Zintl Phases and Their Corresponding Yield. Inorg. Chem. 2015, 54, 396–401. [Google Scholar] [CrossRef]
- Quéneau, V.; Todorov, E.; Sevov, S.C. Synthesis and Structure of Isolated Silicon Clusters of Nine Atoms. J. Am. Chem. Soc. 1998, 120, 3263–3264. [Google Scholar] [CrossRef]
- Karttunen, A.J.; Fässler, T.F.; Linnolahti, M.; Pakkanen, T.A. Two-, One-, and Zero-Dimensional Elemental Nanostructures Based on Ge9-Clusters. Chem. Eur. J. Chem. Phys. 2010, 11, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Bouderba, H. What Is the Exact Structure of the AlB2-like Polymorph of the CaSi2 Compound? J. Alloys Compd. 2013, 550, 109–113. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W.A.; et al. Buckled Silicene Formation on Ir(111). Nano Lett. 2013, 13, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of Silicene Grown on Ag(111). Appl. Phys. Express 2012, 5, 045802. [Google Scholar] [CrossRef]
- Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Phys. Rev. Lett. 2012, 108, 245501. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, Z.; Buehler, M.J. Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations. J. Appl. Mech. 2015, 82, 101003. [Google Scholar] [CrossRef]
- Wade, K. Skeletal Electron Counting in Cluster Species. Some Generalisations and Predictions. Inorg. Nucl. Chem. Lett. 1972, 8, 559–562. [Google Scholar] [CrossRef]
- Wade, K. Structural and bonding patterns in cluster chemistry. In Advances in Inorganic Chemistry and Radiochemistry; Academic Press: New York, NY, USA; London, UK, 1976; Volume 18, pp. 1–66. ISBN 978-0-12-023618-3. [Google Scholar]
- Corbett, J.D. Homopolyatomic ions of the post-transition elements-synthesis, structure, and bonding. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 129–158. ISBN 978-0-470-16622-2. [Google Scholar]
- Joseph, S.; Suchentrunk, C.; Kraus, F.; Korber, N. Si94– Anions in Solution – Structures of the Solvates Rb4Si9·4.75NH3 and [Rb(18-Crown-6)]Rb3Si9·4NH3, and Chemical Bonding in Si94–. Eur. J. Inorg. Chem. 2009, 2009, 4641–4647. [Google Scholar] [CrossRef]
- Joseph, S.; Suchentrunk, C.; Korber, N. Dissolving Silicides: Syntheses and Crystal Structures of New Ammoniates Containing Si52– and Si94– Polyanions and the Role of Ammonia of Crystallisation. Z. Für Nat. B 2010, 65, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Hoch, C.; Wendorff, M.; Röhr, C. Synthesis and Crystal Structure of the Tetrelides A12M17 (A=Na, K, Rb, Cs; M=Si, Ge, Sn) and A4Pb9 (A=K, Rb). J. Alloys Compd. 2003, 361, 206–221. [Google Scholar] [CrossRef]
- Ponou, S.; Fässler, T.F. Crystal Growth and Structure Refinement of K4Ge9. Z. Anorg. Allg. Chem. 2007, 633, 393–397. [Google Scholar] [CrossRef]
- Schiegerl, L.J.; Karttunen, A.J.; Tillmann, J.; Geier, S.; Raudaschl-Sieber, G.; Waibel, M.; Fässler, T.F. Charged Si9 Clusters in Neat Solids and the Detection of [H2Si9]2− in Solution: A Combined NMR, Raman, Mass Spectrometric, and Quantum Chemical Investigation. Angew. Chem. Int. Ed. 2018, 57, 12950–12955. [Google Scholar] [CrossRef] [Green Version]
- Jena, P. Beyond the Periodic Table of Elements: The Role of Superatoms. J. Phys. Chem. Lett. 2013, 4, 1432–1442. [Google Scholar] [CrossRef]
