Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Direct Dyes
2.1.2. Macro-Reticular Strong/Weak Base Anion Exchange Resins
2.1.3. Equipment and Chemicals
2.2. Methods
2.2.1. Dyeing Experiments
2.2.2. Determination of Calibration Curve
2.2.3. Centrifugation Experiments
2.2.4. Kinetic Experiments
2.2.5. Equilibrium Experiments
2.2.6. Effect of Solution pH
2.2.7. Effect of Temperature
3. Results and Discussion
3.1. Determination of Calibration Curve
3.2. Determination of Solubilities
3.3. Effect of Phase Contact Time
3.4. Sorption Kinetic Parameters
3.4.1. Pseudo-First-Order (PFO) Model
3.4.2. Pseudo-Second-Order (PSO) Model
3.5. Adsorption Isotherms
3.5.1. Freundlich Isotherms
3.5.2. Langmuir Isotherms
3.6. Impact of Quantity of Amberlite IRA Resins
3.7. Effects of Initial pH
3.8. Effects of Initial Temperature
4. Conclusions
- The dye molecular weight is a predominating factor in controlling its diffusion through the resin pores to the active adsorption sites, and therefore, it greatly influences the degree of adsorption that takes place.
- The number of solubilizing groups in the dye molecule, and their type (whether -SO3H or -COOH), affects the degree of adsorption and controls the extent of adsorption to different anion exchangers.
- The type of resin, whether strong base or weak base anion exchanger, affects the extent of dye adsorption.
- Macro-reticular resin has proven to be efficient in the adsorption of different dyes compared to the other type.
- The number and type of substituent groups in the dye molecule affect the degree of adsorption to the resin.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, S. Overview. In Handbook of Water Purity and Quality; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–16. [Google Scholar]
- Deaconu, M.; Senin, R. Adsorption Decolorization Technique of Textile/Leather—Dye Containing Effluents. Int. J. Waste Resour. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Mary Ealias, A.; Saravanakumar, M.P. A critical review on ultrasonic-assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1959–2015. [Google Scholar] [CrossRef]
- Al Prol, A.E. Study of Environmental Concerns of Dyes and Recent Textile Effluents Treatment Technology: A Review. Asian J. Fish. Aquat. Res. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Bhat, S.A.; Zafar, F.; Mondal, A.H.; Mirza, A.U.; Rizwanul Haq, Q.M.; Nishat, N. Efficient removal of Congo red dye from aqueous solution by adsorbent films of polyvinyl alcohol/melamine-formaldehyde composite and bactericidal effects. J. Clean. Prod. 2020, 255, 120062. [Google Scholar] [CrossRef]
- Maheshwari, K.; Agrawal, M.; Gupta, A.B. Dye Pollution in Water and Wastewater; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–25. [Google Scholar]
- Sen, T.K. Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Adsorbents. J. Chem. Process Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, A.E.; Ananthashankar, R. Production, Characterization and Treatment of Textile Effluents: A Critical Review. J. Chem. Eng. Process Technol. 2013, 5, 2–18. [Google Scholar] [CrossRef]
