Protective Effects of Green Tea Supplementation against Lead-Induced Neurotoxicity in Mice
Abstract
:1. Introduction
2. Results
2.1. Ameliorating Effect of Green Tea Intake on Body Weight in Lead-Intoxicated Mice
2.2. Green Tea Supplementation Has Improved Hematological Parameters in the Lead-Intoxicated Mice
2.3. Hypoglycemic Effect of Green Tea Supplementation against Elevated Blood Glucose Levels in Mice
2.4. Ameliorating Effect of Green Tea on the Lead Intoxication-Associated Dyslipidemia
2.5. Decreased Accumulation of Lead in Blood and Brain of Green Tea-Supplemented Mice
2.6. Ameliorating Effect of Green Tea on the Locomotory Behavior of Lead-Intoxicated Mice
2.7. Antianxiety Effect of Green Tea Supplementation on the Lead-Intoxicated Mice in the Plus-Maze
2.8. Neuroprotective Effects of Green Tea Supplementation as Indicated from Learning and Memory Testing in Automatic Reflex Conditioner
2.9. GC/MS Analysis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Green Tea Extract Preparation
4.3. Lead Preparation and Dosing Schedule
4.4. Monitoring of Water Consumption and Body Weight Changes
4.5. Behavioral Studies
4.6. Biochemical Assays
4.7. Lead Estimation Assay
4.8. GC-MS Instrumentation
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Alwaleedi, S.A. Hematobiochemical Changes Induced by Lead Intoxication in Male and Female Albino Mice. Natl. J. Physiol. Pharm. Pharmacol. 2016, 6, 46–51. [Google Scholar] [CrossRef]
- Dart, R.C.; Hurlbut, K.M.; Boyer-Hassen, L.V. Lead. In Medical Toxicology, 3rd ed.; Dart, R.C., Ed.; Lippincot Williams and Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Wani, A.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P. Neurotoxic Effects and Biomarkers of Lead Exposure: A Review. Rev. Environ. Health 2009, 24, 15–45. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.A. Role of Chelation in the Treatment of Lead Poisoning: Discussion of the Treatment of Lead-Exposed Children Trial (TLC). J. Med. Toxicol. 2013, 9, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Miracle, V.A. Lead Poisoning in Children and Adults. Dimens. Crit. Care Nurs. 2017, 36, 71–73. [Google Scholar] [CrossRef]
- Laamech, J.; El-Hilaly, J.; Fetoui, H.; Chtourou, Y.; Gouitaa, H.; Tahraoui, A.; Lyoussi, B. Berberis vulgaris L. Effects on Oxidative Stress and Liver Injury in Lead-Intoxicated Mice. J. Complement. Integr. Med. 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Zhi-wei, Z.; Ru-Lai, Y.; Gui-juan, D.; Zheng-yan, Z. Study on the Neurotoxic Effects of Low-level Lead Exposure in Rats. J. Zhejiang Univ. Sci. B 2005, 6, 686–692. [Google Scholar]
- Necyk, C.; Zubach-Cassano, L. Natural Health Products and Diabetes: A Practical Review. Can. J. Diabetes 2017, 41, 642–647. [Google Scholar] [CrossRef]
- Yarla, N.S.; Bishayee, A.; Sethi, G.; Reddanna, P.; Kalle, A.M.; Dhananjaya, B.L.; Dowluru, K.S.; Chintala, R.; Duddukuri, G.R. Targeting Arachidonic Acid Pathway by Natural Products for Cancer Prevention and Therapy. Semin. Cancer Biol. 2016, 40, 48–51. [Google Scholar] [CrossRef]
- Tsuneki, H.; Ishizuka, M.; Terasawa, M.; Wu, J.B.; Toshiyasu, S.; Ikuko, K. Effect of Green Tea on Blood Glucose Levels and Serum Proteomic Patterns in Diabetic (db/db) Mice and on Glucose Metabolism in Healthy Humans. BMC Pharmacol. 2004, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Rameshrad, M.; Razavi, B.M.; Hosseinzadeh, H. Protective Effects of Green Tea and its Main Constituents against Natural and Chemical Toxins: A Comprehensive Review. Food Chem. Toxicol. 2017, 100, 115–137. [Google Scholar] [CrossRef]
