In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Active Compounds of Asparagus racemosus Willd. Root Extract
2.2. Antioxidant Effects of Asparagus racemosus Willd. Root Extract Solution
2.3. Effects of Asparagus racemosus Willd. Root Extract on 5-Alpha Reductase Isoenzymes
2.4. Effect on Sebum Level and Pore Area in Volunteers
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Sample
3.3. Analysis of Phenolic Compounds in Asparagus racemosus Willd. Root Extract by Liquid Chromatography–Mass Spectrometry (LC-MS)
3.4. Antioxidant Activities Analysis
3.4.1. DPPH Radical Scavenging Activity
3.4.2. ABTS Radical Scavenging Activity
3.4.3. Metal Chelating Activity
3.5. 5-Alpha Reductase Isoenzyme Activity Analysis
3.5.1. Cell Culture
3.5.2. Determination of Cell Viability
3.5.3. RNA Extraction and Semi-Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) Analysis
3.6. Efficacy Evaluation
3.6.1. Study Population
3.6.2. Measurement of Anti-Sebum Efficacy and Pore Area Reduction
3.6.3. Self-Assessment
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dobrev, H. Clinical and instrumental study of the efficacy of a new sebum control cream. J. Cosmet. Dermatol. 2007, 6, 113–118. [Google Scholar] [CrossRef]
- Mohiuddin, A. A comprehensive review of acne vulgaris. J. Clin. Pharm. 2019, 1, 17–45. [Google Scholar] [CrossRef]
- Shamloul, G.; Khachemoune, A. An updated review of the sebaceous gland and its role in health and diseases Part 1: Embryology, evolution, structure, and function of sebaceous glands. Dermatol. Ther. 2021, 34, e14695. [Google Scholar] [CrossRef] [PubMed]
- Endly, D.C.; Miller, R.A. Oily skin: A review of treatment options. J. Clin. Aesthet. Dermatol. 2017, 10, 49. [Google Scholar] [PubMed]
- Santhosh, P.; George, M. Clascoterone: A new topical anti-androgen for acne management. Int. J. Dermatol. 2021, 60, 1561–1565. [Google Scholar] [CrossRef]
- Irwig, M.S. Is there a role for 5α-reductase inhibitors in transgender individuals? Andrology 2020, 9, 1729–1731. [Google Scholar] [CrossRef]
- Pais, P. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5α-reductase II. Adv. Ther. 2010, 27, 555–563. [Google Scholar] [CrossRef]
- Song, K.H.; Seo, C.-S.; Yang, W.-K.; Gu, H.-O.; Kim, K.-J.; Kim, S.-H. Extracts of Phyllostachys pubescens leaves represses human steroid 5-alpha reductase Type 2 promoter activity in BHP-1 cells and ameliorates testosterone-induced benign prostatic hyperplasia in rat model. Nutrients 2021, 13, 884. [Google Scholar] [CrossRef]
- Manosroi, A.; Chankhampan, C.; Kietthanakorn, B.O.; Ruksiriwanich, W.; Chaikul, P.; Boonpisuttinant, K.; Sainakham, M.; Manosroi, W.; Tangjai, T.; Manosroi, J. Pharmaceutical and cosmeceutical biological activities of hemp (Cannabis sativa L. var. sativa) leaf and seed extracts. Chiang Mai J. Sci. 2019, 46, 180–195. [Google Scholar]
- Kim, J.Y.; Lee, J.Y.; Yoon, H.-G.; Kim, Y.; Jun, W.; Hwang, K.T.; Cha, M.S.; Lee, Y.-H. Inhibitory effect of Curcuma longa L. extracts on 5-alpha reductase II activity. J. Korean Soc. Food Sci. Nutr. 2014, 43, 318–322. [Google Scholar] [CrossRef]
- Liu, J.; Fang, T.; Li, M.; Song, Y.; Li, J.; Xue, Z.; Li, J.; Bu, D.; Liu, W.; Zeng, Q. Pao pereira extract attenuates testosterone-induced benign prostatic hyperplasia in rats by inhibiting 5α-reductase. Sci. Rep. 2019, 9, 19703. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.A.; Bagatin, E. Adult-onset acne: Prevalence, impact, and management challenges. Clin. Cosmet. Investig. Dermatol. 2018, 11, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzouni, F.; Godoy, A.; Li, Y.; Mohler, J. The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases. Adv. Urol. 2011, 2012, 530121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saric, S.; Notay, M.; Sivamani, R.K. Green tea and other tea polyphenols: Effects on sebum production and acne vulgaris. Antioxidants 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Peirano, R.I.; Hamann, T.; Düsing, H.J.; Akhiani, M.; Koop, U.; Schmidt-Rose, T.; Wenck, H. Topically applied l-carnitine effectively reduces sebum secretion in human skin. J. Cosmet. Dermatol. 2012, 11, 30–36. [Google Scholar] [CrossRef]
