The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective
Abstract
:1. Introduction
2. Materials and Methods
Preform production + Final form production + Distribution + Waste collection + Recycling +
Treatment of non-recyclable waste
2.1. Life Cycle Assessment
2.1.1. Goal and Scope and Boundaries
2.1.2. Inventory Analysis
- Primary data are recommended because they are site-specific, as well as representative of geographic, technological, and historical scopes;
- In the absence of primary data, either secondary data from the literature or modified LCI data based on site-specific information are employed. As a result, these statistics are only partially particular to the facility under evaluation and are blended with proxy data, such as average data from similar businesses;
- Data from generic LCI databases are the least desirable alternative. These data are not particular to the facility under evaluation and are chosen based on the best approximation.
2.1.3. Impact Assessment
2.1.4. Interpretation
3. Results and Discussion
- No allocation method is considered because only one product (bottles) LCA is studied;
- No regionalized LCA is present in the literature for the current study related to the region of China;
- Life cycle impact assessment method considered here is CML.
4. Recommendations for Reducing Environmental Impacts
- Development and implementation of an enterprise-wide environmental management system;
- Company strategy and goals add the sustainable issues;
- Focus on the production of biodegradable items;
- Improvement in the technologies that are environmentally friendly;
- Reduction in the transportation of the goods through proper management;
- Spreading awareness regarding plastic pollution reduction and a clean/healthy environment;
- Development of the organizations that work on the product LCA and audit the environment;
- Plastic density reduction is the minimum possible for the different applications;
- Special laboratories were established for the technical feasibility, particularly the permeability and mechanical behavior of the film as its thickness is reduced;
- Usage of recycled plastic resins;
- Renewable energy usage, i.e., electricity and heat, from natural sources;
- Optimization of the industrial process and supply chain;
- Usage of mono-layer products for the extension of end-of-life possibilities.
5. Conclusions
- Production and consumption patterns of plastics;
- Research on PET plastic, including end-of-life options;
- More research on the negative impacts of reclaiming plastic waste from the environment, resource savings, harmful effects of manufacturing, and waste processing is also required;
- Recycling education, awareness and technologies need improvement;
- Individual-global-based countries’ research related to LCA studies on plastic waste energy is lacking.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiseo, L. Annual Production of Plastics Worldwide from 1950 to 2020; Statista: Hamburg, Germany, 2022. [Google Scholar]
- Spierling, S.; Röttger, C.; Venkatachalam, V.; Mudersbach, M.; Herrmann, C.; Endres, H.-J. Bio-based Plastics—A Building Block for the Circular Economy? Procedia CIRP 2018, 69, 573–578. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Karayannidis, G.P.; Achilias, D.S. Chemical Recycling of Poly(ethylene terephthalate). Macromol. Mater. Eng. 2007, 292, 128–146. [Google Scholar] [CrossRef]
- Dias, D.S.; Crespi, M.S.; Ribeiro, C.A.; Kobelnik, M. Evaluation of the thermal decomposition of blends prepared with poly (3-hydroxybutyrate)(PHB) and recyclable ethylene poly-terephthalate (RPET). J. Therm. Anal. Calorim. 2021, 143, 3447–3457. [Google Scholar] [CrossRef]
- Stripple, H.; Westman, R.; Holm, D. Development and environmental improvements of plastics for hydrophilic catheters in medical care: An environmental evaluation. J. Clean. Prod. 2008, 16, 1764–1776. [Google Scholar] [CrossRef]
- Walker, S.; Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: A review. J. Clean. Prod. 2020, 261, 121158. [Google Scholar] [CrossRef]
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef]
- Finkbeiner, M. Product environmental footprint—breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess 2014, 19, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Ankrah, N.A.; Manu, E.; Booth, C. Cradle to Cradle Implementation in Business Sites and the Perspectives of Tenant Stakeholders. Energy Procedia 2015, 83, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Bjørn, A.; Hauschild, M.Z. Cradle to Cradle and LCA. In Life Cycle Assessment; Springer: Berlin/Heidelberg, Germany, 2018; pp. 605–631. [Google Scholar]
- Hesselbach, J.; Herrmann, C. Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, 2–4 May 2011; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Koch, J.; Plehn, C.; Reinhart, G.; Zäh, M.F. Cycle management for continuous manufacturing planning. In Enabling Manufacturing Competitiveness and Economic Sustainability; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–12. [Google Scholar]
- Klöpffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Finkbeiner, M. Carbon Footprinting—Opportunities and Threats; Springer: Berlin/Heidelberg, Germany, 2009; Volume 14, pp. 91–94. [Google Scholar]
- Wu, M.; Zhang, Z.; Chiu, Y.-W. Life-cycle water quantity and water quality implications of biofuels. Curr. Sustain./Renew. Energy Rep. 2014, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Committee, T. ISO 14040: 2006 International Standard—Environmental Management—Life Cycle Assessment—Principles and Framework. 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 28 October 2021).
