A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives
Abstract
:1. Introduction
2. The Marketed Liposomal Products
3. Structures and Main Components of Liposomes
3.1. Structures of Liposomes
3.2. Main Components of Liposomes
4. Manufacturing Process
4.1. Liposome Preparation
4.1.1. Film-Hydration Method
4.1.2. Double-Emulsification Method
4.1.3. Solvent Injection Techniques
4.1.4. In Situ Preparation of Liposomes
4.2. Size-Reduction Techniques
4.3. Drug-Loading Methods
4.3.1. Passive Drug-Loading Approach
For Lipophilic Drug Substance
For a Hydrophilic Drug Substance
4.3.2. Active Drug-Loading Approach
4.3.3. Drug–Lipid Conjugation by Covalently Linking
4.3.4. Combination Method
5. Critical Quality Attributions
5.1. Particle Size and Size Distribution
5.2. Surface Modification
5.3. Phase Transition Temperature
6. Regulatory Consideration
7. Future Perspectives and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/liposome-drug-products-chemistry-manufacturing-and-controls-human-pharmacokinetics-and (accessed on 1 June 2020).
- Mazur, F.; Bally, M.; Städler, B.; Chandrawati, R. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci. 2017, 249, 88–99. [Google Scholar] [CrossRef]
- Düzgüneş, N.; Gregoriadis, G. Introduction: The Origins of Liposomes: Alec Bangham at Babraham. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2005; Volume 391, pp. 1–3. [Google Scholar]
- Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964, 8, 660–668. [Google Scholar] [CrossRef]
- Mirzavi, F.; Barati, M.; Soleimani, A.; Vakili-Ghartavol, R.; Jaafari, M.R.; Soukhtanloo, M. A review on liposome-based therapeutic approaches against malignant melanoma. Int. J. Pharm. 2021, 599, 120413. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, R.; Parseh, B.; Du, G. Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review. Carbohydr. Polym. 2021, 268, 118192. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.S.; Endsley, A.N.; Huang, L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012, 30, 2256–2272. [Google Scholar] [CrossRef] [Green Version]
- Man, F.; Gawne, P.J.; de Rosales, R.T.M. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug Delivery Rev. 2019, 143, 134–160. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Rodrigues, B.; Banerjee, A.; Kanekiyo, T.; Singh, J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int. J. Pharm. 2019, 566, 717–730. [Google Scholar] [CrossRef]
- Taha, E.I.; El-Anazi, M.H.; El-Bagory, I.M.; Bayomi, M.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J. 2014, 22, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Gao, Z.; Chen, L.; Kang, L.; Huang, W.; Jin, M.; Wang, Q.; Bae, Y.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B 2019, 9, 902–922. [Google Scholar] [CrossRef]
- Mirtaleb, M.S.; Shahraky, M.K.; Ekrami, E.; Mirtaleb, A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J. Drug Delivery Sci. Technol. 2021, 61, 102331. [Google Scholar] [CrossRef]
- Mehta, P.P.; Ghoshal, D.; Pawar, A.P.; Kadam, S.S.; Dhapte-Pawar, V.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J. Drug Delivery Sci. Technol. 2020, 56, 101509. [Google Scholar] [CrossRef]
- Yusuf, H.; Ali, A.A.; Orr, N.; Tunney, M.M.; Mc Carthy, H.O.; Kett, V.L. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int. J. Pharm. 2017, 533, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hou, Y.; Jin, Y.; Wang, Y.; Xu, X.; Han, J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020, 104, 177–189. [Google Scholar] [CrossRef]
- Himeno, T.; Konno, Y.; Naito, N. Liposomes for Cosmetics. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 539–549. [Google Scholar]
- Niu, M.; Lu, Y.; Hovgaard, L.; Guan, P.; Tan, Y.; Lian, R.; Qi, J.; Wu, W. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm. 2012, 81, 265–272. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Li, T.; Deng, Y. Modulation of the physicochemical state of interior agents to prepare controlled release liposomes. Colloids Surf. B 2009, 69, 232–238. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, Y.; Zhang, Z.; Liu, C.; Peng, W.; Zhang, Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. Chin. Chem. Lett. 2021, 32, 1857–1868. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wan, Y.; Wang, J.; Lin, J.; Li, Z.; Huang, P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chin. Chem. Lett. 2021, 32, 1615–1625. [Google Scholar] [CrossRef]