- Pongsakornpaisan, P.; Lourith, N.; Kanlayavattanakul, M. Anti-sebum efficacy of guava toner: A split-face, randomized, single-blind placebo-controlled study. J. Cosmet. Dermatol. 2019, 18, 1737–1741. [Google Scholar] [CrossRef]
- Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis. 2013, 3, 242–251. [Google Scholar] [CrossRef]
- Gautam, M.; Saha, S.; Bani, S.; Kaul, A.; Mishra, S.; Patil, D.; Satti, N.; Suri, K.; Gairola, S.; Suresh, K.; et al. Immunomodulatory activity of Asparagus racemosus on systemic Th1/Th2 immunity: Implications for immunoadjuvant potential. J. Ethnopharmacol. 2009, 121, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Shaw, B. A double-blind randomized clinical trial for evaluation of galactogogue activity of Asparagus racemosus Willd. Iran J. Pharm. Res. 2011, 10, 167. [Google Scholar] [PubMed]
- Mandal, S.C.; Nandy, A.; Pal, M.; Saha, B. Evaluation of antibacterial activity of Asparagus racemosus Willd. root. Phytother. Res. 2000, 14, 118–119. [Google Scholar] [CrossRef]
- Patel, L.; Patel, R. Antimicrobial activity of Asparagus racemosus wild from leaf extracts—A medicinal plant. Int. J. Sci. Res. 2013, 3, 2250–3153. [Google Scholar]
- Onlom, C.; Khanthawong, S.; Waranuch, N.; Ingkaninan, K. In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int. J. Cosmet. Sci. 2014, 36, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, M.; Sisodia, S.S.; Bhatnagar, R. Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Ann. N. Y. Acad. Sci. 2005, 1056, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.; Sivakumar, G.; Pillai, A.A.; Veeraraghavan, V.P.; Bolla, S.R.; Veeraraghavan, G.R.; Rengasamy, G.; Joseph, J.P.; Janardhana, P. Phytochemical screening, HPTLC fingerprinting and In vitro antioxidant activity of root extract of Asparagus racemosus. Pharmacogn. J. 2019, 11, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Tamer, F.; Yuksel, M.E.; Sarifakioglu, E.; Karabag, Y. Staphylococcus aureus is the most common bacterial agent of the skin flora of patients with seborrheic dermatitis. Dermatol. Pract. Concept. 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakabayashi, A.; Sei, Y.; Guillot, J. Identification of Malassezia species isolated from patients with seborrhoeic dermatitis, atopic dermatitis, pityriasis versicolor and normal subjects. Med. Mycol. 2000, 38, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.; Acharya, N.; Bhangale, J.; Shah, S.; Pandya, S. Antioxidant and hepatoprotective action of Asparagus racemosus Willd. root extracts. Indian J. Exp. Biol. 2012, 50, 795–801. [Google Scholar]
- Shrivastava, A.; Gupta, V.B. Various treatment options for benign prostatic hyperplasia: A current update. J. Midlife Health 2012, 3, 10. [Google Scholar]
- Singh, R.; Geetanjali. Asparagus racemosus: A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2016, 30, 1896–1908. [Google Scholar]
- Joshi, R.K. Asparagus racemosus (Shatawari), phytoconstituents and medicinal importance, future source of economy by cultivation in Uttrakhand: A review. Int. J. Herb. Med. 2016, 4, 18–21. [Google Scholar]
- Hayes, P.Y.; Jahidin, A.H.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J.J. Asparinins, asparosides, curillins, curillosides and shavatarins: Structural clarification with the isolation of shatavarin V, a new steroidal saponin from the root of Asparagus racemosus. Tetrahedron Lett. 2006, 47, 8683–8687. [Google Scholar] [CrossRef]
- Hayes, P.Y.; Jahidin, A.H.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J.J. Structural revision of shatavarins I and IV, the major components from the roots of Asparagus racemosus. Tetrahedron Lett. 2006, 47, 6965–6969. [Google Scholar] [CrossRef]
- Sharma, U.; Saini, R.; Kumar, N.; Singh, B. Steroidal saponins from Asparagus racemosus. Chem. Pharm. Bull. 2009, 57, 890–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungsanga, T.; Tuntijarukornb, P.; Ingkaninanc, K.; Viyocha, J. Stability and clinical effectiveness of emulsion containing Asparagus racemosus root extract. Sci. Asia 2015, 41, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Reátegui, J.L.P.; da Fonseca Machado, A.P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Ashraf, G.J.; Das, P.; Dua, T.K.; Paul, P.; Nandi, G.; Sahu, R. High-performance thin-layer chromatography based approach for bioassay and ATR–FTIR spectroscopy for the evaluation of antioxidant compounds from Asparagus racemosus Willd. aerial parts. Biomed. Chromatogr. 2021, 35, e5230. [Google Scholar] [CrossRef]