- European Commission; Joint Research Centre. Product Environmental Footprint Guide; Institute for Environment and Sustainability: Ispra, Italy, 2012. [Google Scholar]
- Finkbeiner, M. From the 40s to the 70s—The Future of LCA in the ISO 14000 Family; Springer: Berlin/Heidelberg, Germany, 2013; Volume 18, pp. 1–4. [Google Scholar]
- Toxopeus, M.E.; De Koeijer, B.L.A.; Meij, A. Cradle to cradle: Effective vision vs. efficient practice? Procedia CIRP 2015, 29, 384–389. [Google Scholar] [CrossRef]
- Kausch, M.F.; Klosterhaus, S. Response to ‘Are Cradle to Cradle certified products environmentally preferable? Analysis from an LCA approach’. J. Clean. Prod. 2016, 113, 715–716. [Google Scholar] [CrossRef]
- Cabot, M.I.; Luque, A.; de las Heras, A.; Aguayo, F. Aspects of sustainability and design engineering for the production of interconnected smart food packaging. PLoS ONE 2019, 14, e0216555. [Google Scholar] [CrossRef]
- Bakker, C.A.; Wever, R.; Teoh, C.; De Clercq, S. Designing cradle-to-cradle products: A reality check. Int. J. Sustain. Eng. 2010, 3, 2–8. [Google Scholar] [CrossRef]
- Michael Braungart, W.M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: Berkeley, CA, USA, 2002. [Google Scholar]
- Curran, M.A. Life-Cycle Assessment. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2016; pp. 359–366. [Google Scholar] [CrossRef]
- Brusseau, M.L. Sustainable Development and Other Solutions to Pollution and Global Change; Academic Press: Cambridge, MA, USA, 2019; pp. 585–603. [Google Scholar] [CrossRef]
- Židonienė, S.; Kruopienė, J. Life Cycle Assessment in environmental impact assessments of industrial projects: Towards the improvement. J. Clean. Prod. 2015, 106, 533–540. [Google Scholar] [CrossRef]
- Grant, T. Life Cycle Assessment (LCA) and Degradable Polymers. In Degradable Polymers and Materials: Principles and Practice, 2nd ed.; American Chemical Society: Washington, DC, USA, 2012; Volume 1114, pp. 45–58. [Google Scholar]
- Del Borghi, A.; Strazza, C.; Magrassi, F.; Taramasso, A.C.; Gallo, M. Life Cycle Assessment for eco-design of product–package systems in the food industry—The case of legumes. Sustain. Prod. Consum. 2018, 13, 24–36. [Google Scholar] [CrossRef]
- Sala, S.; Amadei, A.M.; Beylot, A.; Ardente, F. The evolution of life cycle assessment in European policies over three decades. Int. J. Life Cycle Assess. 2021, 26, 2295–2314. [Google Scholar] [CrossRef]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.W.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life Cycle Assessment Part 2: Current Impact Assessment Practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Klöpffer, W. The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int. J. Life Cycle Assess. 2012, 17, 1087–1093. [Google Scholar] [CrossRef]
- Muthu, S.S. Estimating the overall environmental impact of textile processing: Life cycle assessment (LCA) of textile products. In Assessing the Environmental Impact of Textiles and the Clothing Supply Chain; Elsevier: Amsterdam, The Netherlands, 2014; pp. 105–131. [Google Scholar] [CrossRef]
- Shaked, S.; Crettaz, P.; Saade-Sbeih, M.; Jolliet, O.; Jolliet, A. Environmental Life Cycle Assessment; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Vercoulen, R. Impacts of the Cradle to Cradle Certified Products Program; Cradle to Cradle Products Innovation Institute: Venlo, The Netherlands, 2014; pp. 1–145. [Google Scholar]
- UN. Life Cycle Initiative. 2020. Available online: https://www.lifecycleinitiative.org/ (accessed on 15 October 2021).
