Development and Comprehensive SPE-UHPLC-MS/MS Analysis Optimization, Comparison, and Evaluation of 2,4-Epibrassinolide in Different Plant Tissues
Abstract
:1. Introduction
2. Result and Discussion
2.1. Comparison of Sample Grinding Method
2.2. Optimization of SPE Purification
2.3. The Effect of Mobile Phase
2.4. The Effect of Mass Spectrum Parameters
2.5. Recovery Rate, Linearity, and Matrix Effect
2.6. Actual Determination of EBL Content in Samples
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. Standard Solution of EBL
3.4. Instrumentation
3.5. Chromatographic Conditions
3.6. Mass Spectrometry Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fujioka, S.; Sakurai, A. Brassinosteroids. Nat. Prod. Rep. 1997, 14, 1–10. [Google Scholar] [CrossRef]
- Grove, M.D.; Spencer, G.F.; Rowedder, W.K.; Mandava, N.; Worley, J.F.; Warthen, J.D.; Cook, J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 1979, 281, 216–217. [Google Scholar] [CrossRef]
- Franks, K.N.; Giovanni, C.; Massimo, R. Development of an innovative phytosterol derivatization method to improve the HPLC-DAD analysis and the ESI-MS detection of plant sterols/stanols. Food Res. Int. 2020, 131, 108998. [Google Scholar]
- Singh, A.P.; Savaldi-Goldstein, S. Growth control: Brassinosteroid activity gets context. J. Exp. Bot. 2015, 66, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, Y.; Li, J.; Ding, X.; Xiao, S.; Fan, S.; Song, Z.; Chen, W.; Li, X. Exogenous 2,4-epibrassinolide treatment maintains the quality of Carambola fruit associated with enhanced antioxidant capacity and alternative respiratory metabolism. Front. Plant Sci. 2021, 12, 678295. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Che, Z.; Rehman, A.; Cheema, S.A.; Sharma, A.; Song, H.; Rehman, S.U.; Zhaorong, D. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants. A review. Ecotox. Environ. Saf. 2018, 147, 935–944. [Google Scholar] [CrossRef]
- Asami, T.; Nakano, T.; Fujioka, S. Plant brassinosteroid hormones. Vitam. Horm. 2005, 72, 479–504. [Google Scholar]
- Li, Z.; He, Y. Roles of Brassinosteroids in Plant Reproduction. Int. J. Mol. Sci. 2020, 29, 872. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Shahzad, B.; Sharma, A.; Khan, E.A. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiol. Bioch. 2019, 135, 295–303. [Google Scholar] [CrossRef]
- Tanveer, M.; Shahzad, B.; Sharma, A.; Biju, S.; Bhardwaj, R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiol. Bioch. 2018, 130, 69–79. [Google Scholar] [CrossRef]
- Kaur, K.S.; Bhardwaj, A.; Bhardwaj, V.; Sharma, A.; Kalia, N.; Landi, M.; Bhardwaj, R. Therapeutic potential of Brassinosteroids in biomedical and clinical research. Biomolecules 2020, 9, 104–572. [Google Scholar]
- Peres, A.; Soares, J.S.; Tavares, R.G.; Righetto, G.; Zullo, M.; Mandava, N.B.; Menossi, M. Brassinosteroids, the sixth class of phytohormones: A molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int. J. Mol. Sci. 2019, 15, 331. [Google Scholar] [CrossRef] [Green Version]
- Danezis, G.P.; Anagnostopoulos, C.J.; Liapis, K.; Koupparis, M.A. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography-MS/MS in various food matrices. Anal. Chim. Acta. 2016, 26, 121–138. [Google Scholar] [CrossRef]
- Piram, A.; Salvador, A.; Gauvrit, J.Y.; Lanteri, P.; Faure, R. Development and optimisation of a single extraction procedure for the LC/MS/MS analysis of two pharmaceutical classes residues in sewage treatment plant. Talanta 2008, 15, 1463–1475. [Google Scholar] [CrossRef]
- Hashiguchi, T.; Hashiguchi, M.; Tanaka, H.; Fukushima, K.; Gondo, T.; Akashi, R. Quantitative analysis of seven plant hormones in Lotus japonicus using standard addition method. PLoS ONE 2021, 16, e0247276. [Google Scholar] [CrossRef]
- Kasote, D.M.; Ghosh, R.; Chung, J.Y.; Kim, J.; Bae, I.; Bae, H. Multiple reaction monitoring mode based liquid chromatography-mass spectrometry method for simultaneous quantification of Brassinolide and other plant hormones involved in abiotic stresses. Int. J. Anal. Chem. 2016, 2016, 7214087. [Google Scholar] [CrossRef] [Green Version]
- Sugahara, K.; Kitao, K.; Yamagaki, T.; Koyama, T. Practical optimization of liquid chromatography/mass spectrometry conditions and pretreatment methods toward the sensitive quantification of auxin in plants. Rapid Commun. Mass Sp. 2020, 15, 347–8625. [Google Scholar] [CrossRef]
- Novák, O.; Floková, K. An UHPLC-MS/MS method for target profiling of stress-related phytohormones. Methods Mol. Biol. 2018, 1778, 183–192. [Google Scholar]