- Meng, L.; Lozano, Y.F.; Gaydou, E.M.; Li, B. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 2009, 14, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Jasprica, I.; Bojic, M.; Mornar, A.; Besic, E.; Bucan, K.; Medic-Saric, M. Evaluation of antioxidative activity of croatian propolis samples using DPPH· and ABTS·+ stable free radical assays. Molecules 2007, 12, 1006–1021. [Google Scholar] [CrossRef] [Green Version]
- Karamać, M. Chelation of Cu (II), Zn (II), and Fe (II) by tannin constituents of selected edible nuts. Int. J. Mol. Sci. 2009, 10, 5485–5497. [Google Scholar] [CrossRef]
- Moalin, M.; Van Strijdonck, G.P.; Beckers, M.; Hagemen, G.J.; Borm, P.J.; Bast, A.; Haenen, G.R. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules 2011, 16, 9636–9650. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.N.I.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem. 2017, 81, 882–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koseki, J.; Matsumoto, T.; Matsubara, Y.; Tsuchiya, K.; Mizuhara, Y.; Sekiguchi, K.; Nishimura, H.; Watanabe, J.; Kaneko, A.; Hattori, T. Inhibition of rat 5α-reductase activity and testosterone-induced sebum synthesis in hamster sebocytes by an extract of Quercus acutissima cortex. Evid.-Based Complement. Altern. Med. 2015, 2015, 853846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhurat, R.; Shukla, D.; Lim, R.K.; Wambier, C.G.; Goren, A. Spironolactone in adolescent acne vulgaris. Dermatol. Ther. 2021, 34, e14680. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yin, J.; Hwang, I.H.; Park, D.H.; Lee, E.K.; Kim, M.J.; Lee, M.W. Anti-acne vulgaris effects of pedunculagin from the leaves of Quercus mongolica by anti-inflammatory activity and 5α-reductase inhibition. Molecules 2020, 25, 2154. [Google Scholar] [CrossRef]
- Crocco, E.I.; Bonifácio, E.B.; Facchini, G.; da Silva, G.H.; da Silva, M.S.; Pinheiro, A.L.T.A.; Avelar, P.V.F.; Eberlin, S. Modulation of skin androgenesis and sebum production by a dermocosmetic formulation. J. Cosmet. Dermatol. 2021, 20, 360–365. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Ganceviciene, R.; Zouboulis, C.C. An update on the role of the sebaceous gland in the pathogenesis of acne. Derm.-Endocrinol. 2011, 3, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Skałba, P.; Dabkowska-Huć, A.; Kazimierczak, W.; Samojedny, A.; Samojedny, M.; Chełmicki, Z. Content of 5-alpha-reductase (type 1 and type 2) mRNA in dermal papillae from the lower abdominal region in women with hirsutism. Clin. Exp. Dermatol. 2006, 31, 564–570. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Degitz, K. Androgen action on human skin–from basic research to clinical significance. Exp. Dermatol. 2004, 13, 5–10. [Google Scholar] [CrossRef]
- Uemura, M.; Tamura, K.; Chung, S.; Honma, S.; Okuyama, A.; Nakamura, Y.; Nakagawa, H. Novel 5α-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 2008, 99, 81–86. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Sringarm, K.; Sommano, S.; Jantrawut, P. Depigmented Centella asiatica extraction by pretreated with supercritical carbon dioxide fluid for wound healing application. Processes 2020, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Hazlehurst, J.M.; Oprescu, A.I.; Nikolaou, N.; Di Guida, R.; Grinbergs, A.E.; Davies, N.P.; Flintham, R.B.; Armstrong, M.J.; Taylor, A.E.; Hughes, B.A. Dual-5α-reductase inhibition promotes hepatic lipid accumulation in man. J. Clin. Endocrinol. Metab. 2016, 101, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laneri, S.; Dini, I.; Tito, A.; Di Lorenzo, R.; Bimonte, M.; Tortora, A.; Zappelli, C.; Angelillo, M.; Bernardi, A.; Sacchi, A. Plant cell culture extract of Cirsium eriophorum with skin pore refiner activity by modulating sebum production and inflammatory response. Phytother. Res. 2021, 35, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Hwang, I.H.; Lee, M.W. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii. BMC Complement. Altern. Med. 2019, 19, 323. [Google Scholar] [CrossRef] [Green Version]
