Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree)
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation of the Isolated Compounds
2.2. Effects of the Isolated Compounds on Cell Viability
2.3. Dose- and Time-Dependent Inhibition of Hepatitis B Virus Surface Antigen (HBsAg) Expression
2.4. Time-Dependent Downregulation of HBV Replication
3. Discussion
4. Materials and Methods
4.1. Plant Material Collection and Preparation
4.2. General Experimental Instruments
4.3. Fractionation and Isolation of Active Compounds
4.4. Cell Cultures and Drugs
4.5. Cytotoxicity Assessment
4.6. Microscopic Examination
4.7. Dose- and Time-Dependent Analyses of HBsAg Expression in HepG2 Cells
4.8. Analysis of the Time-Dependent Downregulation of HBV Replication
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Huang, S.-X.; Mou, J.-F.; Qin, L.; Mo, Q.-H.; Zhou, X.-L.; Huang, X.; Xu, Q.; Tan, X.-D.; Chen, X.; Liang, C.-Q. Anti-Hepatitis B Virus Activity of Esculetin from Microsorium fortunei In Vitro and In Vivo. Molecules 2019, 24, 3475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torresi, J. Hepatitis B antiviral resistance and vaccine escape: Two sides of the same coin. Antivir. Ther. 2008, 13, 337–340. [Google Scholar] [PubMed]
- Mothana, R.A.; Arbab, A.H.; Parvez, M.K.; Al-Dosari, M.S. Assessment of anti-hepatitis B virus activity of endemic medicinal plants from Socotra Island. Afr. J. Pharm.Pharmacol. 2020, 14, 294–299. [Google Scholar]
- Andre, F. Hepatitis B epidemiology in Asia, the Middle East and Africa. Epidemiol. Rev. 2006, 18, 20–22. [Google Scholar] [CrossRef]
- Shepard, C.W.; Simard, E.P.; Lyn Finelli, A.E.F.; Bell, B.P. Hepatitis B Virus Infection: Epidemiology and Vaccination. Epidemiol. Rev. 2006, 28, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Chen, Y.-S.; Cao, L.; Chen, X.-W.; Lu, M.-J. Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World J. Gastroenterol. 2018, 24, 3488–3499. [Google Scholar] [CrossRef]
- Deng, L.; Tang, H. Hepatitis B virus drug resistance to current nucleos(t)ide analogs: Mechanisms and mutation sites. Hepatol. Res. 2011, 41, 1017–1024. [Google Scholar] [CrossRef]
- Gupta, N.; Goyal, M.; Wu, C.H.; Wu, G.Y. The Molecular and Structural Basis of HBV-resistance to Nucleos(t)ide Analogs. J. Clin. Transl. Hepatol. 2014, 2, 202–211. [Google Scholar]
- Arbab, A.H.; Parvez, M.K.; Al-Dosari, M.S.; Al-Rehaily, A.J. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Exp. Ther. Med. 2017, 14, 626–634. [Google Scholar] [CrossRef]
- Parvez, M.K.; Al-Dosari, M.S.; Arbab, A.H.; Niyazi, S. The in vitro and in vivo anti-hepatotoxic, anti-hepatitis B virus and hepatic CYP450 modulating potential of Cyperus rotundus. Saudi Pharm. J. 2019, 27, 558–564. [Google Scholar] [CrossRef]
- Parvez, M.K.; Al-Dosari, M.S.; Arbab, A.H.; Al-Rehaily, A.J.; Abdelwahid, M.A.S. Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from Guiera senegalensis leaves. Saudi Pharm. J. 2020, 28, 550–559. [Google Scholar] [CrossRef]