- Yu, J.N.; Meng, Q.Y.; Liu, W.J.; Lu, Y.L.; Ren, X.L. Analysis of acidic endogenous phytohormones in grapes by using online solid-phase extraction coupled with LC-MS/MS. J. Chromatogr. Sci. 2014, 529, 1145–1149. [Google Scholar] [CrossRef] [Green Version]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 2003, 13, 3019–3030. [Google Scholar] [CrossRef]
- DAMS, R.; Huestis, M.A.; Lambert, W.E.; Murphy, C.M. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J. Am. Soc. Mass Spectr. 2003, 11, 1290–1294. [Google Scholar] [CrossRef] [Green Version]
- Berthiller, F.; Werner, U.; Sulyok, M.; Krska, R.; Hauser, M.T.; Schuhmacher, R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit. Contam. 2006, 11, 1194–1200. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Miyakawa, S.; Esaki, T.; Mizuno, H.; Masujima, T.; Koshiba, T.; Seo, M. Live single-cell plant hormone analysis by video-mass spectrometry. Plant Cell Physiol. 2015, 56, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Han, T.; Liu, W.; Han, G.; Di, P.; Yu, X.; Yan, J.; Zhang, A. Thr420 and Ser454 of ZmCCaMK play a crucial role in brassinosteroid-induced antioxidant defense in maize. Biochem. Biophys. Res. Commun. 2020, 7, 537–542. [Google Scholar] [CrossRef]
- Zheng, J.; Johnson, M.; Mandal, R.; Wishart, D.S. A Comprehensive targeted metabolomics assay for crop plant sample analysis. Metabolites 2021, 11, 303. [Google Scholar] [CrossRef]
- Owen, S.J.; Abrams, S.R. Measurement of plant hormones by liquid chromatography-mass spectrometry. Methods Mol. Biol. 2009, 495, 39–51. [Google Scholar]
- Sutcharitchan, C.; Miao, S.; Li, W.; Liu, J.; Zhou, H.; Ma, Y.; Ji, S.; Cui, Y. High performance liquid chromatography-tandem mass spectrometry method for residue determination of 39 plant growth regulators in root and rhizome Chinese herbs. Food Chem. 2020, 30, 126766. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Poth, M. Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl. Environ. Microb. 1987, 12, 2908. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Sun, P.; Chen, S.J.; Xin, H.; Niu, Z.X.; Li, M.F. Simultaneous determination of six plant hormones by liquid chromatography-tandem mass spectrometry. J. Gansu Agric. Univ. 2020, 445, 98–103. [Google Scholar]
- Morris, R.O. Genes Specifying auxin and cytokinin biosynthesis in phytopathogens. Annu. Rev. Plant Biol. 2003, 371, 509–538. [Google Scholar] [CrossRef]
- Zhong, D.L.; Ren, C.Y.; Li, Z.G. Simultaneous determination of salicylic acid and jasmonic acid in Pinus massoninan by high performance liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Lab. 2017, 36, 164–167. [Google Scholar]
Sample | Spiked Levels (μg/kg) | Recoveries (%) | RSD (%, n = 3) | Calibration Curves | Correlation Coefficient (R2) | ME (%) | LOQ (μg/kg) |
---|---|---|---|---|---|---|---|
Maize plumule | 10 | 86.3 | 3.4 | y = 19.604x + 3.657 | 0.9978 | 64.2 | 1.22 |
50 | 84 | 1.2 | |||||
200 | 96.5 | 0.9 | |||||
Rapeseed flower | 10 | 88.2 | 4.7 | y = 8.871x + 0.582 | 0.9997 | 101.8 | 0.36 |
50 | 116.3 | 3.3 | |||||
200 | 109.2 | 10.5 | |||||
Marigold leaf | 10 | 85.6 | 4.6 | y = 17.911x + 0.797 | 0.9996 | 76.7 | 0.95 |
50 | 93.2 | 3.1 | |||||
200 | 103.4 | 0.8 |
Hormones | Parent Ion (m/z) | Fragment (V) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|
EBL | 481.3 | 100 | 445.2 * | 10 |
EBL | 481.3 | 100 | 315.3 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhong, Y.; Li, W.; Li, G.; Jin, N.; Zhao, X.; Zhang, D. Development and Comprehensive SPE-UHPLC-MS/MS Analysis Optimization, Comparison, and Evaluation of 2,4-Epibrassinolide in Different Plant Tissues. Molecules 2022, 27, 831. https://doi.org/10.3390/molecules27030831
Liu X, Zhong Y, Li W, Li G, Jin N, Zhao X, Zhang D. Development and Comprehensive SPE-UHPLC-MS/MS Analysis Optimization, Comparison, and Evaluation of 2,4-Epibrassinolide in Different Plant Tissues. Molecules. 2022; 27(3):831. https://doi.org/10.3390/molecules27030831
Chicago/Turabian StyleLiu, Xin, Yuan Zhong, Wenli Li, Guichen Li, Ning Jin, Xiaoqiang Zhao, and Dan Zhang. 2022. "Development and Comprehensive SPE-UHPLC-MS/MS Analysis Optimization, Comparison, and Evaluation of 2,4-Epibrassinolide in Different Plant Tissues" Molecules 27, no. 3: 831. https://doi.org/10.3390/molecules27030831
APA StyleLiu, X., Zhong, Y., Li, W., Li, G., Jin, N., Zhao, X., & Zhang, D. (2022). Development and Comprehensive SPE-UHPLC-MS/MS Analysis Optimization, Comparison, and Evaluation of 2,4-Epibrassinolide in Different Plant Tissues. Molecules, 27(3), 831. https://doi.org/10.3390/molecules27030831