- Forssen, E.A. The design and development of DaunoXome® for solid tumor targeting in vivo. Adv. Drug Delivery Rev. 1997, 24, 133–150. [Google Scholar] [CrossRef]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C Mater. Biol Appl. 2019, 98, 1252–1276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B. 2021, 11, 2265–2285. [Google Scholar] [CrossRef]
- Dana, P.; Bunthot, S.; Suktham, K.; Surassmo, S.; Yata, T.; Namdee, K.; Yingmema, W.; Yimsoo, T.; Ruktanonchai, U.R.; Sathornsumetee, S.; et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf. B Biointerfaces 2020, 196, 111270. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Shamshiri, A.; Saeedi, M.; Tayebi, L.; Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 2020, 691, 108485. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.A.; Eloy, J.O.; Luiz, M.T.; Junior, S.L.R.; Borges, J.C.; de la Fuente, L.R.; Luis, C.O.S.; Marchetti, J.M.; Santos-Martinez, M.J.; Chorilli, M. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf. A 2021, 611, 125806. [Google Scholar] [CrossRef]
- Danhier, F.; Breton, A.L.; Preat, V. RGD-based strategies to target alphav beta3 integrin in cancer therapy and diagnosis. Mol. Pharm. 2012, 9, 2961–2973. [Google Scholar] [CrossRef]
- Kang, T.; Gao, X.; Hu, Q.; Jiang, D.; Feng, X.; Zhang, X.; Song, Q.; Yao, L.; Huang, M.; Jiang, X.; et al. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials 2014, 35, 4319–4332. [Google Scholar] [CrossRef]
- Liang, H.; Zou, F.; Liu, Q.; Wang, B.; Fu, L.; Liang, X.; Liu, J.; Liu, Q. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int. J. Pharm. 2021, 599, 120418. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, M.; Li, Z.; Xiao, Y.; Bai, X.; Boakye-Yiadom, K.O.; Xu, X.; Zhang, X.-Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. J. Control. Release 2020, 323, 179–190. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.; Kim, S. Extended-release formulation of morphine for subcutaneous administration. Cancer Chemother. Pharmacol. 1993, 33, 187–190. [Google Scholar] [CrossRef]
- Fan, Y.; Marioli, M.; Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021, 192, 113642. [Google Scholar] [CrossRef]
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019, 303, 130–150. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Dicko, A.; Kwak, S.; Frazier, A.A.; Mayer, L.D.; Liboiron, B.D. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int. J. Pharm. 2010, 391, 248–259. [Google Scholar] [CrossRef]
- Ye, Q.; Asherman, J.; Stevenson, M.; Brownson, E.; Katre, N.V. DepoFoam™ technology: A vehicle for controlled delivery of protein and peptide drugs. J. Control. Release 2000, 64, 155–166. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Delivery Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [CrossRef]
- He, Y.; Qin, L.; Huang, Y.; Ma, C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res. Lett. 2020, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Hillery, A.M. Supramolecular lipidic drug delivery systems: From laboratory to clinic A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv. Drug Delivery Rev. 1997, 24, 345–363. [Google Scholar] [CrossRef]
- Beiranvand, S.; Eatemadi, A.; Karimi, A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. Nanoscale Res. Lett. 2016, 11, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.M.; Waterfield, E.; Jain, A.K.; Canaan, A.J.; Allison, B.A.; Levy, J.G. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem. Photobiol. 1993, 57, 1000–1006. [Google Scholar] [CrossRef]
- Alving, C.R.; Beck, Z.; Matyas, G.R.; Rao, M. Liposomal adjuvants for human vaccines. Expert Opin. Drug Deliv. 2016, 13, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Perkins, W.; Cipolla, D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology. Eur. J. Pharm. Biopharm. 2021, 166, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Myocet. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal-previously-myocet (accessed on 1 June 2021).
