Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth
Abstract
:1. Introduction
2. Results and Discussion
2.1. TG and c-DTA Dynamic Analysis
2.2. TG Isothermal Analysis
2.3. Colorimetric Analysis
2.4. UV Spectrophotometry Analysis
2.5. Optical Microscopy Observations
3. Materials and Methods
3.1. Tested Samples
3.2. Ultraviolet Irradiation
3.3. Higher Temperature
3.4. Impact of Relative Humidity, Temperature, and Time on Vapor Sorption
3.5. TGA and c-DTA Examination
3.6. Colorimetric Analysis
3.7. UV Spectrophotometry Analysis
3.8. Optical Microscopy Observations
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Winter, S.; Vanbrabant, P.; Vi, N.T.T.; Deng, X.; Spriet, I.; Van Schepdael, A.; Gillet, J.B. Impact of temperature exposure on stability of drugs in a real-world out-of-hospital setting. Ann. Emerg. Med. 2013, 62, 380–387. [Google Scholar] [CrossRef]
- Ramos, P.; Pilawa, B. Electron paramagnetic resonance study of thermally treated bismuth subgallate. Bioinorg. Chem. Appl. 2014, 2014, 547032. [Google Scholar] [CrossRef]
- Ramos, P.; Pilawa, B. Free radical formation in chloramphenicol heated at different temperatures and the best thermal sterilization conditions—Application of EPR spectroscopy and UV spectrophotometry. Pharm. Dev. Technol. 2018, 23, 1016–1023. [Google Scholar] [CrossRef]
- Ramos, P.; Pilawa, B. Electron paramagnetic resonance examination of free radical formation in salicylic acid and urea exposed to UV irradiation. Int. J. Photoenergy 2016, 2016, 7235305. [Google Scholar] [CrossRef] [Green Version]
- Ramos, P.; Pilawa, B.; Pepliński, P. EPR and UV-Vis spectroscopic studies of the influence of ultraviolet irradiation on antioxidant interactions of nystatin. Indian J. Pharm. Educ. Res. 2019, 53, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Kryczyk-Poprawa, A.; Zupkó, I.; Bérdi, P.; Zmudzki, P.; Piotrowska, J.; Pękala, E.; Berdys, A.; Muszyńska, B.; Opoka, W. Photodegradation of bexarotene and its implication for cytotoxicity. Pharmaceutics 2021, 13, 1220. [Google Scholar] [CrossRef]
- Ashraful Islam, S.M.; Hossain, A.; Hamidul Kabir, A.N.M.; Kabir, S.; Hossain, K. Study of moisture absorption by ranitidine hydrochloride: Effect of % RH, excipients, dosage forms and packing materials. Dhaka Univ. J. Pharm. Sci. 2008, 7, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, J.T. Effect of moisture on the stability of solid dosage forms. Drug Dev. Ind. Pharm. 2008, 14, 1927–1969. [Google Scholar] [CrossRef]
- Viljoen, J.M.; Steenekamp, J.H.; Marais, A.F.; Kotzé, A.F. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev. Ind. Pharm. 2014, 40, 730–742. [Google Scholar] [CrossRef]
- Tomar, M.; Singh, A.K.; Sinha, A.R. Effect of moisture content of excipient (microcrystalline cellulose) on direct compressible solid dosage forms. Int. J. Pharm. Sci. Res. 2017, 8, 282–288. [Google Scholar]
- Sznitowska, M. (Ed.) Farmacja Stosowana; PZWL: Warsaw, Poland, 2017; pp. 795, 798, 896, 925. [Google Scholar]
- Prudic, A.; Ji, Y.; Luebbert, C.; Sadowski, G. Influence of humidity on the phase behavior of API/polymer formulations. Eur. J. Pharm. Biopharm. 2015, 94, 352–362. [Google Scholar] [CrossRef]
- Rumondor, A.C.F.; Stanford, L.A.; Taylor, L.S. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystalilization from amorphous solid dispersions. Pharm. Res. 2009, 26, 2599–2606. [Google Scholar] [CrossRef]
- Tomar, M.; Singh, A.K.; Sinha, A.R. Power and tablet profile of microcrystalline cellulose (MCC) of different with degree of polymerization. Int. J. Recent Sci. Res. 2016, 7, 12044–12047. [Google Scholar]
