Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach
Abstract
:1. Introduction
2. Results
2.1. Validation of Molecular Docking
2.2. Analysis of Virtual Screening
2.3. Free Energy Estimation by MM/GBSA
2.4. Analysis of Molecular Docking
2.4.1. Risedronate–NDM-1 Interaction
2.4.2. Methotrexate–NDM-1 Interaction
2.5. Analysis of MD Simulation
2.5.1. Root-Mean-Square Deviation (RMSD)
2.5.2. Root-Mean-Square Fluctuation (RMSF)
2.5.3. Radius of Gyration (rGyr)
2.5.4. Solvent-Accessible Surface Area (SASA)
2.6. Protein–Ligand Interaction Analysis
2.7. Analysis of Enzyme Kinetics Parameters
2.8. Analysis of IC50 Values
2.9. Analysis of MIC Values
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Ligands and Protein
4.3. Validation of Docking Protocol
4.4. Molecular Docking
4.5. Free Energy Calculation by MM/GBSA (Molecular Mechanics/Generalized Born Surface Area)
4.6. Molecular Dynamics (MD) Simulation
4.7. Determination of Enzyme Kinetics Parameters
4.8. Evaluation of IC50 Values
4.9. Determination of Minimum Inhibitory Concentration (MIC)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Xu, K.; Zhao, L.; Tong, R.; Xiong, L.; Shi, J. Recent research and development of NDM-1 inhibitors. Eur. J. Med. Chem. 2021, 223, 113667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, X.; Kong, F.; Xia, L.; Deng, X.; Wang, D.; Wang, J. Specific NDM-1 Inhibitor of Isoliquiritin Enhances the Activity of Meropenem against NDM-1-positive Enterobacteriaceae in vitro. Int. J. Environ. Res. Public Health 2020, 17, 2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambler, R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [PubMed]
- Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Khan, A.U.; Rehman, M.T. Role of non-active-site residue Trp-93 in the function and stability of New Delhi metallo-β-lactamase 1. Antimicrob. Agents Chemother. 2016, 60, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Khurshid Alam Khan, M. In silico based unraveling of New Delhi metallo-b-lactamase (NDM-1) inhibitors from natural compounds: A molecular docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2020, 38, 2093–2103. [Google Scholar] [CrossRef]
- Rehman, M.T.; Alajmi, M.F.; Hussain, A.; Rather, G.M.; Khan, M.A. High-throughput virtual screening, molecular dynamics simulation, and enzyme kinetics identified ZINC84525623 as a potential inhibitor of NDM-1. Int. J. Mol. Sci. 2019, 20, 819. [Google Scholar] [CrossRef] [Green Version]
- Klingler, F.M.; Wichelhaus, T.A.; Frank, D.; Cuesta-Bernal, J.; El-Delik, J.; Müller, H.F.; Sjuts, H.; Göttig, S.; Koenigs, A.; Pos, K.M.; et al. Approved drugs containing thiols as inhibitors of metallo-β-lactamases: Strategy to combat multidrug-resistant bacteria. J. Med. Chem. 2015, 58, 3626–3630. [Google Scholar] [CrossRef]
- Li, N.; Xu, Y.; Xia, Q.; Bai, C.; Wang, T.; Wang, L.; He, D.; Xie, N.; Li, L.; Wang, J.; et al. Simplified captopril analogues as NDM-1 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 386–389. [Google Scholar] [CrossRef]
- Brem, J.; Cain, R.; Cahill, S.; McDonough, M.A.; Clifton, I.J.; Jiménez-Castellanos, J.C.; Avison, M.B.; Spencer, J.; Fishwick, C.W.G.; Schofield, C.J. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun. 2016, 7, 12406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lu, M.; Shi, Y.; Ou, Y.; Cheng, X. Discovery of Novel New Delhi Metallo-β-Lactamases-1 Inhibitors by Multistep Virtual Screening. PLoS ONE 2015, 10, e0118290. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Chen, J.; Xiao, B.; Kang, X.; Lao, X.; Zheng, H. Discovery of NDM-1 inhibitors from natural products. J. Glob. Antimicrob. Resist. 2019, 18, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Linciano, P.; Cendron, L.; Gianquinto, E.; Spyrakis, F.; Tondi, D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect. Dis. 2019, 5, 9–34. [Google Scholar] [CrossRef]
- Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.P.; Bertrand, H.O. Virtual screening workflow development guided by the ‘‘receiver operating characteristic’’ curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem. 2005, 48, 2534–2547. [Google Scholar] [CrossRef]
- AlAjmi, M.F.; Rehman, M.T.; Hussain, A.; Rather, G.M. Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. Int. J. Biol. Macromol. 2018, 116, 173–181. [Google Scholar] [CrossRef]
- Kumar Tripathi, S.; Muttineni, R.; Singh, S.K. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J. Theor. Biol. 2013, 334, 87–100. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Khan, M.S.; Rehman, M.T.; Bhat, S.A.; Tabrez, S.; Hussain, A.; Husain, F.M.; AlAjmi, M.F.; Alamery, S.F.; Sumbul, S. Food additive dye (quinoline yellow) promotes unfolding and aggregation of myoglobin: A spectroscopic and molecular docking analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 216–226. [Google Scholar] [CrossRef]
- Shamsi, A.; Mohammad, T.; Khan, M.S.; Shahwan, M.; Husain, F.M.; Rehman, M.T.; Hassan, M.I.; Ahmad, F.; Islam, A. Unraveling binding mechanism of alzheimer’s drug rivastigmine tartrate with human transferrin: Molecular docking and multi-spectroscopic approach towards neurodegenerative diseases. Biomolecules 2019, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.T.; AlAjmi, M.F.; Hussain, A. Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19. Curr. Pharm. Des. 2021, 27, 3577–3589. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Khan, S.; Fakhar, Z.; Hussain, A.; Rehman, M.T.; Alajmi, M.F.; Islam, A.; Ahmad, F.; Hassan, M.I. Identification of Potential Inhibitors of Calcium/Calmodulin-Dependent Protein Kinase IV from Bioactive Phytoconstituents. Oxid. Med. Cell. Longev. 2020, 2020, 2094635. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Poirel, L.; Al Yaqoubi, F.; Nordmann, P. NDM-1, OXA-48 and OXA-181 carbapenemase-producing Enterobacteriaceae in Sultanate of Oman. Clin. Microbiol. Infect. 2012, 18, E144–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muteeb, G.; Rehman, M.T.; Ali, S.Z.; Al-Shahrani, A.M.; Kamal, M.A.; Ashraf, G.M. Phage display technique: A novel medicinal approach to overcome antibiotic resistance by using peptide-based inhibitors against β-lactamases. Curr. Drug Metab. 2017, 18, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Rehman, M.T.; Danishuddin, M.; Khan, A.U. Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor. PLoS ONE 2013, 8, e56926. [Google Scholar] [CrossRef]
- King, D.; Strynadka, N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 2011, 20, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Jamal, W.; Rotimi, V.O.; Albert, M.J.; Khodakhast, F.; Udo, E.E.; Poirel, L. Emergence of nosocomial New Delhi metallo-β-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae in patients admitted to a tertiary care hospital in Kuwait. Int. J. Antimicrob. Agents 2012, 39, 183–184. [Google Scholar] [CrossRef]
- RubenMorones-Ramirez, J.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 2013, 5, 190ra81. [Google Scholar]
- Antunes, L.C.S.; Imperi, F.; Minandri, F.; Visca, P. In Vitro and In Vivo antimicrobial activities of gallium nitrate against multidrug-resistant acinetobacter baumannii. Antimicrob. Agents Chemother. 2012, 56, 5961–5970. [Google Scholar] [CrossRef] [Green Version]