- Signorell, R.D.; Luciani, P.; Brambilla, D.; Leroux, J.C. Pharmacokinetics of lipid-drug conjugates loaded into liposomes. Eur. J. Pharm. Biopharm. 2018, 128, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, E.; Gomes, A.C.; Preto, A.; Cavaco-Paulo, A. Design of liposomal formulations for cell targeting. Colloids Surf. B. 2015, 136, 514–526. [Google Scholar] [CrossRef] [Green Version]
- Kohli, A.G.; Kierstead, P.H.; Venditto, V.J.; Walsh, C.L.; Szoka, F.C. Designer lipids for drug delivery: From heads to tails. J. Control. Release 2014, 190, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mei, Z.; Mei, L.; Tang, J.; Yuan, W.; Srinivasan, S.; Ackermann, R.; Schwendeman, A.S. Analytical method development and comparability study for AmBisome® and generic Amphotericin B liposomal products. Eur. J. Pharm. Biopharm. 2020, 157, 241–249. [Google Scholar] [CrossRef]
- Vyxeos Liposomal (Previously Known as Vyxeos). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vyxeos-liposomal (accessed on 20 June 2021).
- Takechi-Haraya, Y.; Matsuoka, M.; Imai, H.; Izutsu, K.; Sakai-Kato, K. Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy. Chem. Phys. Lipids 2020, 233, 104992. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Luo, R.; Li, Y.; He, M.; Zhang, H.; Yuan, H.; Johnson, M.; Palmisano, M.; Zhou, S.; Sun, D. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int. J. Pharm. 2017, 519, 1–10. [Google Scholar] [CrossRef]
- Skupin-Mrugalska, P.; Piskorz, J.; Goslinski, T.; Mielcarek, J.; Konopka, K.; Düzgüneş, N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov. Today 2013, 18, 776–784. [Google Scholar] [CrossRef]
- Visudyne. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/visudyne (accessed on 20 June 2021).
- Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol. 2020, 56, 101549. [Google Scholar] [CrossRef]
- Garbuzenko, O.; Barenholz, Y.; Priev, A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 2005, 135, 117–129. [Google Scholar] [CrossRef]
- Song, L.Y.; Ahkong, Q.F.; Rong, Q.; Wang, Z.; Ansell, S.; Hope, M.J.; Mui, B. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim. Biophys. Acta Biomembr. 2002, 1558, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Varga, Z.; Wacha, A.; Vainio, U.; Gummel, J.; Bóta, A. Characterization of the PEG layer of sterically stabilized liposomes: A SAXS study. Chem. Phys. Lipids 2012, 165, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Howell, S.B. Multivesicular Liposomes Having a Biologically Active Substance Encapsulated Therein in the Presence of a Hydrochloride. U.S. Patent 5,723,147, 3 March 1998. [Google Scholar]
- Depodur. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=Basic-Search.process (accessed on 20 June 2021).
- Mantripragada, S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog. Lipid Res. 2002, 41, 392–406. [Google Scholar] [CrossRef]
- Perkins, W.; Malinin, V.; Li, X.; Miller, B.; Seidel, D.; Holzmann, P.; Schulz, H.; Hahn, M. System for Treating Pulmonary Infections. U.S. Patent 9,566,234 B2, 14 February 2017. [Google Scholar]
- Borochov, H.; Shinitzky, M.; Barenholz, Y. Sphingomyelin phase transition in the sheep erythrocyte membrane. Cell Biochem. Biophys. 1979, 1, 219–228. [Google Scholar] [CrossRef]
- Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv. 1995, 70, 95–111. [Google Scholar] [CrossRef]
- Takechi-Haraya, Y.; Sakai-Kato, K.; Abe, Y.; Kawanishi, T.; Okuda, H.; Goda, Y. Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity. Langmuir 2016, 32, 6074–6082. [Google Scholar] [CrossRef]
- Pajewski, R.; Djedovič, N.; Harder, E.; Ferdani, R.; Schlesinger, P.H.; Gokel, G.W. Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin. Bioorg. Med. Chem. 2005, 13, 29–37. [Google Scholar] [CrossRef]
- Webb, M.S.; Bally, M.B.; Mayer, L.D.; Miller, J.J.; Tardi, P.G. Sphingosomes for Enhanced Drug Delivery. U.S. Patent 5,741,516, 21 April 1998. [Google Scholar]
- Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013, 71, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, A.; Likos, E.M.; Weyman, C.M.; Shukla, G.C. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021, 173, 108878. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, N.; Deckers, R.; Ozbakir, B.; Akthar, S.; Kok, R.J.; Lammers, T.; Storm, G. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int. J. Pharm. 2018, 548, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, M.; Xie, T.; Zhang, B.; Gao, X. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf. B. 2017, 159, 580–585. [Google Scholar] [CrossRef]
- Kirby, C.; Gregoriadis, G. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo. Life Sci. 1980, 27, 2223–2230. [Google Scholar] [CrossRef]
- Najafinobar, N.; Mellander, L.J.; Kurczy, M.E.; Dunevall, J.; Angerer, T.B.; Fletcher, J.S.; Cans, A. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci. Rep. 2016, 6, 33702–33712. [Google Scholar] [CrossRef] [Green Version]
- Garcon, N.M.C.; Friede, M. Vaccines Contraining a Saponin and a Sterol. U.S. Patent US2005/0214322A1, 29 September 2005. [Google Scholar]
- Abboud, R.; Greige-Gerges, H.; Charcosset, C. Effect of Progesterone, Its Hydroxylated and Methylated Derivatives, and Dydrogesterone on Lipid Bilayer Membranes. J. Membrane Biol. 2015, 248, 811–824. [Google Scholar] [CrossRef]
- Kapoor, M.; Lee, S.L.; Tyner, K.M. Liposomal Drug Product Development and Quality: Current US Experience and Perspective. AAPS J. 2017, 19, 632–641. [Google Scholar] [CrossRef]
- Adler-Moore, J.; Gamble, R.C.; Proffitt, R.T. Treatment of Systemic Fungal Infections with Phospholipid Particles Encapsulating Polyene Antibiotics. U.S. Patent 5,874,104, 23 February 1999. [Google Scholar]
- Lu, B.; Ma, Q.; Zhang, J.; Liu, R.; Yue, Z.; Xu, C.; Li, Z.; Lin, H. Preparation and characterization of bupivacaine multivesicular liposome: A QbD study about the effects of formulation and process on critical quality attributes. Int. J. Pharm. 2021, 598, 120335. [Google Scholar] [CrossRef]
- Sala, M.; Miladi, K.; Agusti, G.; Elaissari, A.; Fessi, H. Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale. Colloids Surf. A 2017, 524, 71–78. [Google Scholar] [CrossRef]
- Boni, L.T.; Miller, B.S.; Malinin, V.; Li, X. Sustained Release of Antinfectives. U.S. Patent 8,802,137B2, 12 August 2014. [Google Scholar]
- Catherine, C.; Audrey, J.; Jean-Pierre, V.; Sebastien, U.; Hatem, F. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 2015, 94, 508–515. [Google Scholar]
- Laouini, A.; Jaafar-Maalej, C.; Sfar, S.; Charcosset, C.; Fessi, H. Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation. Int. J. Pharm. 2011, 415, 53–61. [Google Scholar] [CrossRef]
- Wagner, A.; Vorauer-Uhl, K.; Kreismayr, G.; Katinger, H. The crossflow injection technique: An improvement of the ethanol injection method. J. Liposome Res. 2002, 12, 259–270. [Google Scholar] [CrossRef]
- Wagner, A.; Vorauer-Uhl, K.; Katinger, H. Liposomes produced in a pilot scale: Production, purification and efficiency aspects. Eur. J. Pharm. Biopharm. 2002, 54, 213–219. [Google Scholar] [CrossRef]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Delivery Sci. Technol. 2021, 61, 102174. [Google Scholar] [CrossRef]
- Schubert, M.A.; Müller-Goymann, C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003, 55, 125–131. [Google Scholar] [CrossRef]
- Utsugil, T.; Nii, A.; Fan, D.; Pak, C.C.; Denkins, Y.; Hoogevest, P.V.; Fidler, I.J. Comparative efficacy of liposomes containing synthetic bacterial cell wall analogues for tumoricidal activation of monocytes and macrophages. Cancer Immunol. Immunother. 1991, 33, 285–292. [Google Scholar] [CrossRef]
- Frost, H. MTP-PE in liposomes as a biological response modifier in the treatment of cancer: Current status. Biotherapy 1992, 4, 199–204. [Google Scholar] [CrossRef]
- Sone, S.; Utsugi, T.; Tandon, P.; Ogawara, M. A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state. Cancer Immunol. Immunother. 1986, 22, 191–196. [Google Scholar] [CrossRef]
- Mepact. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/mepact (accessed on 20 June 2021).