- Castleman, A.W.; Khanna, S.N. Clusters, Superatoms, and Building Blocks of New Materials. J. Phys. Chem. C 2009, 113, 2664–2675. [Google Scholar] [CrossRef]
- Joseph, S.; Hamberger, M.; Mutzbauer, F.; Härtl, O.; Meier, M.; Korber, N. Chemistry with Bare Silicon Clusters in Solution: A Transition-Metal Complex of a Polysilicide Anion. Angew. Chem. Int. Ed. 2009, 48, 8770–8772. [Google Scholar] [CrossRef]
- Gärtner, S.; Hamberger, M.; Korber, N. The First Chelate-Free Crystal Structure of a Silicide Transition Metal Complex [K0.28Rb7.72Si9Ni(CO)2]2·16NH3. Crystals 2015, 5, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, J.M.; Sevov, S.C. Organozinc Derivatives of Deltahedral Zintl Ions: Synthesis and Characterization of Closo-[E9Zn(C6H5)]3- (E = Si, Ge, Sn, Pb). Organometallics 2006, 25, 4530–4536. [Google Scholar] [CrossRef]
- Downie, C.; Tang, Z.; Guloy, A.M. An Unprecedented 1∞[Ge9]2− Polymer: A Link between Molecular Zintl Clusters and Solid-State Phases. Angew. Chem. Int. Ed. 2000, 39, 337–340. [Google Scholar] [CrossRef]
- Ugrinov, A.; Sevov, S.C. [Ge9=Ge9=Ge9]6−: A Linear Trimer of 27 Germanium Atoms. J. Am. Chem. Soc. 2002, 124, 10990–10991. [Google Scholar] [CrossRef]
- Yong, L.; Hoffmann, S.D.; Fässler, T.F. Oxidative Coupling of Ge94- Zintl Anions—Hexagonal Rod Packing of Linear [Ge9=Ge9=Ge9=Ge9]8-. Z. Anorg. Allg. Chem. 2004, 630, 1977–1981. [Google Scholar] [CrossRef]
- Yong, L.; Hoffmann, S.D.; Fässler, T.F. The Controlled Oxidative Coupling of Ge94? Zintl Anions to a Linear Trimer [Ge9=Ge9=Ge9]6-. Z. Anorg. Allg. Chem. 2005, 631, 1149–1153. [Google Scholar] [CrossRef]
- Ugrinov, A.; Sevov, S.C. [Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod. Inorg. Chem. 2003, 42, 5789–5791. [Google Scholar] [CrossRef]
- Spiekermann, A.; Hoffmann, S.D.; Fässler, T.F.; Krossing, I.; Preiss, U. [Au3Ge45]9−—A Binary Anion Containing a {Ge45} Cluster. Angew. Chem. Int. Ed. 2007, 46, 5310–5313. [Google Scholar] [CrossRef]
- Wilson, R.J.; Broeckaert, L.; Spitzer, F.; Weigend, F.; Dehnen, S. {[CuSn5Sb3]2−}2: A Dimer of Inhomogeneous Superatoms. Angew. Chem. Int. Ed. 2016, 55, 11775–11780. [Google Scholar] [CrossRef]
- Zhou, R.L.; Zhao, L.Y.; Pan, B.C. “Compressing Liquid”: An Efficient Global Minima Search Strategy for Clusters. J. Chem. Phys. 2009, 131, 034108. [Google Scholar] [CrossRef]
- Jantke, L.-A.; Karttunen, A.J.; Fässler, T.F. Slicing Diamond for More Sp3 Group 14 Allotropes Ranging from Direct Bandgaps to Poor Metals. ChemPhysChem 2017, 18, 1992–2006. [Google Scholar] [CrossRef] [PubMed]
- Queneau, V.; Sevov, S.C. Synthesis and Structure of the Zintl-Phase K(4)Pb(9) Containing Isolated Pb(9)(4)(-) Clusters of Two Different Geometries. Inorg. Chem. 1998, 37, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Pancharatna, P.D.; Hoffmann, R. Theoretical Studies on Doubly and Triply Linked Polymers of Ge9 Clusters. Inorg. Chim. Acta 2006, 359, 3776–3784. [Google Scholar] [CrossRef]