- Azumah, R.; Dutta, J.; Somboro, A.M.; Ramtahal, M.; Chonco, L.; Parboosing, R.; Bester, L.A.; Kruger, H.G.; Naicker, T.; Essack, S.Y.; et al. In vitro evaluation of metal chelators as potential metallo-β-lactamase inhibitors. J. Appl. Microbiol. 2016, 120, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Falconer, S.B.; Reid-Yu, S.A.; King, A.M.; Gehrke, S.S.; Wang, W.; Britten, J.F.; Coombes, B.K.; Wright, G.D.; Brown, E.D. Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing Klebsiella pneumoniae. ACS Infect. Dis. 2016, 1, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Darabedian, N.; Chen, T.C.; Molina, H.; Pratt, M.R.; Schönthal, A.H. Bioorthogonal Profiling of a Cancer Cell Proteome Identifies a Large Set of 3-Bromopyruvate Targets beyond Glycolysis. ACS Chem. Biol. 2018, 13, 3054–3058. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, J.; Zhou, Y.; Hu, N.; Li, J.; Wang, Y.; Niu, X.; Deng, X.; Wang, J. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br. J. Pharmacol. 2019, 176, 4548–4557. [Google Scholar] [CrossRef] [PubMed]
- González, M.M.; Kosmopoulou, M.; Mojica, M.F.; Castillo, V.; Hinchliffe, P.; Pettinati, I.; Brem, J.; Schofield, C.J.; Mahler, G.; Bonomo, R.A.; et al. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect. Dis. 2016, 1, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Thomas, P.W.; Stewart, A.C.; Bergstrom, A.; Cheng, Z.; Miller, C.; Bethel, C.R.; Marshall, S.H.; Credille, C.V.; Riley, C.L.; et al. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem. 2017, 60, 7267–7283. [Google Scholar] [CrossRef]
- Lassaux, P.; Hamel, M.; Gulea, M.; Delbrück, H.; Mercuri, P.S.; Horsfall, L.; Dehareng, D.; Kupper, M.; Frère, J.M.; Hoffmann, K.; et al. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases. J. Med. Chem. 2010, 53, 4862–4876. [Google Scholar] [CrossRef]
- Wang, R.; Lai, T.P.; Gao, P.; Zhang, H.; Ho, P.L.; Woo, P.C.Y.; Ma, G.; Kao, R.Y.T.; Li, H.; Sun, H. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat. Commun. 2018, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Christopeit, T.; Albert, A.; Leiros, H.K.S. Discovery of a novel covalent non-β-lactam inhibitor of the metallo-β-lactamase NDM-1. Bioorg. Med. Chem. 2016, 24, 2947–2953. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, Y.L.; Kang, J.S.; Oelschlaeger, P.; Xiao, L.; Nie, S.S.; Yang, K.W. Triazolylthioacetamide: A Valid Scaffold for the Development of New Delhi Metallo-β-Lactmase-1 (NDM-1) Inhibitors. ACS Med. Chem. Lett. 2016, 7, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Bannwarth, B.; Labat, L.; Moride, Y.; Schaeverbeke, T. Methotrexate in rheumatoid arthritis. An update. Drugs 1994, 47, 25–50. [Google Scholar] [CrossRef]
- Anti, K.; Ai, R.R.; Eterson, E.L.P.; Rederick, F.; Ppelbaum, R.A.; Onathan, J.; Olitz, K.; Aurence, L.; Lias, E.; Ois, L.; et al. Fludarabine Compared with Chlorambucil as Primary Therapy for Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2009, 343, 1750–1757. [Google Scholar]
- Eriksen, E.F.; Díez-Pérez, A.; Boonen, S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: A systematic review. Bone 2014, 58, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Roberson, P.K.; Manolagas, S.C. Giant Osteoclast Formation and Long-Term Oral Bisphosphonate Therapy. N. Engl. J. Med. 2009, 360, 53–62. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys. 2014, 16, 16719–16729. [Google Scholar] [CrossRef] [PubMed]
- King, D.T.; Worrall, L.J.; Gruninger, R.; Strynadka, N.C.J. New Delhi Metallo-β-Lactamase: Structural Insights into β-Lactam Recognition and Inhibition. J. Am. Chem. Soc. 2012, 134, 11362–11365. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Tesar, C.; Mire, J.; Jedrzejczak, R.; Binkowski, A.; Babnigg, G.; Sacchettini, J.; Joachimiak, A. Structure of Apo- and Monometalated Forms of NDM-1—A Highly Potent Carbapenem-Hydrolyzing Metallo-β-Lactamase. PLoS ONE 2011, 6, e24621. [Google Scholar] [CrossRef] [PubMed]