- Barenholzt, Y.; Amselem, S.D.L. A new method for preparation of phospholipid vesicles (liposomes)—french press. FEBS Lett. 1979, 99, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Castile, J.D.; Taylor, K.M.G. Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. Int. J. Pharm. 1999, 188, 87–95. [Google Scholar] [CrossRef]
- Pupo, E.; Padrón, A.; Santana, E.; Sotolongo, J.; Quintana, D.; Dueñas, S.; Duarte, C.; de la Rosa, M.C.; Hardy, E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J. Control. Release 2005, 104, 379–396. [Google Scholar] [CrossRef]
- Johnson, S.M.; Bangham, A.D.; Hill, M.W.; Korn, E.D. Single bilayer liposomes. Biochim. Biophys. Acta Biomembr. 1971, 223, 820–826. [Google Scholar] [CrossRef]
- Lesieur, S.; Grabielle-Madelmont, C.; Paternostre, M.T.; Ollivon, M. Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering. Anal. Biochem. 1991, 192, 334–343. [Google Scholar] [CrossRef]
- Hunter, D.G.; Frisken, B.J. Effect of Extrusion Pressure and Lipid Properties on the Size and Polydispersity of Lipid Vesicles. Biophys. J. 1998, 74, 2996–3002. [Google Scholar] [CrossRef] [Green Version]
- Berger, N.; Sachse, A.; Bender, J.; Schubert, R.; Brandl, M. Filter extrusion of liposomes using different devices: Comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 2001, 233, 55–68. [Google Scholar] [CrossRef]
- Ong, S.G.M.; Chiteni, M.; Lee, K.S.; Ming, L.C.; Yuen, K.H.Y. Evaluation of Extrusion Technique for Nanosizing Liposomes. Pharmaceutics 2016, 8, 36. [Google Scholar] [CrossRef]
- Mokhtarieh, A.A.; Davarpanah, S.J.; Lee, M.K. Ethanol treatment a Non-extrusion method for asymmetric liposome size optimization. DARU J. Pharm. Sci. 2013, 21, 32. [Google Scholar] [CrossRef] [Green Version]
- Preksha, V.; Patel, J.K.; Patel, M.M. High-Pressure Homogenization Techniques for Nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing; Patel, J.K., Pathak, Y.V., Eds.; Springer: Cham, Switzerland, 2021; Part III; pp. 263–286. [Google Scholar]
- Kyun, S.; Gye, C.; Shin, H.; Kyo, M.; In, J.; Hwang, C.; Park, J. Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization. Colloids Surf. A 2014, 454, 8–15. [Google Scholar] [CrossRef]
- Barnadas-Rodríguez, R.; Sabés, M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm. 2001, 213, 175–186. [Google Scholar] [CrossRef]
- Proffitt, R.T.; Alder-Moore, J.; Chiang, S.M. Amphotericin B Liposome Preparation. U.S. Patent 5,965,156, 12 October 1999. [Google Scholar]
- Zhang, Y.; Hill, A.T. Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection. Expert Rev. Resp. Med. 2020, 15, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Arikayce Liposomal. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/arikayce-liposomal (accessed on 20 June 2021).