- Hellweg, S.; i Canals, L.M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Singh, A.; Rorrer, N.A.; Nicholson, S.R.; Erickson, E.; DesVeaux, J.S.; Avelino, A.F.T.; Lamers, P.; Bhatt, A.; Zhang, Y.; Avery, G.; et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021, 5, 2479–2503. [Google Scholar] [CrossRef]
- Gervet, B. The Use of Crude Oil in Plastic Making Contributes to Global Warming; Lulea University of Technology: Lulea, Sweden, 2007; pp. 1–8. [Google Scholar]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-in, T.; Nithitanakul, M.; Sarobol, E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- Europe, P. Antimony and Bottled Water. 2019. Available online: https://packagingeurope.com/antimony-and-bottled-water/ (accessed on 20 October 2021).
- Singh, A.K.; Agarwal, H.; Sinha, R.; Jha, S.K.; Prakash, A. Life Cycle Assessment of Polyethylene Terepthalate (Pet) Bottles. ELK Asia Pac. J. 2016, 1–7. [Google Scholar]
- Gironi, F.; Piemonte, V. Life Cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environ. Prog. Sustain. Energy 2011, 30, 459–468. [Google Scholar] [CrossRef]
- Maga, D.; Hiebel, M.; Aryan, V. A comparative life cycle assessment of meat trays made of various packaging materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, N.; Frago, J.; Mu, D. Life cycle assessment of bottled water: A case study of Green2O products. Waste Manag. 2018, 76, 734–743. [Google Scholar] [CrossRef]
- Islam, M.; Uddin, M.J.; Alshehri, K. Plastic Waste and Carbon Footprint Generation Due to the Consumption of Bottled Waters in Saudi Arabia. Res. Dev. Mater. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Lee, R.P.; Meyer, B.; Huang, Q.; Voss, R. Sustainable waste management for zero waste cities in China: Potential, challenges and opportunities. Clean Energy 2020, 4, 169–201. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Cheela, V.R.S.; D’Adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero waste approach towards a sustainable waste management. Environ. Dev. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Hao, F. Waste Ban Forces Unlicensed Recyclers to Clean Up Act. 2018. Available online: https://chinadialogue.net/en/business/10438-waste-ban-forces-unlicensed-recyclers-to-clean-up-act/ (accessed on 30 May 2021).
- Council, C.S. China: National Plan on Banning “Foreign Garbage” and Reducing Solid Waste Imports. 2017. Available online: https://www.loc.gov/item/global-legal-monitor/2017-08-08/china-national-plan-on-banning-foreign-garbage-and-reducing-solid-waste-imports/ (accessed on 30 May 2021).
- Kuczenski, B.; Geyer, R. Life Cycle Assessment of Polyethylene Terephthalate (PET) Beverage Bottles Consumed in the State of California; DRRR-2014-1487; California Department of Resources Recycling and Recovery: Sacramento, CA, USA, 14 February 2011. [Google Scholar]
- Coelho, T.M.; Castro, R.; Gobbo, J.A., Jr. PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling. Resour. Conserv. Recycl. 2011, 55, 291–299. [Google Scholar] [CrossRef]
- Ma, Z.; Ryberg, M.W.; Wang, P.; Tang, L.; Chen, W.-Q. China’s Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance. ACS Sustain. Chem. 2020, 8, 16861–16868. [Google Scholar] [CrossRef]
- Stanway, D. China to force firms to report use of plastic in new recycling push. World News, 30 November 2020. [Google Scholar]
- ENF. Plastic Recycling Plants in China. 2021. Available online: https://www.enfrecycling.com/directory/plastic-plant/China (accessed on 30 May 2021).
- Commission, E. Enviroment; Waste Framework Directive. Available online: https://ec.europa.eu/environment/topics/waste-and-recycling/waste-framework-directive_en (accessed on 30 May 2021).