- Meetham, P.; Kanlayavattanakul, M.; Lourith, N. Development and clinical efficacy evaluation of anti-greasy green tea tonner on facial skin. Rev. Bras. Farmacogn. 2018, 28, 214–217. [Google Scholar] [CrossRef]
- Sugawara, T.; Nakagawa, N.; Shimizu, N.; Hirai, N.; Saijo, Y.; Sakai, S. Gender-and age-related differences in facial sebaceous glands in Asian skin, as observed by non-invasive analysis using three-dimensional ultrasound microscopy. Skin Res. Technol. 2019, 25, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.; Han, M.; Kim, D.; Chung, K. Sebum output as a factor contributing to the size of facial pores. Br. J. Dermatol. 2006, 155, 890–894. [Google Scholar] [CrossRef]
- Mahmood, T.; Akhtar, N.; Khan, B.A.; Khan, H.M.S.; Saeed, T. Outcomes of 3% green tea emulsion on skin sebum production in male volunteers. Bosn. J. Basic Med. Sci. 2010, 10, 260. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.Y.; Kwon, H.H.; Min, S.U.; Thiboutot, D.M.; Suh, D.H. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J. Investig. Dermatol. 2013, 133, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, M.; De Lucia, A.; Carola, A.; Tito, A.; Buono, S.; Langellotti, A. Galdieria sulphuraria relieves oily and seborrheic skin by inhibiting the 5α-reductase expression in skin cells and reducing sebum production in vivo. Trichol. Cosmetol. Open J. 2016, 1, 11–18. [Google Scholar] [CrossRef]
- Nazir, Y.; Linsaenkart, P.; Khantham, C.; Chaitep, T.; Jantrawut, P.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Sommano, S.R.; et al. High efficiency in vitro wound healing of Dictyophora indusiata extracts via anti-Inflammatory and collagen stimulating (MMP-2 inhibition) mechanisms. J. Fungi 2021, 7, 1100. [Google Scholar] [CrossRef]
- Khantham, C.; Yooin, W.; Sringarm, K.; Sommano, S.R.; Jiranusornkul, S.; Carmona, F.D.; Nimlamool, W.; Jantrawut, P.; Rachtanapun, P.; Ruksiriwanich, W. E5-alpha reductase gene expression of Thai rice bran extracts and molecular dynamics study on SRD5A2. Biology 2021, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Delsin, S.; Mercurio, D.; Fossa, M.; Maia Campos, P. Clinical efficacy of dermocosmetic formulations containing Spirulina extract on young and mature skin: Effects on the skin hydrolipidic barrier and structural properties. Clin. Pharmacol. Biopharm. 2015, 4, 2. [Google Scholar]
Compositions (mg/g Extract) | |
---|---|
Quercetin | 3.403 ± 0.412 |
Naringenin | 0.746 ± 0.027 |
p-Coumaric acid | 0.721 ± 0.010 |
Caffeic acid | 0.197 ± 0.018 |
Naringin | 0.021 ± 0.007 |
Rosmarinic acid | 0.012 ± 0.006 |
Antioxidant Activities | DPPH Radical Scavenging Activity (SC50, mg/mL) | ABTS Radical Scavenging Activity (SC50, mg/mL) | Fe2+ Chelating Activity (MC50, mg/mL) |
---|---|---|---|
A. racemosus Willd. root extract solution | 0.502 ± 0.275 | 5.319 ± 0.327 a | 1.591 ± 0.175 a |
L-ascorbic acid | 0.154 ± 0.014 | 0.067 ± 0.006 | Nd |
Trolox | Nd | 0.092 ± 0.003 | Nd |
EDTA | Nd | Nd | 0.063 ± 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruksiriwanich, W.; Khantham, C.; Linsaenkart, P.; Chaitep, T.; Jantrawut, P.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Sommano, S.R.; et al. In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients. Molecules 2022, 27, 1535. https://doi.org/10.3390/molecules27051535
Ruksiriwanich W, Khantham C, Linsaenkart P, Chaitep T, Jantrawut P, Chittasupho C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Sommano SR, et al. In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients. Molecules. 2022; 27(5):1535. https://doi.org/10.3390/molecules27051535
Chicago/Turabian StyleRuksiriwanich, Warintorn, Chiranan Khantham, Pichchapa Linsaenkart, Tanakarn Chaitep, Pensak Jantrawut, Chuda Chittasupho, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Yuthana Phimolsiripol, Sarana Rose Sommano, and et al. 2022. "In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients" Molecules 27, no. 5: 1535. https://doi.org/10.3390/molecules27051535
APA StyleRuksiriwanich, W., Khantham, C., Linsaenkart, P., Chaitep, T., Jantrawut, P., Chittasupho, C., Rachtanapun, P., Jantanasakulwong, K., Phimolsiripol, Y., Sommano, S. R., Arjin, C., Berrada, H., Barba, F. J., & Sringarm, K. (2022). In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients. Molecules, 27(5), 1535. https://doi.org/10.3390/molecules27051535