- Wei, J.; Lin, L.; Su, X.; Qin, S.; Xu, Q.; Tang, Z.; Deng, Y.; Zhou, Y.; He, S. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells. Biomed. Rep. 2014, 2, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.; Lindequist, U.; Gruenert, R.; Bednarski, P.J. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complement Altern. Med. 2009, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Al-Awthan, Y.S.; Bahattab, O.S. Phytochemistry and Pharmacological Activities of Dracaena cinnabari Resin. Biomed. Res. Int. 2021, 2021, 8561696. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.; Lindequist, U. Antimicrobial activity of some medicinal plants of the island Soqotra. J. Ethnopharmacol. 2005, 96, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Xin, N.; Li, Y.J.; Li, Y.; Dai, R.-J.; Meng, W.-W.; Chen, Y.; Schlappi, M.; Deng, Y.-L. Dragon’s blood extract has antithrombotic properties, affecting platelet aggregation functions and anticoagulation activities. J. Ethnopharmacol. 2011, 135, 510–514. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Khanum, S.A. Antidiabetic activity of Dracaen cinnabari Balf. F extracts from resin in Socotra Island-Yemen. Plant Biochem. Physiol. 2016, 4, 1. [Google Scholar]
- Alwashli, A.; Sobarry, M.; Cherrah, Y.; Alaoui, K. Antiinflammatory and analgesic effects of ethanol extract of Dracaena cinnabari Balf. as endemic plant in Yemen. Int. J. Pharmacol. Biol. Sci. 2012, 3, 96–106. [Google Scholar]
- Mohammed, Y.H.E. In-vitro anti-cancer activity of extracts Dracaen cinnabari Balf. F resin from Socotra Island in Yemen Republic. Biochem. Anal. Biochem. 2016, 5, 3. [Google Scholar]
- Torres, C.; Leone, F.G.P.Y.; Pezzano, S.C.; Mbayed, V.A.; Campos, R.H. New perspectives on the evolutionary history of hepatitis B virus genotype F. Mol. Phylogenet. Evol. 2011, 59, 114–122. [Google Scholar] [CrossRef]
- Tang, Q.N.; Feng, M.; Gong, S.J.; Dai, Z.K.; Zhou, Y.Z.; Qing, X.V. The effects of extracts from Arenaria kansuensis on the levels of HBsAg and HBeAg in HepG2.2.15 cells. J. Chin. Med. Mater. 2008, 31, 1212–1216. [Google Scholar]
- Caviglia, G.P.; Abate, M.L.; Pellicano, R.; Smedile, A. Chronic hepatitis B therapy: Available drugs and treatment guidelines. MinervaI Gastroenterol. Dietol. 2015, 61, 61–70. [Google Scholar]
- Arbab, A.H.; Parvez, M.K.; Al-Dosari, M.S.; Al-Rehaily, A.J.; Al-Sohaibani, M.; Zaroug, E.E.; Al-Said, M.S.; Rafatullah, S. Hepatoprotective and Antiviral Efficacy of Acacia mellifera Leaves Fractions against Hepatitis B Virus. Biomed. Res. Int. 2015, 2015, 929131. [Google Scholar] [CrossRef] [Green Version]
- Bonino, F.; Hoyer, B.; Nelson, J.; Engle, R.; Verme, G.; Gerin, J. Hepatitis B virus DNA in the sera of HBsAg carriers: A marker of active hepatitis B virus replication in the liver. Hepatology 1981, 1, 386–391. [Google Scholar] [CrossRef]
- Doong, S.L.; Tsai, C.H.; Schinazi, R.F.; Liotta, D.C.; Cheng, Y.C. Inhibition of the replication of hepatitis B virus in vitro by 2’,3’-dideoxy-3’-thiacytidine and related analogues. Proc. Natl. Acad. Sci. USA 1991, 88, 8495–8499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target 2021, 29, 403–419. [Google Scholar] [CrossRef]
- Hameed, A.; Abdullah, M.I.; Ahmed, E.; Sharif, A.; Irfan, A.; Masood, S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg. Chem. 2016, 65, 175–182. [Google Scholar] [CrossRef]
- Turkovic, N.; Ivkovic, B.; Kotur-Stevuljevic, J.; Tasic, M.; Marković, B.; Vujic, Z. Molecular docking, synthesis and anti-HIV-1 protease activity of novel chalcones. Curr. Pharm. Des. 2020, 26, 802–814. [Google Scholar] [CrossRef]