- Bartl, A. The EU Circular Economy Package: A genius programme or an old hat? Waste Manag. Res. 2018, 36, 309–310. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Li’ao, W.; Fenwei, S.; Gang, H. Urban solid waste management in Chongqing: Challenges and opportunities. Waste Manag. 2006, 26, 1052–1062. [Google Scholar] [CrossRef]
- Furukawa, M.; Kawakami, N.; Tomizawa, A.; Miyamoto, K. Efficient degradation of poly (ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 2019, 9, 16038. [Google Scholar] [CrossRef] [Green Version]
- Quartinello, F.; Vajnhandl, S.; Volmajer Valh, J.; Farmer, T.J.; Vončina, B.; Lobnik, A.; Herrero Acero, E.; Pellis, A.; Guebitz, G.M. Synergistic chemo-enzymatic hydrolysis of poly (ethylene terephthalate) from textile waste. Microb. Biotechnol. 2017, 10, 1376–1383. [Google Scholar] [CrossRef]
- Charpentier Poncelet, A.; Helbig, C.; Loubet, P.; Beylot, A.; Muller, S.; Villeneuve, J.; Laratte, B.; Thorenz, A.; Tuma, A.; Sonnemann, G. Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals. J. Ind. Ecol. 2021, 25, 1177–1193. [Google Scholar] [CrossRef]
- Kayo, C.; Tojo, S.; Iwaoka, M.; Matsumoto, T. Evaluation of Biomass Production and Utilization Systems. In Research Approaches to Sustainable Biomass Systems; Academic Press: Cambridge, MA, USA, 2014; pp. 309–346. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Guinee, J. Handbook on Life Cycle Assessment. An Operational Guide to the ISO Standards. Int. J. Life Cycle Assess. 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Laurent, A.; Weidema, B.P.; Bare, J.; Liao, X.; de Souza, D.M.; Pizzol, M.; Sala, S.; Schreiber, H.; Thonemann, N.; Verones, F. Methodological review and detailed guidance for the life cycle interpretation phase. J. Ind. Ecol. 2020, 24, 986–1003. [Google Scholar] [CrossRef]
- Matuštík, J.; Kočí, V. What is a footprint? A conceptual analysis of environmental footprint indicators. J. Clean. Prod. 2021, 285, 124833. [Google Scholar] [CrossRef]
- de Mello Soares, C.T.; Ek, M.; Östmark, E.; Gällstedt, M.; Karlsson, S. Recycling of multi-material multilayer plastic packaging: Current trends and future scenarios. Resour. Conserv. Recycl. 2022, 176, 105905. [Google Scholar] [CrossRef]
- Bach, V.; Minkov, N.; Finkbeiner, M. Assessing the Ability of the Cradle to Cradle Certified™ Products Program to Reliably Determine the Environmental Performance of Products. Sustainability 2018, 10, 1562. [Google Scholar] [CrossRef] [Green Version]
- Lozano, S.; Iribarren, D.; Moreira, M.; Feijoo, G. The link between operational efficiency and environmental impacts: A joint application of life cycle assessment and data envelopment analysis. Sci. Total Environ. 2009, 407, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.D.L.; Escobar, A.S. The dilemma of plastic bags and their substitutes: A review on LCA studies. Sustain. Prod. Consum. 2022, 30, 107–116. [Google Scholar] [CrossRef]
- Pajula, T.; Behm, K.; Vatanen, S.; Saarivuori, E. Managing the Life Cycle to Reduce Environmental Impacts. In Dynamics of Long-Life Assets: From Technology Adaptation to Upgrading the Business Model; Grösser, S.N., Reyes-Lecuona, A., Granholm, G., Eds.; Springer International Publishing: Cham, Switherland, 2017; pp. 93–113. [Google Scholar] [CrossRef] [Green Version]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.; Zhu, T.; Zheng, Y.; Zhang, Q. Declines in mental health associated with air pollution and temperature variability in China. Nat. Commun. 2019, 10, 2165. [Google Scholar] [CrossRef]
- Thrasher, J.D.; Kilburn, K.H. Embryo Toxicity and Teratogenicity of Formaldehyde. Arch. Environ. Health Int. J. 2001, 56, 300–311. [Google Scholar] [CrossRef]
- Stevens, C.J.; David, T.I.; Storkey, J. Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Funct. Ecol. 2018, 32, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.O.; Halberstadt, M.L.; Borgford-Parnell, N. Stratospheric ozone, global warming, and the principle of unintended consequences—An ongoing science and policy success story. J. Air Waste Manag. Assoc. 2013, 63, 607–647. [Google Scholar] [CrossRef]
- Malone, T.C.; Newton, A. The Globalization of Cultural Eutrophication in the Coastal Ocean: Causes and Consequences. Front. Mar. Sci. 2020, 7, 670. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Y.; Wu, Q. Design of a sorting and recycling system for post-consumer bottles. In Proceedings of the 2022 International Seminar on Computer Science and Engineering Technology (SCSET), Indianapolis, IN, USA, 8–9 January 2022; pp. 281–286. [Google Scholar]
- Linzner, R.; Salhofer, S. Municipal solid waste recycling and the significance of informal sector in urban China. Waste Manag. Res. 2014, 32, 896–907. [Google Scholar] [CrossRef]
- Steuer, B. Is China’s regulatory system on urban household waste collection effective? An evidence-based analysis on the evolution of formal rules and contravening informal practices. J. Chin. Gov. 2017, 2, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wen, Z.-G. The consumption and recycling collection system of PET bottles: A case study of Beijing, China. Waste Manag. 2014, 34, 987–998. [Google Scholar] [CrossRef]
- Chi, X.; Streicher-Porte, M.; Wang, M.Y.L.; Reuter, M.A. Informal electronic waste recycling: A sector review with special focus on China. Waste Manag. 2011, 31, 731–742. [Google Scholar] [CrossRef]
- Europe, P.; EPRO. Plastics—The Facts 2020. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 25 October 2021).