- Hovorka, S.W.; Schoneich, C. Oxidative degradation of pharmaceuticals: Theory, mechanisms and inhibition. J. Pharm. Sci. 2001, 90, 253–269. [Google Scholar] [CrossRef]
- Saha, T.; Masum, Z.U.; Mondal, S.K.; Hossain, S.; Jobaer, A.; Shahin, R.I.; Fahad, T. Application of natural polymers as pharmaceutical excipients. Glob. J. Life Sci. Biol. Res. 2018, 4, 8–15. [Google Scholar] [CrossRef]
- Ogaji, I.J.; Nep, E.I.; Audu-Peter, J.D. Advances in Natural Polymers as Pharmaceutical Excipients. Pharm. Anal. Acta 2011, 3, 146. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Sriamornsak, P.; Thirawong, N.; Weerapol, Y.; Nunthanid, J.; Sungthongjeen, S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur. J. Pharm. Biopharm. 2007, 67, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, D.; Minocha, N. Natural polymers; their applications in food, cosmetic and pharmaceutical industries. Int. J. Adv. Res. 2020, 8, 1224–1238. [Google Scholar] [CrossRef]
- Varshosaz, J.; Tavakoli, N.; Eram, S.A. Use of natural gums and cellulose derivatives in production of sustained release Metoprolol tablets. Drug Deliv. 2006, 13, 113–119. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Habdbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK; Chicago, IL, USA, 2009. [Google Scholar]
- Lu, E.X.; Jiang, Z.Q.; Zhang, Q.Z.; Jiang, X.G. A water-insoluble drug monolithic osmotic tablet system utilizing gum Arabic as an osmotic, suspending and expanding agent. J. Control. Release 2003, 92, 375–382. [Google Scholar] [CrossRef]
- Masuelli, M.A. Hydrodynamic properties of whole arabic gum. Am. J. Food Sci. Technol. 2013, 1, 60–66. [Google Scholar]
- Ghayempoura, S.; Montazera, M.; Radb, M.M. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int. J. Biol. Macromol. 2015, 81, 514–520. [Google Scholar] [CrossRef]
- Jamaludin, J.; Adam, F.; Rasid, R.A.; Hassan, Z. Thermal studies on Arabic gum-carrageenan polysaccharides film. Chem. Eng. Res. Bull. 2017, 19, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Cozic, C.; Picton, L.; Garda, M.R.; Marlhoux, F.; Le Cerf, D. Analysis of arabic gum: Study of degradation and water desorption processes. Food Hydrocoll. 2009, 23, 1930–1934. [Google Scholar] [CrossRef]
- Zohuriaan, M.J.; Shokrolahi, F. Thermal studies on natural and modified gums. Polym. Test. 2004, 23, 575–579. [Google Scholar] [CrossRef]
- Daoub, R.M.A.; Elmubarek, A.F.; Misran, M.; Hassan, E.A.; Osman, M.E. Characterization and functional properties of some natural Acacia gums. J. Saud. Soc. Agric. Sci. 2018, 17, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, C.A.; Zografi, G. The relationship beetween the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone). Pharm. Res. 1990, 7, 654–657. [Google Scholar] [CrossRef]
- Zeinab, A.A.A.; Abdelgadir, A.Y. Moisture Desorption and Adsorption Chareteristics of Gum Arabic from Acacia senegal and A. seyal. Univ. Khartoum J. Agric. Sci. 2014, 22, 259–271. [Google Scholar]
- Mansoori, N.; Majzoobi, M.; Gavahian, M.; Badii, F.; Farahnaky, A. Acacia gum as a natural anti-plasticizer for the production of date syrup powder: Sorption isotherms, physicochemical properties, and data modeling. Foods 2020, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.D.; Moreira, R.; Chenlo, F.; Vazquez, M.J. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr. Polym. 2012, 89, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.H.; Bhat, R.; Senan, C.; Williams, P.A.; Karim, A.A. Effects of ultraviolet on the physicochemical and functional properties of gum Arabic. J. Agric. Food Chem. 2009, 57, 9154–9159. [Google Scholar] [CrossRef] [PubMed]