- Sárközi, K.; Papp, A.; Horváth, E.; Máté, Z.; Ferencz, Á.; Hermesz, E.; Krisch, J.; Paulik, E.; Szabó, A. Green Tea and Vitamin C Ameliorate some Neuro-functional and Biochemical Signs of Arsenic Toxicity in Rats. Nutr. Neurosci. 2016, 19, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Hamed, E.; Meki, A.M.; Abd El-Mottaleb, N.A. Protective Effect of Green Tea on Lead-induced Oxidative Damage in Rat’s Blood and Brain Tissue Homogenates. J. Physiol. Biochem. 2010, 66, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, A.A.; Moselhy, W.A.; Abdel-Hamed, M.I. The Protective Effect of Green Tea Extract on Lead Induced Oxidative and DNA Damage on Rat Brain. Neurotoxicology 2012, 33, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.H.; Meki, A.; Gabr, A.M.; Mobasher, A.; Lutfi, M.F. The Protective Effect of Green Tea Extract against Lead Toxicity in Rats Kidneys. Asian J. Biomed. Pharm. Sci. 2014, 4, 30–34. [Google Scholar] [CrossRef]
- Mehana, E.E.; Meki, A.R.; Fazili, K.M. Ameliorated Effects of Green Tea Extract on Lead Induced Liver Toxicity in Rats. Exp. Toxicol. Pathol. 2012, 64, 291–295. [Google Scholar] [CrossRef]
- Meki, A.; Alghasham, A.; EL-Deeb, E. Effect of Green Tea Extract on Lead Toxicity in Different Organs of Rats. Int. J. Health Sci. 2011, 5, 12–15. [Google Scholar]
- Colapinto, C.; Arbuckle, T.; Dubois, L.; Fraser, W. Is There a Relationship between Tea Intake and Maternal Whole Blood Heavy Metal Concentrations? J. Expo. Sci. Environ. Epidemiol. 2016, 26, 503–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deacon, G.; Kettle, C.; Hayes, D.; Dennis, C.; Tucci, J. Omega 3 Polyunsaturated Fatty Acids and the Treatment of Depression. Crit. Rev. Food Sci. Nutr. 2017, 57, 212–223. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Daglia, M.; Braidy, N.; Nabavi, S.F. Natural Products, Micronutrients, and Nutraceuticals for the Treatment of Depression: A Short Review. Nutr. Neurosci. 2017, 20, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Ajarem, J.; Naif, G.A.; Ahmed, A.A.; Saleh, N.M.; Mostafa, A.A.; Billy, K.C.C. Oral Administration of Potassium Bromate Induces Neurobehavioral Changes, Alters Cerebral Neurotransmitters Level and Impairs Brain Tissue of Swiss Mice. Behav. Brain Funct. 2016, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Ningjian, W.; Xiaomin, N.; Li, Z.; Qin, L.; Zhen, C.; Chi, C.; Meng, L.; Jing, C.; Hualing, Z. Lead Exposure Induces Weight Gain in Adult Rats, Accompanied by DNA Hypermethylation. PLoS ONE 2017, 12, e0169958. [Google Scholar] [CrossRef] [Green Version]
- Hursel, R.; Viechtbauer, W.; Westerterp-Plantenga, M.S. The Effects of Green Tea on Weight Loss and Weight Maintenance: A Meta-analysis. Int. J. Obes. 2009, 33, 956–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaBreche, H.G.; Sarah, K.M.; Joseph, R.N.; John, P.C. Peripheral Blood Signatures of Lead Exposure. PLoS ONE 2011, 6, e23043. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, S.; Bao, B.; Li, X.; Wang, S. Structure Characterization of an Arabinogalactan from Green Tea and its Anti-diabetic Effect. Carbohydr. Polym. 2015, 124, 98–108. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on Protective Mechanisms of Four Components of Green Tea Polyphenols against Lipid Peroxidation in Synaptosomes. Biochim. Biophys. Acta 1996, 1304, 210–222. [Google Scholar] [CrossRef]
- Nam, M.; Choi, M.S.; Choi, J.Y.; Kim, N.; Kim, M.S.; Jung, S.; Kim, J.; Ryu, D.H.; Hwang, G.S. Effect of Green Tea on Hepatic Lipid Metabolism in Mice Fed a High-fat Diet. J. Nutr. Biochem. 2018, 51, 1–7. [Google Scholar] [CrossRef]
- Amanolahi, F.; Rakhshande, H. Effects of Ethanolic Extract of Green Tea on Decreasing the Level of Lipid Profile in Rat. Avicenna J. Phytomed. 2013, 3, 98–105. [Google Scholar]