- Hagge, S.O.; de Cock, H.; Gutsmann, T.; Beckers, F.; Seydel, U.; Wiese, A. Pore formation and function of Phosphoporin PhoE of Escherichia coli are determined by the core sugar moiety of lipopolysaccharide. J. Biolog. Chem. 2002, 277, 34247–34253. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.N. Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol. 2005, 391, 211–228. [Google Scholar]
- Jung, H.; Han, H. Effective mucoadhesive liposomal delivery system for risedronate: Preparation and in vitro/in vivo characterization. Int. J. Nanomed. 2014, 9, 2299–2306. [Google Scholar]
- Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and managing toxicities of high-dose methotrexate. Onclologist 2016, 21, 1471–1482. [Google Scholar] [CrossRef] [Green Version]
- AlAjmi, M.F.; Azhar, A.; Owais, M.; Rashid, S.; Hasan, S.; Hussain, A.; Rehman, M.T. Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 6676–6688. [Google Scholar] [CrossRef] [PubMed]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.M.; Malik, A.; Rehman, T.; AlAjmi, M.F.; Alamery, S.F.; Alghamdi, O.H.A.; Khan, R.H.; Odeibat, H.A.M.; Fatima, S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J. Mol. Liq. 2019, 289, 111090. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.Z.; Muteeb, G.; Khan, S.; Alqahtani, A.S.; Somvanshi, P.; Alqahtani, M.S.; Ameta, K.L.; Haque, S. Identifying novel inhibitor of quorum sensing transcriptional regulator (SdiA) of Klebsiella pneumoniae through modelling, docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 2020, 39, 3594–3604. [Google Scholar] [CrossRef]
- AlAjmi, M.F.; Rehman, M.T.; Hussain, A. Celecoxib, Glipizide, Lapatinib, and Sitagliptin as potential suspects of aggravating SARS-CoV-2 (COVID-19) infection: A computational approach. J. Biomol. Struct. Dyn. 2021, 1–12. [Google Scholar] [CrossRef]
- AlAjmi, M.; Azhar, A.; Hasan, S.; Alshabr, A.; Hussain, A.; Rehman, M.T. Identification of Natural Compounds (Proanthocyanidin and Rhapontin) as High-Affinity Inhibitor of SARS-CoV-2 Mpro and PLpro using Computational Strategies. Arch. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Iqbal, D.; Rehman, M.T.; Bin Dukhyil, A.; Rizvi, S.M.D.; Al Ajmi, M.F.; Alshehri, B.M.; Banawas, S.; Khan, M.S.; Alturaiki, W.; Alsaweed, M. High-Throughput Screening and Molecular Dynamics Simulation of Natural Product-like Compounds against Alzheimer’s Disease through Multitarget Approach. Pharmaceuticals 2021, 14, 937. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Brańka, A.C. Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Phys. Rev. E 2000, 61, 4769–4773. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Cantón, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | Name of Drug | Docking Score (kcal mol−1) | Glide g-Score (kcal mol−1) | Glide e-Model (kcal mol−1) |
---|---|---|---|---|
1. | Risedronate | −10.355 | −10.543 | −63.790 |
2. | Methotrexate | −10.124 | −10.189 | −71.625 |
3. | Pamidronate | −9.955 | −10.066 | −49.713 |
4. | Fludarabine | −9.952 | −10.044 | −64.162 |
5. | Alendronate | −9.899 | −10.098 | −47.836 |
6. | Etidronate | −9.764 | −10.01 | −57.003 |
7. | Ibandronate | −9.297 | −9.388 | −54.462 |
8. | Raltitrexed | −8.713 | −8.777 | −80.917 |
9. | Tenofovir | −8.332 | −8.913 | −51.885 |
10. | Mizoribine | −7.915 | −7.928 | −54.449 |
11. | Carbenicillin | −7.895 | −7.895 | −58.606 |
12. | Ticarcillin | −7.809 | −7.809 | −54.033 |
13. | Foscarnet | −7.554 | −7.561 | −38.003 |
14. | Procodazole | −7.099 | −7.141 | −45.689 |
15. | Pasiniazid | −7.083 | −7.084 | −35.139 |
16. | Nalidixic acid | −7.012 | −7.057 | −41.417 |
17. | Zalcitabine | −6.859 | −6.859 | −50.197 |