- Magdalena Tworek, M.; Skowroński, Ł.; Makarewicz, E.; Kowalik, J. Properties of poly(vinyl chloride) membranes containing cadmium pigments, irradiated with UV irradiation. Sci. Rep. 2021, 11, 18165. [Google Scholar] [CrossRef]
- Echavarria, A.P.; Pagan, J.; Ibarz, A. Kinetics of color development in glucose/Amino Acid model systems at different temperatures. Sci. Agropec. 2016, 7, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Anna Masek, A.; Latos-Brozio, M. The effect of substances of plant origin on the thermal and thermo-oxidative ageing of aliphatic polyesters (PLA, PHA). Polymers 2018, 10, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.C.; Sanchez, C. Acacia senegal gum: Continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 2006, 7, 2637–2649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fei, W.; Ji, J.; Yang, Y. Degradation of tryptophan by UV irradiation: Influencing parameters and mechanisms. Water 2021, 13, 2368. [Google Scholar] [CrossRef]
- Bikaki, M.; Kuhnert, N. Identification of products from thermal degradation of tryptophan containing pentapeptides: Oxidation and decarboxylation. J. Agric. Food. Chem. 2019, 67, 7448–7454. [Google Scholar] [CrossRef]
- Sakloetsakun, D.; Preechagoon, D.; Nernkop-Schnurch, A.; Pongjanyaku, T. Chitosan–gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharm. Dev. Technol. 2016, 21, 590–599. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Mohseni, M.; Yari, H. The effect of natural tree gum and environmental condition on the degradation of a typical automotive clear coat. J. Polym. Environ. 2010, 18, 545–557. [Google Scholar] [CrossRef]
- Guide to Good Storage Practices for Pharmaceuticals Annex 9; WHO Technical Report Series; No. 908; World Health Organization: Geneva, Switzerland, 2003.
- Kucharczyk, M.; Slusarski, B. Mapowanie rozkładu temperatury w przestrzeniach magazynowych–praktyczne podejście. Farm. Pol. 2009, 65, 707–712. [Google Scholar]
- Subert, J.; Cizmarik, J. Application of instrumental colour meansurement in development and quality control of drugs and pharmaceutical excipients. Pharmazie 2008, 63, 331–336. [Google Scholar] [PubMed]
- Ding, P.; Ling, Y.S. Brownikg assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit. Intern. Food Res. J. 2014, 21, 1667–1674. [Google Scholar]
- Zieliński, W.; Rajca, A. Metody Spektroskopowe i ich Zastosowanie do Identyfikacji Związków Organicznych; Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 1995; pp. 520–553. [Google Scholar]
- Chen, Z.F.; Ying, G.G.; Jiang, Y.X.; Yang, B.; Lai, H.J.; Liu, Y.S.; Pan, C.G.; Peng, F.Q. Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: Kinetics, mechanistic investigations and toxicity evaluation. Water Res. 2014, 52, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Rezakhani, Z. Extractive spectrophotometric determination of ketoconazole, clotrimazole and fluconazole by ion-pair complex formation with bromothymol blue and picric acid. J. Chil. Chem. Soc. 2012, 57, 1104–1108. [Google Scholar] [CrossRef] [Green Version]
Storage Conditions | L* [±SD] | a* [±SD] | b* [±SD] | ΔE [±SD] | BI [±SD] | |
---|---|---|---|---|---|---|
Initial sample | 82.44 [±0.01] | 10.08 [±0.01] | 42.65 [±0.03] | - | 79.31 [±0.02] | |