- Smithers. Global PET Packaging Demand to Reach $44.1 Billion in 2020 Says Smithers Report. 2020. Available online: https://www.smithers.com/resources/2020/sept/global-pet-packaging-demand-to-reach-$44-1-billion (accessed on 28 October 2021).
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Suwanmanee, U.; Leejarkpai, T.; Mungcharoen, T. Assessment the environmental impacts of polylactic acid/starch and polyethylene terephthalate boxes using life cycle assessment methodology: Cradle to waste treatments. J. Biobased Mater. 2013, 7, 259–266. [Google Scholar] [CrossRef]
- Nie, Y. Development and prospects of municipal solid waste (MSW) incineration in China. Front. Env. Sci. Eng. China 2008, 2, 1–7. [Google Scholar] [CrossRef]
- Xu, W.L.; Liu, J.H. Status and development prospect on municipal solid waste incineration technology in our country. China Environ. Prot. Ind. 2007, 11, 24–29. [Google Scholar]
Incineration Type | No. of Plants | No. of Incinerators | No. of Turbine Generators | Total Incineration Capacity (t/d) | Total Power Generation Capacity (MW) |
---|---|---|---|---|---|
Stoke grate | 25 | 69 | 46 | 2.0 × 102 | 3.6 × 102 |
Fluidized bed | 24 | 50 | 39 | 1.6 × 104 | 4.2 × 102 |
Rotary kiln + Pyrolysis | 14 | 32 | 5 | 3.5 × 103 | 2.5 × 101 |
Total | 63 | 151 | 90 | 4.0 × 104 | 8.0 × 102 |
Company Name | Area | Materials Accepted | Recycled Products | Materials Processed (tons/Year) | Capacity (tons/Year) |
---|---|---|---|---|---|
Hesoo Technolgy Tianjin Co., Ltd. | Tianjin | PET, PP, PS, HDPE, LDPE, ABS | Granules/Pellets | - | 5.0 × 105 |
Total Requirements (kg’s) | ||
---|---|---|
Processes | Flows | Amount |
Extraction of Raw material and Resin production | PET Resin production | 1.1 × 103 |
Preform production | Preform production | 1.1 × 103 |
Final Product production | Final product | 1.1 × 103 |
Distribution of Final product | Waste | 1.0 × 103 |
Waste collection | Sorted waste | 1.0 × 103 |
Recycling | Non-Recyclable waste | 7.0 × 102 |
Treatment of Non-Recyclable waste | PET Resin Recovery | 6.8 × 102 |
Impact Assessment: CML 2 Baseline 2000 | |||
---|---|---|---|
Impact Category | Unit | Inventory Result | Impact Result |
Global warming (GWP100) | kg CO2 eq | 3.6 × 10−5 kg | 1.6 × 10−1 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 1.2 × 102 kg | 1.1 × 102 |
Photochemical oxidation | kg C2H4 eq | 1.7 × 102 kg | 9.1 × 101 |
Abiotic depletion | kg Sb eq | - | 0.0 × 100 |
Human toxicity | kg 1,4-DB eq | 1.2 × 102 kg | 8.1 × 103 |
Acidification | kg SO2 eq | −1.2 × 101 kg | −6.1 × 100 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 3.6 × 10−5 kg | 3.6 × 10−5 |
Eutrophication | kg PO4 eq | 4.4 × 101 kg | 4.0 × 100 |
Freshwater aquatic ecotoxicity | kg 1,4-DB eq | 1.2 × 102 kg | 9.7 × 102 |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 1.2 × 102 kg | 2.6 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamoor, M.; Samak, N.A.; Yang, M.; Xing, J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective. Molecules 2022, 27, 1599. https://doi.org/10.3390/molecules27051599
Tamoor M, Samak NA, Yang M, Xing J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective. Molecules. 2022; 27(5):1599. https://doi.org/10.3390/molecules27051599
Chicago/Turabian StyleTamoor, Muhammad, Nadia A. Samak, Maohua Yang, and Jianmin Xing. 2022. "The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective" Molecules 27, no. 5: 1599. https://doi.org/10.3390/molecules27051599
APA StyleTamoor, M., Samak, N. A., Yang, M., & Xing, J. (2022). The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective. Molecules, 27(5), 1599. https://doi.org/10.3390/molecules27051599