- Oskarsson, A.; Olson, L.; Michael, R.P.; Birger, L.; Hakan, B.J.; Rkilund, A.; Barry, H. Increased Lead Concentration in Brain and Potentiation of Lead-Induced Neuronal Depression in Rats after Combined Treatment with Lead and Disulfiram. Environ. Res. 1986, 41, 623–632. [Google Scholar] [CrossRef]
- Rocha, A.; Trujillo, K.A. Neurotoxicity of Low-level Lead Exposure: History, Mechanisms of Action, and Behavioral Effects in Humans and Preclinical Models. Neurotoxicology 2019, 73, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Allam, A.A.; Gabr, S.A.; Ajarem, J.; Alghadir, A.H.; Sekar, R.; Chow, B.K. Geno Protective and Anti-Apoptotic Effect of Green Tea against Perinatal Lipopolysaccharide-Exposure Induced Liver Toxicity in Rat Newborns. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Kaur, T.; Pathak, C.M.; Pandhi, P.; Khanduja, K.L. Effects of Green Tea Extract on Learning, Memory, Behavior and Acetylcholinesterase Activity in Young and Old Male Rats. Brain Cogn. 2008, 67, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gurer, H.; Neal, R.; Yang, P.; Oztezcan, S.; Erçal, N. Captopril as An Antioxidant in Lead-exposed Fischer 344 rats. Hum. Exp. Toxicol. 1999, 18, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.L.; Chebib, M.; Johnston, G.A.R. The Dietary Flavonoids Apigenin and (−)-epigallocatechin Gallate Enhance the Positive Modulation by Diazepam of the Activation by GABA of Recombinant GABAA Receptors. Biochem. Pharmacol. 2004, 68, 1631–1638. [Google Scholar] [CrossRef]
- Schramm, L. Going Green: The Role of the Green Tea Component EGCG in Chemoprevention. J. Carcinog. Mutagen. 2013, 4, 1000142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafieian-Kopaei, M.; Movahedi, A. Breast Cancer Chemopreventive and Chemotherapeutic Effects of Camellia sinensis (Green Tea): An Updated Review. Electron. Physician 2017, 9, 3838–3844. [Google Scholar] [CrossRef] [Green Version]
- Bastianetto, S.; Yao, Z.X.; Papadopoulos, V.; Quirion, R. Neuroprotective Effects of Green and Black Teas and Their Catechin Gallate Esters against β-amyloid-induced Toxicity. Eur. J. Neurosci. 2006, 23, 55–64. [Google Scholar] [CrossRef]
- Chen, S.Q.; Wang, Z.S.; Ma, Y.X.; Zhang, W.; Lu, J.L.; Liang, Y.R.; Zheng, X.Q. Neuroprotective Effects, and Mechanisms of Tea Bioactive Components in Neurodegenerative Diseases. Molecules 2018, 23, 512. [Google Scholar] [CrossRef] [Green Version]
- Schimidt, H.L.; Garcia, A.; Martins, A.; Mello-Carpes, P.B.; Carpes, F.P. Green Tea Supplementation Produces Better Neuroprotective Effects than Red and Black Tea in Alzheimer-like Rat Model. Food Res. Int. 2017, 100, 442–448. [Google Scholar] [CrossRef]
- Simone, C.; Piacentino, D.; Gabriele, S.; Mariarosaria, A. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar]
- Zhou, X.; Zhang, L. The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2021, 2021, 5568011. [Google Scholar] [CrossRef] [PubMed]
- Bagavathi, P.E.; Ramasamy, N. GC-MS Analysis of Phytocomponents in the Ethanol Extract of Polygonum chinense L. Pharmacogn. Res. 2012, 4, 11–14. [Google Scholar]
- Selvakumar, J.N.; Chandrasekaran, S.D.; Doss, G.P.C.; Kumar, T.D. Inhibition of the ATPase Domain of Human Topoisomerase IIa on HepG2 Cells by 1, 2-benzenedicarboxylic Acid, Mono (2-ethylhexyl) Ester: Molecular Docking and Dynamics Simulations. Curr. Cancer Drug Targets 2019, 19, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Altoom, N.G.; Ajarem, J.S.; Allam, A.A.; Maodaa, S.N.; Abdel-Maksoud, M.A. Deleterious effects of Potassium Bromate Administration on Renal and Hepatic Tissues of Swiss Mice. Saudi J. Biol. Sci. 2018, 25, 278–284. [Google Scholar] [CrossRef]