18. | Sodium butyrate | −6.623 | −6.627 | −26.326 |
19. | Acipimox | −6.471 | −6.474 | −33.279 |
20. | Epalrestat | −6.364 | −6.364 | −45.096 |
21. | Carboplatin | −6.176 | −7.200 | −40.200 |
22. | Ethamsylate | −6.153 | −6.154 | −39.315 |
23. | Gimeracil | −5.329 | −5.329 | −39.587 |
Name of Drug | ΔGBind | ΔGCoulomb | ΔGCovalent | ΔGH-Bond | ΔGLipo | ΔGPacking | ΔGSolv-GB | ΔGvdW |
---|---|---|---|---|---|---|---|---|
Risedronate | −36.51 | −85.12 | 4.46 | −1.88 | −5.66 | −0.65 | 82.97 | −30.63 |
Methotrexate | −44.16 | −94.41 | 8.32 | −3.44 | −6.41 | −1.51 | 89.80 | −36.50 |
Pamidronate | −20.93 | −80.09 | 4.93 | −1.90 | −0.96 | 0 | 75.54 | −18.45 |
Fludarabine | −19.25 | −96.01 | 6.38 | −1.46 | −4.24 | −3.01 | 104.21 | −25.13 |
Alendronate | −22.52 | −82.80 | 4.14 | −1.86 | −1.75 | 0 | 77.67 | −17.90 |
Etidronate | −20.78 | −94.83 | 4.59 | −1.89 | −0.49 | 0 | 86.95 | −15.10 |
Ibandronate | −24.53 | −95.89 | 7.36 | −2.64 | −8.53 | 0 | 99.19 | −24.03 |
Name of Drug | Hydrogen Bonding | Electrostatic Interaction | Van Der Waals Interactions | XP Docking Score, ΔG (kcal mol−1) |
---|---|---|---|---|
Risedronate | Asp124, Asn220 | Zn1, Zn2 * | Leu65, Phe70, Val73, Trp93, His120, His122, Gln123, Lys125, His189, Cys208, His250 | −10.543 |
Methotrexate | Ala72, Ala74 *, Asn220 | Zn1 | Zn2, Tyr64, Val73, Trp93, Asp124, His120, His122, His189, Cys208, Lys211, Asp212, Ala215, Gly219, His250, Ser251 | −10.189 |
Substrates | Km (μM) | Vmax (μM s−1) | kcat (s−1) | kcat/Km (μM−1 s−1) |
---|---|---|---|---|
NDM-1 | ||||
Nitrocefin | 23.2 ± 1.7 | 0.486 ± 0.026 | 242.9 ± 15.2 | 10.47 ± 1.01 |
Ampicillin | 96.5 ± 3.1 | 0.749 ± 0.045 | 374.7 ± 14.3 | 3.88 ± 0.19 |
Cefotaxime | 54.8 ± 3.7 | 0.751 ± 0.034 | 375.4 ± 17.5 | 6.85 ± 0.56 |
Imipenem | 75.9 ± 2.9 | 1.516 ± 0.068 | 758.0 ± 18.6 | 9.99 ± 0.45 |
Meropenem | 52.8 ± 3.4 | 0.644 ± 0.044 | 322.2 ± 11.7 | 6.10 ± 0.45 |
NDM-1 + Risedronate | ||||
Nitrocefin | 60.6 ± 2.3 | 0.305 ± 0.023 | 152.7 ± 9.6 | 2.52 ± 0.18 |
Ampicillin | 163.9 ± 5.1 | 0.364 ± 0.027 | 182.1 ± 8.2 | 1.11 ± 0.06 |
Cefotaxime | 95.1 ± 4.5 | 0.182 ± 0.011 | 91.1 ± 3.1 | 0.96 ± 0.06 |
Imipenem | 114.9 ± 7.7 | 0.474 ± 0.034 | 236.9 ± 7.9 | 2.06 ± 0.15 |
Meropenem | 107.3 ± 6.2 | 0.232 ± 0.019 | 116.2 ± 5.7 | 1.08 ± 0.08 |
NDM-1 + Methotrexate | ||||
Nitrocefin | 57.9 ± 2.8 | 0.363 ± 0.026 | 181.3 ± 8.9 | 3.13 ± 0.22 |
Ampicillin | 134.8 ± 7.4 | 0.415 ± 0.035 | 207.7 ± 6.1 | 1.54 ± 0.10 |
Cefotaxime | 81.9 ± 6.2 | 0.226 ± 0.018 | 113.2 ± 5.4 | 1.38 ± 0.12 |
Imipenem | 92.4 ± 3.6 | 0.557 ± 0.033 | 278.4 ± 7.2 | 3.01 ± 0.14 |
Meropenem | 89.1 ± 5.3 | 0.261 ± 0.020 | 130.6 ± 6.8 | 1.47 ± 0.12 |
NDM-1 + D-Captopril (control) | ||||
Nitrocefin | 91.2 ± 5.6 | 0.214 ± 0.019 | 171.3 ± 4.4 | 1.88 ± 0.13 |
Minimum Inhibitory Concentration (MIC) in mg/L | ||
---|---|---|
Imipenem | Meropenem | |
E. coli only | 16 | 16 |
E. coli + Risedronate (32 mg/L) | 8 | 8 |
E. coli + Methotrexate (32 mg/L) | 4 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muteeb, G.; Alsultan, A.; Farhan, M.; Aatif, M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules 2022, 27, 1283. https://doi.org/10.3390/molecules27041283
Muteeb G, Alsultan A, Farhan M, Aatif M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules. 2022; 27(4):1283. https://doi.org/10.3390/molecules27041283
Chicago/Turabian StyleMuteeb, Ghazala, Abdulrahman Alsultan, Mohd Farhan, and Mohammad Aatif. 2022. "Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach" Molecules 27, no. 4: 1283. https://doi.org/10.3390/molecules27041283
APA StyleMuteeb, G., Alsultan, A., Farhan, M., & Aatif, M. (2022). Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules, 27(4), 1283. https://doi.org/10.3390/molecules27041283