- Correia, V.M.; Stephenson, T.; Judd, S.J. Characterisation of textile wastewaters—A review. Environ. Technol. 1994, 15, 917–929. [Google Scholar] [CrossRef]
- Kumar, A.; Sehgal, M. Hydrogen Fuel Cell Technology for a Sustainable Future: A Review; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Azari, A.; Nabizadeh, R.; Nasseri, S.; Mahvi, A.H.; Mesdaghinia, A.R. Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: Classification and analysis of last decade studies. Chemosphere 2020, 250, 126238. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Bansal, R.; Purwar, R. Colour Removal from Textile Effluents. Indian J. Fibre Text. Res. 2004, 29, 239–259. [Google Scholar]
- Mondal, S. Methods of Dye Removal from Dye House Effluent—An Overview. Environ. Eng. Sci. 2008, 25, 383–396. [Google Scholar] [CrossRef]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharjee, J. A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Sinha, S.; Behera, S.S.; Das, S.; Basu, A.; Mohapatra, R.K.; Murmu, B.M.; Dhal, N.K.; Tripathy, S.K.; Parhi, P.K. Removal of Congo Red dye from aqueous solution using Amberlite IRA-400 in batch and fixed bed reactors. Chem. Eng. Commun. 2018, 205, 432–444. [Google Scholar] [CrossRef]
- Tang, S.; Xia, D.; Yao, Y.; Chen, T.; Sun, J.; Yin, Y.; Shen, W.; Peng, Y. Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J. Colloid Interface Sci. 2019, 554, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, F.; Hameed, B.H.; Hummadi, E.H. Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption. Int. J. Biol. Macromol. 2020, 163, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Mogale, R.; Akpomie, K.G.; Conradie, J.; Langner, E.H.G. Dye adsorption of aluminium- and zirconium-based metal organic frameworks with azobenzene dicarboxylate linkers. J. Environ. Manag. 2022, 304, 114166. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 211–219. [Google Scholar] [CrossRef]
- Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; Thomas, J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 2020, 242, 122488. [Google Scholar] [CrossRef]
- Lu, C.; Yang, J.; Khan, A.; Yang, J.; Li, Q.; Wang, G. A highly efficient technique to simultaneously remove acidic and basic dyes using magnetic ion-exchange microbeads. J. Environ. Manag. 2022, 304, 114173. [Google Scholar] [CrossRef] [PubMed]
- Naim, M.M.; Batouti, M.E.; Elewa, M.M. Novel heterogeneous cellulose-based ion-exchange membranes for electrodialysis. Polym. Bull. 2021, 79, 1–25. [Google Scholar] [CrossRef]
- Kono, H.; Kusumoto, R. Removal of anionic dyes in aqueous solution by flocculation with cellulose ampholytes. J. Water Process Eng. 2015, 7, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Le, O.T.H.; Tran, L.N.; Doan, V.T.; Pham, Q.V.; Ngo, A.V.; Nguyen, H.H. Mucilage Extracted from Dragon Fruit Peel (Hylocereus undatus) as Flocculant for Treatment of Dye Wastewater by Coagulation and Flocculation Process. Int. J. Polym. Sci. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 193–194, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ghuge, S.; Saroha, A. Degradation of azo dye in ozonation by noble metal supported mesoporous catalyst. Int. J. Environ. Waste Manag. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Gómez, V.; Larrechi, M.S.; Callao, M.P. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 2007, 69, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Saichandra, P.L.V.N.; Radhika, G.B. Removal of Dyes From Waste-Water Using Nanofiltration Process. Ind. Eng. Chem. Res. 2005, 44, 3655–3664. [Google Scholar]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. J. Clean. Prod. 2018, 171, 482–490. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Masrouri, O.; Arabi, A.M. Synthesis of porous adsorbent using microwave assisted combustion method and dye removal. J. Alloys Compd. 2014, 602, 210–220. [Google Scholar] [CrossRef]
- Borousan, F.; Yousefi, F.; Ghaedi, M. Removal of Malachite Green Dye Using IRMOF-3–MWCNT-OH–Pd-NPs as a Novel Adsorbent: Kinetic, Isotherm, and Thermodynamic Studies. J. Chem. Eng. Data 2019, 64, 4801–4814. [Google Scholar] [CrossRef]
- Suteu, D.; Bilba, D.; Coseri, S. Macroporous polymeric ion exchangers as adsorbents for the removal of cationic dye basic blue 9 from aqueous solutions. J. Appl. Polym. Sci. 2014, 131, 39620. [Google Scholar] [CrossRef]
- Suteu, D.; Coseri, S. Applications of polymeric materials as adsorbents for dyes removal from aqueous medium. In Polymer Science: Research Advances, Practical Applications and Educational Aspects; Formatex Research Center: Badajoz, Spain, 2016; pp. 62–70. [Google Scholar]
- Macoveanu, M.; Bilba, D.; Bilba, N.; Gavrilescu, M.S.G. Ion Exchange Processes in Environment Protection; Matrix Rom: Bucuresti, Romania, 2002. [Google Scholar]
- Karcher, S.; Kornmüller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Res. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Yu, Y.; Zhuang, Y.-Y.; Wang, Z.-H.; Qiu, M.-Q. Adsorption of water-soluble dyes onto modified resin. Chemosphere 2004, 54, 425–430. [Google Scholar] [CrossRef]
- Greluk, M.; Hubicki, Z. Evaluation of polystyrene anion exchange resin for removal of reactive dyes from aqueous solutions. Chem. Eng. Res. Des. 2013, 91, 1343–1351. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Equilibrium and kinetic studies on the sorption of acidic dye by macroporous anion exchanger. Chem. Eng. J. 2010, 157, 29–34. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Anion Exchange Resins as Effective Sorbents for Removal of Acid, Reactive, and Direct Dyes from Textile Wastewaters. In Ion Exchange—Studies and Applications; InTech: London, UK, 2015. [Google Scholar]
- Akazdam, S.; Chafi, M.; Yassine, W.; Bouchaib, G. Removal of Acid Orange 7 dye from aqueous solution using the exchange resin Amberlite FPA-98 as an efficient adsorbent: Kinetics, isotherms, and thermodynamics study. J. Mater. Environ. Sci. 2017, 8, 2993–3012. [Google Scholar]
- Greluk, M.; Hubicki, Z. Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix. Chem. Eng. J. 2013, 215–216, 731–739. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Anion Exchange Resins of Tri-n-butyl Ammonium Functional Groups for Dye Baths and Textile Wastewater Treatment. Solvent Extr. Ion Exch. 2016, 34, 558–575. [Google Scholar] [CrossRef]