Groups | Body wt. (g) | Water Consumption (mL) |
---|---|---|
Control | 34.30 ± 1.72 | 13.75 ± 0.15 |
Green tea group (GTE) | 33.29 ± 2.42 | 14.49 ± 0.34 |
Lead group (Pb) | 37.9 ± 1.07 * | 10.02 ± 0.17 * |
Lead + GT group (GTE + Pb) | 35.19 ± 1.14 | 12.10 ± 0.16 |
Parameters | Control | Green Tea Group | Lead Group | Lead + GT Group |
---|---|---|---|---|
RBCs | 7.73 ± 0.13 | 8.10 ± 0.15 | 8.45 ± 0.24 | 8.16 ± 0.33 |
WBCs | 7.01 ± 0.22 | 6.36 ± 1.20 | 9.34 ± 1.55 * | 8.03 ± 1.28 |
Hb | 14.02 ± 0.51 | 15.08 ± 0.21 | 12.58 ± 0.35 | 13.74 ± 0.60 |
HCT | 43.92 ± 1.65 | 47.66 ± 0.49 # | 49.60 ± 1.33 * | 43.86 ± 1.62 |
MCV | 56.08 ± 2.11 | 59.00 ± 0.95 | 58.80 ± 0.86 | 53.80 ± 0.66 |
MCH | 18.16 ± 0.62 | 18.62 ± 0.31 | 18.44 ± 0.39 | 16.84 ± 0.21 |
MCHC | 31.96 ± 0.28 | 31.66 ± 0.14 | 31.42 ± 0.26 | 31.32 ± 0.22 |
PLT | 657.8 ± 17.9 | 663.6 ± 19.2 | 793 ± 78.37 * | 685.6 ± 23.8 & |
Test | Control | Green Tea Group | Lead Group | Lead + GT Group |
---|---|---|---|---|
No. of squares-crossed | 385 | 393 | 297 * | 358 & |
No. of rears | 19 | 21 | 12 * | 18 |
No. of wall-rears | 38 | 40 | 24 * | 33 &+ |
No. of washings | 7 | 6 | 10 * | 8 |
Locomotion duration (s) | 190.6 | 197.7 | 104.8 * | 139.4 &+ |
Immobility duration | 110.5 | 103.9 | 198 * | 121.3 &+ |
Parameter | Control | Green Tea Group | Lead Group | Lead + GT Group Pb |
---|---|---|---|---|
No. of entries into Open arm | 7.3 ± 1.71 | 9 ± 0.92 | 6.8 ± 0.64 | 7.1 ± 0.81 |
Time spent in the open arm (s) | 170 ± 0.28 | 173 ± 0.19 | 60 ± 0.2 *# | 129 ± 0.19 &+ |
No. of entries into closed arm | 4.9 ± 0.87 | 4.5 ± 1.09 | 6.5 ± 0.66 *# | 5.6 ± 1.78 |
Time spent in the closed arm (s) | 85.8 ± 0.56 | 83 ± 0.24 | 150 ± 0.23 *# | 110 ± 0.27 &+ |
Time spent on the maze center (s) | 40 ± 0.47 | 38 ± 0.34 | 57 ± 0.29 *# | 48 ± 0.16 &+ |
Test | Control | Green Tea Group | Lead Group | Lead + GT Group |
---|---|---|---|---|
La (s) | 120 ± 1.22 | 100 ± 0.99 | 150 ± 1.45 *# | 125 ± 1.69 + |
Ic | 60 ± 1.6 | 63 ± 1.76 | 35 ± 0.37 *# | 49 ± 1.32 &+ |
St | 2.7 ± 0.4 | 2.9 ± 0.45 | 0.3 ± 0.33 *# | 2.3 ± 0.26 |
Re | 21.8 ± 2.41 | 21 ± 0.47 | 20.4 ± 1.76 | 20.7± 0.96 |
Tr | 5.5 ± 2.45 | 6.1 ± 0.37 | 9.3 ± 1.9 *# | 7.1 ± 0.99 & |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qahtani, A.; Ajarem, J.; Okla, M.K.; Rubnawaz, S.; Alamri, S.A.; Al-Qahtani, W.H.; Al-Himaidi, A.R.; Elgawad, H.A.; Akhtar, N.; Maodaa, S.N.; et al. Protective Effects of Green Tea Supplementation against Lead-Induced Neurotoxicity in Mice. Molecules 2022, 27, 993. https://doi.org/10.3390/molecules27030993
Al-Qahtani A, Ajarem J, Okla MK, Rubnawaz S, Alamri SA, Al-Qahtani WH, Al-Himaidi AR, Elgawad HA, Akhtar N, Maodaa SN, et al. Protective Effects of Green Tea Supplementation against Lead-Induced Neurotoxicity in Mice. Molecules. 2022; 27(3):993. https://doi.org/10.3390/molecules27030993
Chicago/Turabian StyleAl-Qahtani, Areej, Jamaan Ajarem, Mohammad K. Okla, Samina Rubnawaz, Saud A. Alamri, Wahidah H. Al-Qahtani, Ahmad R. Al-Himaidi, Hamada Abd Elgawad, Nosheen Akhtar, Saleh N. Maodaa, and et al. 2022. "Protective Effects of Green Tea Supplementation against Lead-Induced Neurotoxicity in Mice" Molecules 27, no. 3: 993. https://doi.org/10.3390/molecules27030993
APA StyleAl-Qahtani, A., Ajarem, J., Okla, M. K., Rubnawaz, S., Alamri, S. A., Al-Qahtani, W. H., Al-Himaidi, A. R., Elgawad, H. A., Akhtar, N., Maodaa, S. N., & Abdel-Maksoud, M. A. (2022). Protective Effects of Green Tea Supplementation against Lead-Induced Neurotoxicity in Mice. Molecules, 27(3), 993. https://doi.org/10.3390/molecules27030993