- Gadekar, V.; Borade, Y.; Kannaujia, S.; Rajpoot, K.; Anup, N.; Tambe, V.; Kalia, K.; Tekade, R.K. Nanomedicines accessible in the market for clinical interventions. J. Control. Release 2021, 330, 372–397. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, T.; Murdande, S. Sustained-Release Liposomal Anesthetic Compositions. U.S. Patent 8,182,835B2, 22 May 2012. [Google Scholar]
- Swenson, C.E.; Perkins, W.R.; Roberts, P.; Janoff, A.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001, 10, 1–7. [Google Scholar] [CrossRef]
- Sarris, A.H.; Cabanillas, F.; Logan, P.M.; Burge, C.T.R.; Goldie, J.H.; Webb, M.S. Compositions and Methods for Treating Lymphoma. U.S. Patent 7,247,316 B2, 24 July 2007. [Google Scholar]
- Mayer, L.D.; Nayar, R.; Thies, R.L.; Boman, N.L.; Cullis, P.R.; Bally, M.B. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemoth. Pharm. 1993, 33, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.W.; Deamer, D.W. Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim. Biophys. Acta 1976, 455, 269–271. [Google Scholar] [CrossRef]
- Boman, N.L.; Masin, D.; Mayer, L.D.; Cullis, P.R.; Bally, M.B. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors. Cancer Res. 1994, 54, 2830–2833. [Google Scholar] [CrossRef]
- Onivyde. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/onivyde-pegylated-liposomal (accessed on 20 June 2021).
- Drummond, D.C.; Kirpotin, D.B.; Hayes, M.E.; Kesper, C.N.K.; Awad, A.M.; Moore, D.J.; O’Brien, A.J. Stabilizing Camptothecin Pharmaceutical Compositions. U.S. Patent 2020179371A1, 11 June 2020. [Google Scholar]
- Hong, K.; Drummond, D.C.; Kirpotiin, D. Liposome Useful for Drug Delivery. U.S. Patent 20160338956A1, 24 June 2016. [Google Scholar]
- Irby, D.; Du, C.; Li, F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017, 14, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Schroit, A.J.; Fidler, I.J. Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res. 1982, 42, 161–167. [Google Scholar] [CrossRef]
- Meyers, P.A.; Chou, A.J. Muramyl Tripeptide-Phosphatidyl Ethanolamine Encapsulated in Liposomes (L-MTP-PE) in the Treatment of Osteosarcoma. In Current Advances in Osteosarcoma; Kleinerman, E.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Part V; pp. 307–322. [Google Scholar]
- Louie, A.; Swenson, C.; Mayer, L.; Janoff, A. Fixed Drug Ratios for Treatment of Hematopoietic Cancers and Proliferative Disorders. U.S. Patent 8,092,828 B2, 10 January 2012. [Google Scholar]
- Awa, D.; Paul, T.; Lawrence, M.; Sharon, J. Liposomal Formulations Comprising Secondary and Tertiary Amines and Methods for Preparing Thereof. EU Patent 20060846044, 22 December 2006. [Google Scholar]
- Dicko, A.; Tardi, P.; Xie, X.; Mayer, L. Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int. J. Pharm. 2007, 337, 219–228. [Google Scholar] [CrossRef]
- Au, J.L.S.; Yeung, B.Z.; Wientjes, M.G.; Lu, Z.; Wientjes, M.G. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities. Adv. Drug Deliv. Rev. 2016, 97, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Wientjes, M.G.; Au, J.L.S. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv. Drug Deliv. Rev. 2012, 64, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Crommelin, D.J.A.; van Hoogevest, P.; Storm, G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 2020, 318, 256–263. [Google Scholar] [CrossRef]
- Q8(R2) Pharmaceutical Development. Available online: https://www.ich.org/page/quality-guidelines (accessed on 20 June 2021).
- Au, J.L.S. Considerations for Bioequivalence Evaluation of Nano-Particulate/Molecular Medicine. Available online: https://www.fda.gov/media/108401/download (accessed on 25 June 2021).
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 18, 57. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Bodycomb, J.; Travers, B.; Tatarkiewicz, K.; Travers, S.; Matyas, G.R.; Beck, Z. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int. J. Pharm. 2019, 566, 680–686. [Google Scholar] [CrossRef]
- Trucillo, P.; Reverchon, E. Production of PEG-coated liposomes using a continuous supercritical assisted process. J. Supercrit. Fluid. 2021, 167, 105048. [Google Scholar] [CrossRef]
- Drug Products, Including Biological Products, That Contain Nanomaterials Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-products-including-biological-products-contain-nanomaterials-guidance-industry (accessed on 20 June 2021).