- Marin, N.M.; Pascu, L.F.; Demba, A.; Nita-Lazar, M.; Badea, I.A.; Aboul-Enein, H.Y. Removal of the Acid Orange 10 by ion exchange and microbiological methods. Int. J. Environ. Sci. Technol. 2019, 16, 6357–6366. [Google Scholar] [CrossRef]
- Wrzesińska, K.; Wawrzkiewicz, M.; Szymczyk, K. Physicochemical interactions in C.I. Acid Green 16—Lewatit S 6368 A systems—kinetic, equilibrium, auxiliaries addition and thermodynamic aspects. J. Mol. Liq. 2021, 331, 115748. [Google Scholar] [CrossRef]
- Polska-Adach, E.; Wawrzkiewicz, M.; Hubicki, Z. Removal of acid, direct and reactive dyes on the polyacrylic anion exchanger. Physicochem. Probl. Miner. Process. 2019, 55, 1496–1508. [Google Scholar]
- Marin, N.M.; Stanculescu, I. Application of Amberlite IRA 402 Resin Adsorption and Laccase Treatment for Acid Blue 113 Removal from Aqueous Media. Polymers 2021, 13, 3991. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Removal of C.I. Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chem. Eng. J. 2013, 217, 414–425. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Remazol Black B removal from aqueous solutions and wastewater using weakly basic anion exchange resins. Open Chem. 2011, 9, 867–876. [Google Scholar] [CrossRef]
- Datta, D.; Gehlot, G.; Singh, G.; Bhardwaj, A.; Kumar, D. Removal of malachite green, a cationic textile dye using Amberlite polymeric resins. Indian Chem. Eng. 2021, 63, 339–348. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Anion-Exchange Resins for C.I. Direct Blue 71 Removal from Aqueous Solutions and Wastewaters: Effects of Basicity and Matrix Composition and Structure. Ind. Eng. Chem. Res. 2014, 53, 11838–11849. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Comparison of gel anion exchangers of various basicity in direct dye removal from aqueous solutions and wastewaters. Chem. Eng. J. 2011, 173, 773–781. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Polska-Adach, E.; Hubicki, Z. Polacrylic and polystyrene functionalized resins for direct dye removal from textile effluents. Sep. Sci. Technol. 2020, 55, 2122–2136. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Polska-Adach, E. Physicochemical Interactions in Systems C.I. Direct Yellow 50—Weakly Basic Resins: Kinetic, Equilibrium, and Auxiliaries Addition Aspects. Water 2021, 13, 385. [Google Scholar] [CrossRef]
- Greluk, M.; Hubicki, Z. Comparison of the gel anion exchangers for removal of Acid Orange 7 from aqueous solution. Chem. Eng. J. 2011, 170, 184–193. [Google Scholar] [CrossRef]
- Nag, S.; Biswas, S. Cellulose-Based Adsorbents for Heavy Metal Removal. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Springer: Cham, Switzerland, 2021; pp. 113–142. [Google Scholar]