UV irradiation | UV/30 min | 82.22 [±0.01] | 9.71 [±0.03] | 42.27 [±0.01] | 0.58 [±0.02] | 78.37 [±0.02] |
UV/60 min | 81.05 [±0.04] | 10.48 [±0.01] | 42.91 [±0.01] | 1.47 [±0.02] | 82.12 [±0.02] | |
UV/90 min | 81.42 [±0.05] | 9.52 [±0.03] | 41.35 [±0.04] | 1.74 [±0.04] | 77.12 [±0.04] | |
UV/120 min | 82.19 [±0.01] | 9.77 [±0.02] | 42.10 [±0.01] | 0.68 [±0.01] | 78.08 [±0.01] | |
Temperature | 40 °C/60 min | 83.55 [±0.04] | 10.42 [±0.01] | 42.51 [±0.03] | 1.17 [±0.03] | 77.02 [±0.03] |
50 °C/60 min | 82.23 [±0.03] | 10.37 [±0.02] | 43.33 [±0.04] | 0.76 [±0.03] | 81.41 [±0.03] | |
60 °C/60 min | 82.66 [±0.05] | 10.34 [±0.03] | 39.44 [±0.02] | 0.35 [±0.03] | 79.11 [±0.03] | |
70 °C/60 min | 81.69 [±0.05] | 10.40 [±0.03] | 42.64 [±0.04] | 0.82 [±0.04] | 80.57 [±0.04] | |
80 °C/60 min | 81.43 [±0.05] | 11.01 [±0.03] | 42.58 [±0.04] | 1.37 [±0.04] | 81.36 [±0.04] | |
Relative humidity/temperature/ time | 45% (RH)/25 °C/3 days | 82.53 [±0.02] | 10.05 [±0.01] | 43.21 [±0.04] | 0.57 [±0.02] | 80.44 [±0.02] |
45% (RH)/25 °C/2 months | 81.76 [±0.03] | 10.35 [±0.03] | 42.08 [±0.03] | 0.93 [±0.03] | 79.14 [±0.03] | |
65% (RH)/40 °C/6 days | 70.66 [±0.05] | 11.71 [±0.02] | 38.80 [±0.03] | 12.50 [±0.03] | 88.74 [±0.03] | |
75% (RH)/25 °C/3 days | 64.65 [±0.02] | 9.38 [±0.01] | 34.56 [±0.04] | 19.55 [±0.02] | 84.33 [±0.02] |
Storage Conditions | L* [±SD] | a* [±SD] | b* [±SD] | ΔE [±SD] | BI [±SD] | |
---|---|---|---|---|---|---|
Initial sample | 80.33 [±0.02] | 11.39 [±0.02] | 39.89 [±0.01] | - | 76.98 [±0.02] | |
UV irradiation | UV/30 min | 78.60 [±0.02] | 10.49 [±0.02] | 38.63 [±0.04] | 2.32 [±0.03] | 75.42 [±0.03] |
UV/60 min | 80.35 [±0.02] | 11.41 [±0.03] | 39.76 [±0.04] | 0.14 [±0.03] | 76.68 [±0.03] | |
UV/90 min | 79.30 [±0.03] | 11.15 [±0.01] | 39.37 [±0.04] | 1.18 [±0.03] | 76.87 [±0.03] | |
UV/120 min | 80.13 [±0.02] | 11.33 [±0.03] | 39.75 [±0.01] | 0.25 [±0.02] | 76.86 [±0.02] | |
Temperature | 40 °C/60 min | 80.70 [±0.05] | 11.54 [±0.03] | 40.01 [±0.04] | 0.42 [±0.04] | 76.92 [±0.04] |
50 °C/60 min | 79.84 [±0.05] | 11.63 [±0.02] | 39.91 [±0.01] | 0.55 [±0.03] | 77.89 [±0.03] | |
60 °C/60 min | 80.96 [±0.04] | 11.44 [±0.03] | 39.44 [±0.02] | 0.77 [±0.03] | 75.24 [±0.03] | |
70 °C/60 min | 80.10 [±0.03] | 11.65 [±0.02] | 40.04 [±0.01] | 0.38 [±0.02] | 76.86 [±0.02] | |
80 °C/60 min | 79.93 [±0.05] | 11.73 [±0.02] | 39.78 [±0.04] | 0.54 [±0.04] | 77.56 [±0.04] | |
Relative humidity/temperature/ time | 45% (RH)/25 °C/3 days | 80.75 [±0.02] | 11.32 [±0.04] | 39.85 [±0.01] | 0.42 [±0.02] | 76.30 [±0.02] |
45% (RH)/25 °C/2 months | 80.27 [±0.04] | 11.44 [±0.03] | 39.53 [±0.02] | 0.37 [±0.03] | 76.29 [±0.03] | |
65% (RH)/40 °C/6 days | 72.78 [±0.05] | 11.38 [±0.01] | 36.37 [±0.04] | 8.33 [±0.03] | 78.67 [±0.03] | |
75% (RH)/25 °C/3 days | 69.83 [±0.01] | 12.85 [±0.03] | 39.82 [±0.02] | 10.60 [±0.02] | 94.35 [±0.02] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, P.; Broncel, M. Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth. Molecules 2022, 27, 1510. https://doi.org/10.3390/molecules27051510
Ramos P, Broncel M. Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth. Molecules. 2022; 27(5):1510. https://doi.org/10.3390/molecules27051510
Chicago/Turabian StyleRamos, Paweł, and Mateusz Broncel. 2022. "Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth" Molecules 27, no. 5: 1510. https://doi.org/10.3390/molecules27051510
APA StyleRamos, P., & Broncel, M. (2022). Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth. Molecules, 27(5), 1510. https://doi.org/10.3390/molecules27051510