- Malbari, K.; Gonsalves, H.; Chintakrindi, A.; Gohil, D.; Joshi, M.; Kothari, S.; Srivastava, S.; Chowdhary, A.; Kanyalkar, M. In search of effective H1N1 neuraminidase inhibitor by molecular docking, antiviral evaluation and membrane interaction studies using NMR. Acta Virol. 2018, 62, 179–190. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.; Li, F.; Zhu, Q.; Liu, X.; Han, Q.; Wang, Y.; Chen, Y.; Zeng, X.; Lv, Y.; et al. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int. Immunopharmacol. 2013, 16, 466–474. [Google Scholar] [CrossRef]
- Patil, V.; Patil, S.A.; Patil, R.; Bugarin, A.; Beaman, K.; Patil, S.A. Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities. Med. Chem. 2019, 15, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Mathayan, M.; Jayaraman, S.; Kulanthaivel, L.; Arumugam, S. Inhibition studies of HBV DNA polymerase using seed extracts of Pongamia pinnata. Bioinformation 2019, 15, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Adianti, M.; Aoki, C.; Komoto, M.; Deng, L.; Shoji, I.; Wahyuni, T.S.; Lusida, M.I.; Soetjipto; Fuchino, H.; Kawahara, N.; et al. Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol. Immunol. 2014, 58, 180–187. [Google Scholar] [CrossRef] [PubMed]
No | Comp. 1 | Comp. 2 | ||
---|---|---|---|---|
δH | δc | δH | δc | |
1 | - | 121.7 | - | 121.7 |
2 | - | 161.3 | - | 161.3 |
3 | 6.41 (1H, d, J = 2.3 Hz) | 99.7 | 6.53 (1H, d, J = 2.0 Hz) | 100.1 |
4 | - | 162.5 | - | 162.5 |
5 | 6.29 (1H, dd, J = 8.1, 2.3 Hz) | 107.7 | 6.47 (1H, dd, J = 8.5, 2.0 Hz) | 108.9 |
6 | 6.93 (1H, d, J = 8.1Hz) | 131.3 | 7.60 (1H, d, J = 8.5 Hz) | 133.8 |
α | 3.1 (2H, t, J = 7.8 Hz) | 40.0 | 7.42 (1H, d, J =15.7 Hz) | 125.1 |
β | 2.85 (2H, t, J = 7.8 Hz) | 26.9 | 7.57 (1H, d, J =15.7 Hz) | 144.2 |
1′ | - | 130.0 | - | 128.0 |
2′ | 7.87 (1H, d, J = 8.8 Hz) | 131.9 | 7.51(1H, d, J = 8.6 Hz) | 131.4 |
3′ | 6.83 (1H, d, J = 8.8 Hz) | 116.2 | 6.83 (1H, d, J = 8.6 Hz) | 116.9 |
4′ | - | 163.8 | - | 164.7 |
5′ | 6.83 (1H, d, J = 8.8 Hz) | 116.2 | 6.83 (1H, d, J = 8.6 Hz) | 116.9 |
6′ | 7.87 (1H, d, J = 8.8 Hz) | 131.9 | 7.51(1H, d, J = 8.6 Hz) | 131.4 |
4-OMe | 3.78 (3H, s) | 55.6 | 3.88 (3H, s) | 56.1 |
C = O | - | 201.8 | - | 193.1 |
Samples | CC50 (μg/mL) | IC50 (μg/mL) | TI |
---|---|---|---|
Compound 1 | 346.67 | 20.56 | 16.86 |
Compound 2 | 242.11 | 6.36 | 38.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mothana, R.A.; Arbab, A.H.; ElGamal, A.A.; Parvez, M.K.; Al-Dosari, M.S. Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree). Molecules 2022, 27, 952. https://doi.org/10.3390/molecules27030952
Mothana RA, Arbab AH, ElGamal AA, Parvez MK, Al-Dosari MS. Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree). Molecules. 2022; 27(3):952. https://doi.org/10.3390/molecules27030952
Chicago/Turabian StyleMothana, Ramzi A., Ahmed H. Arbab, Ali A. ElGamal, Mohammad K. Parvez, and Mohammed S. Al-Dosari. 2022. "Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree)" Molecules 27, no. 3: 952. https://doi.org/10.3390/molecules27030952
APA StyleMothana, R. A., Arbab, A. H., ElGamal, A. A., Parvez, M. K., & Al-Dosari, M. S. (2022). Isolation and Characterization of Two Chalcone Derivatives with Anti-Hepatitis B Virus Activity from the Endemic Socotraen Dracaena cinnabari (Dragon’s Blood Tree). Molecules, 27(3), 952. https://doi.org/10.3390/molecules27030952