- Lagergreen, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Z. Chem. Ind. Kolloide 1907, 2, 15. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Plazinski, W.; Dziuba, J.; Rudzinski, W. Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 2013, 19, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.A.W.A.W.; Ahmad, A.L.L.; Hameed, B.H.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; El-Khaiary, M.I. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. [Google Scholar] [CrossRef]
- Dashti, A.F.; Aziz, H.A.; Adlan, M.N.; Ibrahim, A.H. Calcined limestone horizontal roughing filter for treatment of palm oil mill effluent polishing pond. Int. J. Environ. Sci. Technol. 2019, 16, 6419–6430. [Google Scholar] [CrossRef]
- Das, R.; Mukherjee, A.; Sinha, I.; Roy, K.; Dutta, B.K. Synthesis of potential bio-adsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: Kinetics, isotherms and thermodynamic studies. Appl. Water Sci. 2020, 10, 117. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Greluk, M.; Hubicki, Z. Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chem. Eng. J. 2010, 162, 919–926. [Google Scholar] [CrossRef]
- Luo, P.; Zhao, Y.; Zhang, B.; Liu, J.; Yang, Y.; Liu, J. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 2010, 44, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z.; Tatlı, A.İ.; Tunç, Ö. A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters. Chem. Eng. J. 2008, 142, 23–39. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, H.; Zhu, S. Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study. Chem. Eng. J. 2009, 147, 272–279. [Google Scholar] [CrossRef]
- Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P.-M.; Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586. [Google Scholar] [CrossRef]
- Netpradit, S.; Thiravetyan, P.; Towprayoon, S. Adsorption of three azo reactive dyes by metal hydroxide sludge: Effect of temperature, pH, and electrolytes. J. Colloid Interface Sci. 2004, 270, 255–261. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
Anion Exchanger Properties | Amberlite IRA 958-Cl | Amberlite IRA 67 |
---|---|---|
Physical form | White spherical beads | White, translucent, spherical beads |
Matrix | Crosslinked acrylic macroreticular structure | Crosslinked acrylic gel structure |
Functional group | Quaternary ammonium | Tertiary amine—N(CH3)2 |
Ionic form | Chloride—N+ (CH3)3 Cl− | Free Base (FB) |
Matrix composition and structure | acrylic-divinylbenzene, macroporous | acrylic-divinylbenzene, gel |
Moisture-holding capacity | 66 to 72% (Cl-form) | 56 to 64% (FB form) |
Particle size: | ||
| ≤1.8 630–850 µm | ≤1.80 500–750 µm |
Molecular formula | C30H44N2O4 | |
Molecular weight | 496.68100 | |
BET surface area | 2.03 m2/g | |
Total exchange capacity | ≥0.8 eq/dm3 | >1.6 |
Temperature limitations | 80 °C | 60 °C |
Operating pH range | 0–14 | 0–7 |
Density (g/cm3) | 0.2097 | 0.2367 |
Dye Trade Name | Conc. (g/L) | NaCl (g) | Soda Ash (g) |
---|---|---|---|
Yellow RL | 1 | 5 | - |
Orange GRLL | 1.25 | 10 | - |
Yellow G | 1.25 | 10 | - |
Blue 3B | 1.25 | 10 | - |
Congo red | 1 | 10 | 1 |
Blue RL | 1.5 | 10 | - |
Scarlet 4BS | 1 | 10 | 0.5 |
Red 8B | 1.25 | 5 | - |
Violet R | 0.5 | 5 | - |
Brown RC | 1 | 20 | - |
Turquoise GLL | 2 | 10 | - |
Blue 4GL | 1 | 5 | - |
Black Meta | 4 | 10 | - |