- Rabanel, J.M.; Hildgen, P.; Banquy, X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J. Control. Release 2014, 185, 71–87. [Google Scholar] [CrossRef]
- Reflection Paper on Surface Coatings: General Issues for Consideration Regarding Parenteral Administration of Coated Nanomedicine Products. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines (accessed on 25 June 2021).
- Marsh, D. Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes. Biochim. Biophys. Acta Biomembr. 2010, 1798, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Leonenko, Z.V.; Finot, E.; Ma, H.; Dahms, T.E.S.; Cramb, D.T. Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Biophysical Journal Force Microscopy. Biophys. J. 2004, 86, 3783–3793. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim. Biophys. Acta 1999, 1422, 273–307. [Google Scholar] [CrossRef]
- Pentak, D. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC. Thermochim. Acta 2014, 584, 36–44. [Google Scholar] [CrossRef]
- Tenchov, B.; Koynova, R.; Rapp, G. New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids. Biophys. J. 2001, 80, 1873–1890. [Google Scholar] [CrossRef] [Green Version]
- Delma, K.L.; Lechanteur, A.; Evrard, B.; Semdé, R.; Piel, G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int. J. Pharm. 2021, 597, 120271. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Jiang, S.; Xie, Y.; Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Yinb, Z.; Wu, W. Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz. 2018, 3, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Guideline for the Non-Clinical Pharmacokinetics of Nanomedicines (Draft). Available online: http://www.cde.org.cn/zdyz.do?method=largePage&id=1be98aec2c8f7a72 (accessed on 25 June 2021).
- Hu, X.; Dong, X.; Lu, Y.; Qi, J.; Zhao, W.; Wu, W. Bioimaging of nanoparticles: The crucial role of discriminating nanoparticles from free probes. Drug Discov. Today 2017, 22, 382–387. [Google Scholar] [CrossRef]
- Qi, J.; Hu, X.; Dong, X.; Lu, Y.; Lu, H.; Zhao, W.; Wu, W. Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool. Adv. Drug Deliv. Rev. 2019, 143, 206–225. [Google Scholar] [CrossRef]
- Xia, F.; Chen, Z.; Zhu, Q.; Qi, J.; Dong, X.; Zhao, W.; Wu, W.; Lu, Y. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route. Acta Pharm. Sin. B 2021, 11, 1010–1020. [Google Scholar] [CrossRef]
- He, H.; Wang, L.; Ma, Y.; Yang, Y.; Lv, Y.; Zhang, Z.; Qi, J.; Dong, X.; Zhao, W.; Lu, Y.; et al. The biological fate of orally administered mPEG-PDLLA polymeric micelles. J. Control. Release 2020, 327, 725–736. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zong, S.; Qi, J.; Dong, X.; Zhao, W.; Wu, W.; Fu, Q.; Lu, Y.; Chen, Z. The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes. J. Biomed. Nanotechnol. 2019, 15, 686–702. [Google Scholar] [CrossRef]
- He, H.; Xie, Y.; Lv, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W. Bioimaging of Intact Polycaprolactone Nanoparticles Using Aggregation-Caused Quenching Probes: Size-Dependent Translocation via Oral Delivery. Adv. Healthc. Mater. 2018, 7, e1800711. [Google Scholar] [CrossRef]
- Aghdam, M.A.; Bagheri, R.; Mosafer, J.; Baradaran, B.; Hashemzaei, M.; la Guardia, M.; Mokhtarzadeh, A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J. Control. Release 2019, 315, 1–22. [Google Scholar] [CrossRef]
- Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2019, 14, 365–379. [Google Scholar] [CrossRef]
- Antoniou, A.I.; Giofrè, S.; Seneci, P.; Passarella, D.; Pellegrino, S. Stimulus-responsive liposomes for biomedical applications. Drug Discov. Today 2021, 26, 1794–1824. [Google Scholar] [CrossRef]
- Regenold, M.; Bannigan, P.; Evans, J.C.; Waspe, A.; Temple, M.J.; Allen, C. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine 2022, 40, 102484. [Google Scholar] [CrossRef]
Product Name | API | Approved Year/Area | Dosage Form | Adm. Route | Indication |
---|---|---|---|---|---|
Doxil Caelyx | Doxorubicin hydrochloride (DOX·HCl) | 1995, US 1996, EU | Suspension | IV | Ovarian cancer, Kaposi’s sarcoma, myeloid melanoma |
DaunoXome | Daunorubicin | 1996, US | Suspension | IV | Kaposi’s sarcoma |
AmBisome | Amphotericin B (AmpB) | 1997, US | Lyo | IV | Systemic fungal infection |
DepoCyt DepoCyte | Cytarabine | 1999, US 2001, EU | Suspension | IT | Lymphomatous meningitis |
Myocet | DOX·HCl | 2000, EU | 3 vials | IV | Breast cancer |
Visudyne | Verteporfin | 2000, US 2000, EU | Lyo | IV | Wet AMD |
DepoDur | Morphine | 2004, US | Suspension | Epidural | Postoperative pain |
Mepact | MTP-PE | 2009, EU | Lyo | IV | Osteosarcoma |
Exparel | Bupivacaine | 2011, US 2020, EU | Suspension | Local infiltration | Post-surgical analgesia |
Marqibo | Vincristine Sulfate | 2012, US | 3 vials | IV | Leukemia |
Onivyde | Irinotecan hydrochloride trihydrate | 2015, US 2016, EU | Suspension | IV | Pancreatic adenocarcinoma |
Vyxeos | Daunorubicin, cytarabine | 2017, US 2018, EU | Lyo | IV | Leukemia |
Shingrix | Recombinant varicella-zoster virus glycoprotein E | 2018, EU | 2 vials (powder and suspension) | IM | Against shingles and post-herpetic neuralgia |
Arikayce | Amikacin sulfate | 2018, US 2020, EU | Suspension | Oral inhalation | Lung disease |
Product Name | Size | Structure | Main Composition |
---|---|---|---|
Doxil/Caelyx | ca. 100 nm | SUVs | HSPC, MPEG-DSPE, Chol |
AmBisome | 50–100 nm [41] | SUVs | HSPC, DSPG, Chol |
DaunoXome | 45–80 nm [42] | SUVs | DSPC, Chol |
Marqibo | 130–150 nm | SUVs | SM, Chol |
Onivyde | ca. 110 nm | SUVs | DSPC, MPEG2000-DSPE, Chol |
Visudyne | <100 nm | SUVs [43] | EPC, DMPC |
Shingrix | 50–100 nm [44] | SUVs | DOPC, Chol |
Arikaye | 200–300 nm [45] | LUVs | DPPC, Chol |
Vyxeos | ca. 110 nm | bilammer | DSPC, DSPG, Chol |
Myocet | 80–90 nm [42] | MLVs [46] | EPC, Chol |
Mepact | 2.0–3.5 μm [47] | MLVs | POPC, OOPS |
DepoCyt | 20 μm [42] | MVLs | DOPC, DPPG, Chol, triolein |
Exparel | 24–31 μm [42] | MVLs | DEPC, DPPG, Chol, tricaprylin |
DepoDur | 17 to 23 μm | MVLs | DOPC, DPPG, Chol, triolein, tricaprylin |
Regulatory Agency | Nanomedicine Guidelines |
---|---|
FDA |
|
EMA |
|
MHLW |
|
NMPA |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. https://doi.org/10.3390/molecules27041372
Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022; 27(4):1372. https://doi.org/10.3390/molecules27041372
Chicago/Turabian StyleLiu, Peng, Guiliang Chen, and Jingchen Zhang. 2022. "A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives" Molecules 27, no. 4: 1372. https://doi.org/10.3390/molecules27041372
APA StyleLiu, P., Chen, G., & Zhang, J. (2022). A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 27(4), 1372. https://doi.org/10.3390/molecules27041372