- Brommer, K.D.; Needels, M.; Larson, B.; Joannopoulos, J.D. Ab Initio Theory of the Si(111)-(7 × 7) Surface Reconstruction: A Challenge for Massively Parallel Computation. Phys. Rev. Lett. 1992, 68, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, A. [Ge9{Si(SiMe3)3}3]: A Soluble Polyhedral Ge9 Cluster Stabilized by Only Three Silyl Ligands. Angew. Chem. Int. Ed. 2003, 42, 2624–2625. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sevov, S.C. Rational Synthesis of [Ge9{Si(SiMe3)3}3]− from Its Parent Zintl Ion Ge94–. Inorg. Chem. 2012, 51, 2706–2708. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Klein, W.; Jantke, L.-A.; Schiegerl, L.J.; Fässler, T.F. Reaction of SiCl2·dipp with K[Ge9{Si(SiMe3)3}3]—Synthesis and Characterization of [K(Dipp)2][Ge9{Si(SiMe3)3}3]·tol and [Dipp-H][Ge9{Si(SiMe3)3}3]·2acn [Dipp = 1,3-Bis(2,6-Diisopropylphenyl)Imidazol-2-Ylidene]. Z. Anorg. Allg. Chem. 2016, 642, 1314–1319. [Google Scholar] [CrossRef]
- Bentlohner, M.M.; Jantke, L.-A.; Henneberger, T.; Fischer, C.; Mayer, K.; Klein, W.; Fässler, T.F. On the Nature of Bridging Metal Atoms in Intermetalloid Clusters: Synthesis and Structure of the Metal-Atom-Bridged Zintl Clusters [Sn(Ge9)2] 4− and [Zn(Ge9)2)]6−. Chem. Eur. J. 2016, 22, 13946–13952. [Google Scholar] [CrossRef]
- Mayer, K.; Jantke, L.-A.; Schulz, S.; Fässler, T.F. Retention of the Zn−Zn Bond in [Ge9Zn−ZnGe9]6− and Formation of [(Ge9Zn)−(Ge9)−(ZnGe9)]8− and Polymeric Inf[−(Ge9Zn)2−−]. Angew. Chem. Int. Ed. 2017, 56, 2350–2355. [Google Scholar] [CrossRef]
- Benda, C.B.; Schäper, R.; Schulz, S.; Fässler, T.F. Synthesis and Crystal Structure of a Salt Containing ∞1{Zn[Trans-Μ2(H3:H3-Ge9)]}2– Anions: A Polymer with Ge9 Zintl Clusters Bridged by Zn Atoms. Eur. J. Inorg. Chem. 2013, 2013, 5964–5968. [Google Scholar] [CrossRef]
- Bentlohner, M.M.; Klein, W.; Fard, Z.H.; Jantke, L.-A.; Fässler, T.F. Linking Deltahedral Zintl Clusters with Conjugated Organic Building Blocks: Synthesis and Characterization of the Zintl Triad [R-Ge9-CH=CH-CH=CH-Ge9-R]4−. Angew. Chem. Int. Ed. 2015, 54, 3748–3753. [Google Scholar] [CrossRef] [PubMed]
- MATLAB, Release 2012b; The MathWorks, Inc.: Natick, MA, USA, 2012.
- Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V.R.; Zicovich-Wilson, C.M. CRYSTAL: A Computational Tool for the Ab Initio Study of the Electronic Properties of Crystals. Z. Für Krist. Cryst. Mater. 2005, 220, 571–573. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Karttunen, A.J.; Fässler, T.F.; Linnolahti, M.; Pakkanen, T.A. Structural Principles of Semiconducting Group 14 Clathrate Frameworks. Inorg. Chem. 2011, 50, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Gaussian09, Revision E. 01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Scalmani, G.; Frisch, M.J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef]
- Henneberger, T.; Klein, W.; Fässler, T.F. Silicon Containing Nine Atom Clusters from Liquid Ammonia Solution: Crystal Structures of the First Protonated Clusters [HSi9]3– and [H2{Si/Ge}9]2–. Z. Anorg. Allg. Chem. 2018, 644, 1018–1027. [Google Scholar] [CrossRef]
- Karttunen, A.J.; Linnolahti, M.; Pakkanen, T.A. Structural and Electronic Characteristics of Diamondoid Analogues of Group 14 Elements. J. Phys. Chem. C 2008, 112, 16324–16330. [Google Scholar] [CrossRef]