Dye Trade Name | Slope | Intercept | R2 | Wavelength Used (λmax) |
---|---|---|---|---|
Yellow RL | 0.0337 | −0.0518 | 0.9976 | 398 |
Orange GRLL | 0.0139 | 0.0601 | 0.999 | 444 |
Yellow G | 0.0245 | 0.0068 | 0.9999 | 497 |
Blue 3B | 0.0258 | 0.099 | 0.9823 | 608 |
Congo Red | 0.039 | −0.0635 | 0.9968 | 502 |
Blue RL | 0.0149 | 0.1737 | 0.9992 | 588 |
Scarlet 4BS | 0.0267 | 0.0123 | 0.9994 | 507 |
Red 8B | 0.0454 | 0.0296 | 0.9997 | 510 |
Violet R | 0.0277 | 0.0386 | 0.9993 | 532 |
Brown RC | 0.0559 | −0.0166 | 0.9992 | 460 |
Turquoise GLL | 0.0005 | 0.0007 | 0.9984 | 600 |
Blue 4GL | 0.0427 | 0.021 | 0.9997 | 605 |
Black Meta | 0.0465 | 0.0216 | 0.9987 | 520 |
Dyestuff Trade Name | Solubility at Room Temperature (g/L) |
---|---|
Yellow RL | 0.4071 |
Congo Red | 0.0269 |
Blue 3B | 0.294 |
Yellow G | 0.1676 |
Blue RL | 0.0451 |
Scarlet 4BS | 0.0522 |
Violet R | 0.0666 |
Brown RC | 0.0475 |
Turquoise Blue GLL | 0.7286 |
Blue 4GL | 0.0579 |
Black Meta | 0.8788 |
Orange GRLL | 0.5198 |
Red 8B | 0.0556 |
Resin | C0 (mg/L) | Experimental qe (mg/g) | PFO | PSO | ||||
---|---|---|---|---|---|---|---|---|
qe (mg/g) | K1 (1/min) | R2 | qe (mg/g) | K2 (g.mg/min) | R2 | |||
Amberlite IRA 958 Cl (SBR) | 100 | 9.99 | 0.979 | 0.123 | 0.554 | 10.13 | 0.1008 | 0.9999 |
300 | 28.6 | 0.976 | 1.990 | 0.566 | 30.12 | 0.0431 | 0.9999 | |
500 | 50 | 0.736 | 1.664 | 0.579 | 50.25 | 0.0215 | 0.9999 | |
Amberlite IRA 67 (WBR) | 100 | 9.49 | 0.457 | 0.0106 | 0.056 | 10.03 | 0.0858 | 0.9997 |
300 | 29.64 | 7.184 | 0.0179 | 0.562 | 30.58 | 0.0122 | 0.9994 | |
500 | 50.09 | 21.35 | 0.0186 | 0.688 | 51.28 | 0.0037 | 0.9983 |
Direct Dye Trade Name | Strong Base Resin (Amberlite IRA 958CL) | ||||
Equation of the Straight Line | (Intercept) (Log KF) | (Slope) (1/n) | R2 | (mg1−1/n L1/n/g) | |
Yellow RL | y = 0.2204x + 1.9484 | 1.9484 | 0.2204 | 0.9985 | 88.79 |
Orange GRLL | y = 5.2708x − 9.348 | −9.348 | 5.27085 | 0.9958 | 4.48 × 10−10 |
Yellow G | y = 6.0946x − 9.5475 | −9.5475 | 6.0946 | 0.9621 | 2.834 × 10−10 |
Blue 3B | y = 0.624x + 1.4071 | 1.4071 | 0.624 | 0.9819 | 25.53 |
Congo Red | y = 3.3993x − 2.7613 | −2.7613 | 3.3993 | 0.8785 | 0.00173 |
Blue RL | y = 0.7873x + 0.1870 | 0.1870 | 0.7873 | 0.9997 | 0.6501 |
Scarlet 4BS | y = 1.0183x + 0.318 | 0.318 | 1.0183 | 0.9919 | 2. 079 |
Red 8B | y = 0.2896x + 1.8542 | 1.8542 | 0.2896 | 0.9965 | 71.48 |
Violet R | y = 1.8972x − 1.5557 | −1.5557 | 1.8972 | 0.9949 | 0.0278 |
Brown RC | y = 0.7382x + 0.32 | 0.32 | 0.7382 | 0.9922 | 2.0892 |
Turquoise GLL | y = 0.2343x + 1.5101 | 1.5101 | 0.2343 | 0.9948 | 32.366 |
Blue 4GL | y = 0.3362x + 1.1069 | 1.1069 | 0.3362 | 0.9974 | 12.79 |
Black Meta | y = 5.3139x − 5.615 | −5.615 | 5.3139 | 0.9968 | 2.43× 10−6 |
Direct Dye Trade Name | Weak Base Resin (Amberlite RA 67) | ||||
Equation of the Straight Line | K (Intercept) (Log KF) | n (Slope) (1/n) | R2 | (mg1−1/n L1/n/g) | |
Yellow RL | y = 0.1280x + 2.5074 | 2.5074 | 0.128 | 0.9989 | 321.66 |
Orange GRLL | y = 1.7365x − 2.5227 | −2.5227 | 1.7365 | 0.9687 | 0.003 |
Yellow G | y = 6.9428x − 12.043 | −12.043 | 6.9428 | 0.9963 | 9.57 × 10−13 |
Blue 3B | y = 1.3913x + 0.335 | 0.3919 | 1.3913 | 0.9987 | 2.465 |
Congo Red | y = 0.9578x − 0.046 | −0.046 | 0.9578 | 1 | 0.899 |
Blue RL | y = 0.6357x +0.0216 | 0.00216 | 0.6357 | 0.9999 | 1.005 |
Scarlet 4BS | y = 1.85x − 1.8614 | −1.8614 | 1.85 | 0.9977 | 0.0137 |
Red 8B | y = 0.9715x + 0.7985 | 0.7985 | 0.9715 | 0.9921 | 6.287 |
Violet R | y = 5.677x − 9.3312 | −9.3312 | 5.677 | 0.9641 | 4.66 × 10−10 |
Brown RC | y = 1.3269x − 0.7979 | −0.7979 | 1.3269 | 0.914 | 0.1592 |
Turquoise GLL | y = 0.9676x − 0.4082 | −0.4082 | 0.9676 | 0.9926 | 0.3907 |
Blue 4GL | y = 1.0246x + 0.4431 | 0.4431 | 1.0246 | 0.9876 | 2.7739 |
Black Meta | y = 11.932x − 23.772 | −23.772 | 11.932 | 0.9426 | 1.69 × 10−24 |
Direct Dye Trade Name | Strong Base Resin (Amberlite IRA 958CL) | ||||||
Equation of the Straight Line | (Intercept)(1/Q0 b) | (Slope) (1/Q0) | R2 | Q0 (mg/g) | b (L/mg) | RL from Equation (6) | |
Yellow RL | y = 0.00186x + 0.258 | 0.2583 | 0.00186 | 0.9999 | 537.634 | 0.0072 | 0.480769 |
Orange GRLL | y = 4.3446x − 0.0212 | −0.0212 | 4.3446 | 0.9888 | 0.23017 | −204.93 | −9.759 × 10−6 |
Yellow G | y = 11.299x − 0.1417 | −0.1417 | 11.299 | 0.9886 | 0.08850 | −79.738 | −8.361 × 10−5 |
Blue 3B | y = 0.1149x + 0.0011 | 0.0011 | 0.1149 | 0.9275 | 8.70322 | 104.45 | 4.786 × 10−5 |
Congo Red | y = 6.2127x − 0.3971 | −0.3971 | 6.2127 | 0.9094 | 0.16096 | −15.645 | −0.003206 |
Blue RL | y = 0.00062x + 0.62099 | 0.62099 | 0.00062 | 0.9999 | 1610.32 | 0.0001 | 0.9900990 |
Scarlet 4BS | y = 0.4338x + 0.0042 | 0.0042 | 0.4338 | 0.9678 | 2.30520 | 103.28 | 0.0001936 |
Red 8B | y = 4.0172x − 0.0812 | −0.0812 | 4.0172 | 0.9959 | 0.24892 | −49.472 | −0.0001010 |
Violet R | y = 0.0259x + 0.0043 | 0.0043 | 0.0259 | 0.8749 | 38.6100 | 6.0232 | 0.0033095 |
Brown RC | y = 0.6064x + 0.0244 | 0.0244 | 0.6064 | 0.9793 | 1.64907 | 24.852 | 0.0010049 |
Turquoise GLL | y = 0.0473x + 0.012 | 0.012 | 0.0473 | 0.9081 | 21.1416 | 3.9416 | 0.0005071 |
Blue 4GL | y = 0.0932x + 0.0254 | 0.0254 | 0.0932 | 0.9747 | 10.7296 | 3.6692 | 0.0045217 |
Black Meta | Y = 0.2934x − 0.0032 | −0.0032 | 0.2934 | 0.9942 | 3.40831 | −91.687 | −2.7267 × 10−5 |
Direct Dye Trade Name | Weak Base Resin (Amberlite RA 67) | ||||||
Equation of the Straight Line | (Intercept) (1/Q0 b) | (Slope) (1/Q0) | R2 | Q0 | b (L/mg) | RL from Equation (6) | |
Yellow RL | y = 2.50650x + 0.00144 | 2.50650 | 0.00144 | 0.9932 | 692 | 0.007 | 0.4878048 |
Orange GRLL | y = 1.8352x − 0.0014 | −0.0014 | 1.8352 | 0.9423 | 0.544899 | −1310. | −1.526 × 10−6 |
Yellow G | y = 9.2704x − 0.1425 | −0.1425 | 9.2704 | 0.9481 | 0.107870 | −65.055 | −0.0001024 |
Blue 3B | y = 0.0781x − 0.0014 | −0.0014 | 0.0781 | 0.7777 | 12.80409 | −55.785 | −8.963 × 10−5 |
Congo Red | y = 0.6434x − 0.0009 | −0.0009 | 0.6434 | 0.9998 | 1.554243 | −714.88 | −6.994 × 10−5 |
Blue RL | y = 0.0112x + 0.2078 | 0.20784 | 0.0112 | 0.9999 | 89.1 | 0.054 | 0.15625 |
Scarlet 4BS | y = 3.0257x − 0.0589 | −0.0589 | 3.0257 | 0.9866 | 0.330502 | −51.370 | −0.0003894 |
Red 8B | y = 0.0933x − 0.001 | −0.001 | 0.0933 | 0.9524 | 10.71811 | −93.3 | −5.359 × 10−5 |