- Schiegerl, L.J.; Karttunen, A.J.; Klein, W.; Fässler, T.F. Silicon Clusters with Six and Seven Unsubstituted Vertices via a Two-Step Reaction from Elemental Silicon. Chem. Sci. 2019, 10, 9130–9139. [Google Scholar] [CrossRef] [Green Version]
- Schiegerl, L.J.; Karttunen, A.J.; Klein, W.; Fässler, T.F. Anionic Siliconoids from Zintl Phases: R3Si9− with Six and R2Si92− with Seven Unsubstituted Exposed Silicon Cluster Atoms (R=Si(tBu)2H). Chem. Eur. J. 2018, 24, 19171–19174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Formula | Symmetry (of {Si9}) | Bond Analysis (See Figure 2 for Labels)/Å | ∆E/eV per Atom (3) | Band Gap/eV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | d1/d2 | diameter/Å | |||||
Honeycomb sheet | |||||||||||
Silicene | C1 | - | - | - | - | 2.27 | - | - | 0.00 | 1.32 | |
α-modification | |||||||||||
Si54 nanocluster (4) | C1 | - | - | - | - | 2.32–2.80 | - | 11.61 | −0.02 | 1.52 (2) | |
Cluster unit and spherical oligomers | |||||||||||
[Si9]4− (1) | (C1) | 2.46 | 2.44 (5) | 2.63 (5) | 2.43 | - | 1.03 | 3.97 | 3.42 (2) | ||
S2 | (Si9)2 | D2d (C2v) | 2.52 | 2.50 (5) | 3.05 (5) | 2.47 (5) | 2.54 (5) | 1.54 | 7.74 | 0.16 | 3.14 (2) |
S3 | (Si9)3 | C1 (C2v) | 2.45 (5) | 2.46 (5) | 3.04 (5) | 2.52 (5) | 2.40 (5) | 1.59 | 9.21 | 0.11 | 3.28 (2) |
Nanoparticles | |||||||||||
S6 | (Si9)6 | Oh (C4v) | 2.37 | 2.46 | 2.79 | 2.51 | 2.30 | 1.00 | 13.72 | 0.05 | 3.31 (2) |
S12 | (Si9)12 | Oh (C4v) | 2.36 | 2.48 | 2.72 | 2.50 | 2.30 | 1.00 | 17.59 | 0.02 | 3.22 (2) |
S30 | (Si9)30 (4) | Ih (C4v) | 2.35 | 2.56 | 2.78 | 2.56 | 2.25 | 1.00 | 24.76 | 0.02 | 3.54 (2) |
Polymers | |||||||||||
P1(6) | (C2) | 2.43 (5) | 2.56 (5) | 2.52 (5) | 2.57 (5) | 2.31 | 1.20 | - | 0.21 | 2.09 | |
P2 | pmm2 (C2v) | 2.38 (5) | 2.46 (5) | 2.78 | 2.52 (5) | 2.32 | 1.01 | - | 0.14 | 2.45 | |
Two-dimensional modifications | |||||||||||
L1 | (C4v) | 2.36 | 2.49 | 2.68 | 2.50 | 2.30 | 1.00 | - | 0.00 | 2.63 | |
L2 | p4/nmm (C4v) | 2.36 | 2.47 | 2.73 | 2.50 | 2.33 | 1.00 | - | −0.08 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantke, L.-A.; Karttunen, A.J.; Fässler, T.F. Chemi-Inspired Silicon Allotropes—Experimentally Accessible Si9 Cages as Proposed Building Block for 1D Polymers, 2D Sheets, Single-Walled Nanotubes, and Nanoparticles. Molecules 2022, 27, 822. https://doi.org/10.3390/molecules27030822
Jantke L-A, Karttunen AJ, Fässler TF. Chemi-Inspired Silicon Allotropes—Experimentally Accessible Si9 Cages as Proposed Building Block for 1D Polymers, 2D Sheets, Single-Walled Nanotubes, and Nanoparticles. Molecules. 2022; 27(3):822. https://doi.org/10.3390/molecules27030822
Chicago/Turabian StyleJantke, Laura-Alice, Antti J. Karttunen, and Thomas F. Fässler. 2022. "Chemi-Inspired Silicon Allotropes—Experimentally Accessible Si9 Cages as Proposed Building Block for 1D Polymers, 2D Sheets, Single-Walled Nanotubes, and Nanoparticles" Molecules 27, no. 3: 822. https://doi.org/10.3390/molecules27030822
APA StyleJantke, L. -A., Karttunen, A. J., & Fässler, T. F. (2022). Chemi-Inspired Silicon Allotropes—Experimentally Accessible Si9 Cages as Proposed Building Block for 1D Polymers, 2D Sheets, Single-Walled Nanotubes, and Nanoparticles. Molecules, 27(3), 822. https://doi.org/10.3390/molecules27030822