Violet R | y = 29.184x − 0.6376 | −0.6376 | 29.184 | 0.9797 | 0.034265 | −45.771 | −0.0004371 |
Brown RC | y = 1.6284x − 0.0337 | −0.0337 | 1.6284 | 0.9459 | 0.614099 | −48.320 | −0.0005176 |
Turquoise GLL | y = 0.8126x + 0.0009 | 0.0009 | 0.8126 | 0.9486 | 1.230617 | 902.88 | 2.215 × 10−6 |
Blue 4GL | y = 0.1918x − 0.0028 | −0.0028 | 0.1918 | 0.9896 | 5.213764 | −68.5 | −0.0002433 |
Black Meta | y = 19.301x − 0.2238 | −0.2238 | 19.301 | 0.8572 | 0.051810 | −86.242 | −2.89 × 10−5 |
Dye Trade Name | Dye Conc. (g/L) | Resin Type | Resin Weight (g) | Shaking Time (min) | Temperature (°C) |
---|---|---|---|---|---|
Yellow RL | 0.15 | SBR | 0.04, 0.05, 0.07, 0.1 | 240 | 21 |
Orange GRLL | 0.5 | SBR | 0.1, 0.15, 0.2, 0.25, 0.3 | 240 | 21 |
Yellow G | 0.15 | SBR | 0.1, 0.2, 0.3, 0.5 | 240 | 21 |
Blue 3 B | 0.2 | SBR | 0.04, 0.06, 0.08, 0.1 | 240 | 21 |
Congo Red | 0.02 | SBR | 0.05, 0.1, 0.15, 0.25 | 240 | 21 |
Blue RL | 0.04 | SBR | 0.75, 1.0, 1.25, 1.5 | 240 | 21 |
Scarlet 4BS | 0.05 | SBR | 0.1, 0.2, 0.3, 0.4, 0.5 | 240 | 21 |
Red8B | 0.2 | SBR | 0.05, 0.075, 0.125, 0.15 | 240 | 21 |
Violet R | 0.05 | SBR | 0.1, 0.15, 0.2, 0.3 | 240 | 21 |
Brown RC | 0.04 | SBR | 0.1, 0.2, 0.3, 0.4 | 240 | 21 |
Turquoise Blue GLL | 0.5 | SBR | 0.5, 0.6, 0.75, 1.0 | 240 | 21 |
Blue 4GL | 0.06 | SBR | 0.15, 0.2, 0.25, 0.3 | 240 | 21 |
Black Meta | 0.4 | SBR | 0.05, 0.1, 0.15, 0.2, 0.25 | 240 | 21 |
Yellow RI | 0.15 | WBR | 0.02, 0.04, 0.06, 0.1, 0.12 | 600 | 20 |
Orange GRLL | 0.5 | WBR | 0.1, 0.2, 0.3, 0.4, 0.5 | 600 | 20 |
Yellow G | 0.15 | WBR | 0.1, 0.3, 0.5, 0.7 | 600 | 20 |
Blue 3B | 0.2 | WBR | 0.02, 0.04, 0.06, 0.08 | 600 | 20 |
Congo Red | 0.025 | WBR | 0.2, 0.3, 0.4 | 600 | 20 |
Blue RL | 0.04 | WBR | 0.25, 0.5, 0.75, 1.25 | 600 | 20 |
Scarlet 4 BS | 0.05 | WBR | 0.1, 0.2, 0.3, 0.4 | 600 | 20 |
Red 8B | 0.2 | WBR | 0.05, 0.075, 0.1, 0.125 | 600 | 20 |
Violet R | 0.05 | WBR | 0.1, 0.2, 0.25, 0.3 | 600 | 20 |
Brown RC | 0.04 | WBR | 0.1, 0.2, 0.3, 0.4, 0.5 | 600 | 20 |
Turquoise Blue GLL | 0.05 | WBR | 0.25, 0.5, 0.6, 0.75, 1.0 | 600 | 20 |
Blue 4GL | 0.06 | WBR | 0.15, 0.2, 0.25, 0.3 | 600 | 20 |
Black Meta | 0.4 | WBR | 0.5, 1.0, 1.5, 2.0 | 600 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naim, M.M.; Al-harby, N.F.; El Batouti, M.; Elewa, M.M. Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors. Molecules 2022, 27, 1593. https://doi.org/10.3390/molecules27051593
Naim MM, Al-harby NF, El Batouti M, Elewa MM. Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors. Molecules. 2022; 27(5):1593. https://doi.org/10.3390/molecules27051593
Chicago/Turabian StyleNaim, Mona M., Nouf F. Al-harby, Mervette El Batouti, and Mahmoud M. Elewa. 2022. "Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors" Molecules 27, no. 5: 1593. https://doi.org/10.3390/molecules27051593
APA StyleNaim, M. M., Al-harby, N. F., El Batouti, M., & Elewa, M. M. (2022). Macro-Reticular Ion Exchange Resins for Recovery of Direct Dyes from Spent Dyeing and Soaping Liquors. Molecules, 27(5), 1593. https://doi.org/10.3390/molecules27051593